Contents
ALPHABETICAL INDEX OF PRODUCTS 1
MODEL NUMBER INDEX OF PRODUCTS 7
ABOUT HEWLETT-PACKARD
Ordering/General Information 15
A Brief Sketch 16
Medical Electronics 18
Analytical Instruments and Systems for Chemistry 20
Delcon Telephone Maintenance Instruments 21
General Purpose Instrument Interface Bus 23
Services 25
Training/Video Tapes 26
PRODUCT SECTIONS
Amplifiers 29
Measuring Devices 36
Analog Voltmeters 42
Impedance Meters 58
Digital Voltmeters 71
Digital Circuit Test 103
Displays 109
Oscilloscopes 118
Power Supplies 184
Recorders and Printers 207
Coupler/Controller 243
Electronic Counters 247
Frequency and Time Standards 277
Pulse Generators 288
Oscillators, Function Generators 311
Frequency Synthesizers 326
Signal Generators 336
Sweep Oscillators 357
Power and Noise Figure Meters 369
Microwave Test Equipment 378
Network Analyzers 403
Communications Test Equipment 427
Wave and Distortion Analyzers 441
Spectrum Analyzers 450
Digital Signal Analyzers 459
Computers and Peripherals 468
Automated Test Systems 475
Automated Data Acquisition Systems 478
Computer Systems 479
Electronic Calculators and Peripherals 481
Solid State Components and Circuits 486
Cabinets, Enclosures and Accessories 488
INFORMATION REQUEST CARD At back of catalog
SALES AND SERVICE OFFICES Inside Rear Cover

A

AC/DC Converter 54, 184
AC/DC Meter Calibrator 314
A/D, D/A Converters 73, 202, 224, 263, 472
AC Current Probe 57
AC Voltmeters 49, 53, 74
Accessories
Analog Meter 53,57
Analog Tape Recorder 236
Cables 492
Cases and Enclosures 262, 490
Decade Capacitor 70
Electronic Counter 247
Oscilloscope 173
Power Supply 30, 201
Signal Source/Generator $311,326,356,403,407$
Sweep Oscillator 366
Transit Cases 490
Active Probes 174, 419
Adapters
Coaxial and Waveguide 57, 148, 177, 398
Probe 57, 175
Ammerers
AC Current 57. 79
Analog 46
Clip-on 48, 57
DC Current $46,74,79,83,88$
Amplifiers
$A C$ 30,79
Charge Sensitive 466
Data 32
Differential 29, 33
Frequency Standard Distribution 279
Linear 467
Logarithmic 56
Power/DC Source 30, 198
Puise 31
RF/Microwave 34
Wideband 30, 33
Amplifier/Low Pass Filter 465
Amplifier/Power Supply 30, 198
Analog Tape Recorders 236
Analog Voltmeters, General Information 42
Analytical Instruments and Systems for Chemistry 20
Analyzers
Audio Spectrum 460,463
Distortion 441
Fourier 460
Microwave Link 438
Multichannel 466
Network 403
Power Spectrum 460, 463
Analyzers (continued)
Real Time, Spectrum 463
Signal, Digital 460
Spectrum 450
Vibration 460
Wave 444
Antenna, VLF Loop 286
Arithmetic Unit, Fast Fouries 461
Atomic Clock 280, 282
Attenuators
50 Ohm 175
75 Ohm 439
600 Ohm 70
Coaxial 383, 439
Telephone Test 431
Waveguide 385
Automated Data Acquisition Systems 478
Automated Test Systems 475
Averager, Signal 462
B
Battery Operated InstrumentsDVM77
Electronic Counter 258
Oscillators 318, 430
Oscilloscopes 156
Telephone Test Set 431
Voltmeters 46, 49, 52
Bit Error Rate Detecror 305
Bridges
Capacitance 63
Universal 61
C
Cabinets, Enclosures and Accessories 488
Cables, Accessory 57,492
Calculator, Pocket Scientific 482
Calculators
Electronic Slide Rule 482
General Information 481
Programmable 483
Peripherals 485
Calibration System, Instruments 477
Calibrators
AC/DC Voltmeter/Ammeters 196, 314
AC Voltmeter 323, 316
Cameras, Oscilloscope 278
Compatibility Chart 181
Capacirance Meters and Bridges 61
Capacitor, Decade 70
Card Readers, Mark/Sense 332, 471
Carrier Preamplifier 233
Chart Recorders 207, 470
Clip-on Milliammeter 48, 57
Clip, Logic 105
Clock, Atomic 280, 282
Clock, Digital 211
Coaxial Instrumentation and Accessories 380
Communication Test Equipment
Bit Error Rate Measuring System 436
General Information 427
Microwave Link Analyzer 438
Portable Test Set 431
Psophometer 429
Selective Voltmeter 433
Sweep Oscillator 407, 440
Telephone Test Oscillator 430
Transmission and Noise 429
Comparators
Analog 66
Limir-Test 66, 93, 407
Logic 108
Computer of Average Transients 462
Computer Systems
Disc Operating System 479
Multiprogramming System 480
Time-sharing System 480
Computers, Digital 468
Computing Calculator 481
Computing Network Analyzer 407
Converters
$A C$ to $D C$ 54, 185
A/D, D/A 202, 224, 263, 472
Logarithmic 56, 414
RF to IF 438
Voltage to Frequency 96, 321, 324
Correlator 460, 463
Counters, Electronic
Accessories 256
Automatic Ranging 258, 272, 276
Cable 265
Computing 272
Counter Selection Guide 252
Counter/Timers, Electronic 247
Digital Voltmeters 73,256
Heterodyne Converter 256
Microwave 256, 270
Normalizing Unit 257, 275
Portable Battery Operated 258
Prescaler 257
Preset Normalizing 257
Reciprical Taking 270
Tachometer Application 276
Time Interval 257, 264, 272
Counters, Electconic (conithued)
Timer, Builtin DVM 264
Transfer Oscillator 256
Video Amplifier 257
Coupler/Controller 243
Couplers, Directional (Coax and Waveguide) 386
Crystal Detectors 389
Current Meters $46,47,57,74,83,88$
Current Sources, Precision 200
$D / A, \lambda / D$ Converters 202, 224, 472
Data Acquisition Systems
Computerized 478
Coupler/Controller 243
Data Generator 310, 436
Data Loggers 82
Data Punch 87
Data Storage 83
DC Power Supplies
Condensed Listing 185
Digitally Programmable 202, 472
General Purpose Laboratory 186
Industrial 194
Modular (Slot) 204
Multiple Output for Vacuem Tubes 198
Options and Accessories 201
Power Supply/Amplifies 198
Precision Constant Current Source 200
Precision Voltage Source 196
Decade Capacitor 70
Delay Generator 300
Delay Group 407
Delcon Telephone Maintenance Instruments 21
Detectors
Bit Error 305
Crystal, Coaxial and Waveguide 389
Difectional 387
Null 210
Optical, Radiant Flux (Power) 36
Slotted Line 391
Differential Amplifier 29. 33
Differential Voltmeters 45, 315
Digital
AC Voltmeters $74,77,83,88,90,93,97$
Ammeters 74, 79, 88
Circuit Test 103
Clock 241
Computers 468
DC Current Meters 74, 88
DC Voltmeters $74,77,83,88,90,99,101,264$
Decibel Meters 75

Digital (continued)

Limit Test $66,93,407$
Multimeters $74,77,82,88,90,93$
Network Analyzers 407
Ohmmeters $74,83,88,90,93,97$
Oscillators $319,328,330$
Power Meters (RF/Microwave) 373
Ratio Meter 45, 83, 90, 93, 247
Recorders 241, 469
Sample-and-Hold 83
Signal and Spectrum Analyzers 459
Tape Recorders 469
Wave Analyzers 446
Digitally Programmable Power Supplies 202, 472
Digital Circuit Test 103
Digital Signal Analyzers 459
Digital Test Equipment 436
Digital Volemeters, General Information 71
Directed Beam Display 110, 117
Directional Couplers
Coaxial 386
Waveguide 388
Directional Detectors 387
Disc Memories 474
Disc Operaring System 479
Discriminator, FM 276
Displacement Transducers 37
Displays
Computer Graphic 110
Directed Beam 110, 117
General Information 109
Graphic Storage 114
Large Screen X-Y 113
Precision Raster 117
Spectrum 463
Disrortion Analyzers, General Information 441
Distortion Test Set 438
Down Converter 256,438
DVM, General Information 71
E
Electronic Calculators \& Peripherals 481
Electronic Counters 247
Error Detector 436
F
Fast Fourier Transform Arithmetic 461
Fiters
Bandpass 394
Coaxial and Waveguide 394
High-Pass 148
Low-Pass $211,394,-165$
Tracking/Tunable 456
FM Discriminator 276
Fourier Analyzer 460
Frequency Doubler 344, 353, 356
Frequency Limit Detector 275
Frequency Meters
Frequency Meters (continued)
Analog 276
Coaxial and Waveguide 395
Frequency Response Test Set 401
Frequency Standards
Cesium 280
Distribution Amplifier 279
General Information 277
Quartz 284
Reference System 279
Rubidium 282
Standby Power Supply 287
VLF Comparator 286
Frequency Synthesizers 326, 333, 342
Frequency and Time Standards 277
Function Generator
General Information 311
Variable Phase 320
VCO 321, 325
G
Galvanometric Recorders 225
Generators
Data 310,436
Delay 300
Function $311,320,325$
Marker 368
Multiphase Clock 306
Pseudorandom Bit Sequence 305, 464
Pseudorandom Noise 309, 464
Pulse 107, 275, 288
Rate 300
Signal 326, 336
Square Wave 309
Sweep $328,330,357,407,440$
Tracking 456
Word 290, 306
Graphic Plotter 470
H
High Resistance Meter 60
I
IC Troubleshooters 103Impedance
Bridge 61
General Information 58
Meters 62, 414, 416
Incremental Chact Advance 212
Inductance Meter $61,64,67$
Industrial Power Supplies 194
Insulation Resistance Meter 60
Interface Bus 23
Interferometer, Laser 37
L
Laboratory Power Supplies 186
Laser Interferometer 37
Limit Tester 93. 407
Loads/Termination, Coaxial and Waveguide 393
Logarithmic
Amplifier 56
Converter 56
Voltmeter 54, 56, 75
Logic
Clip 105
Comparator 104, 108
Probe 104
Pulser 107
Troubleshooting 103
M
Mark/Sense Card Reader 332, 471
Marker Generator 368
Measuring Devices 36
Medical Electronics 18
Memories
Disc 469
Tape 474
Meter Calibrator, AC/DC 314
Meters, Analog, 45,59,66
$A C$ 52
$A C / D C$ 49
Ammeters 45
Capacitance 63, 66
Differential 45, 315
Frequency 276
Impedance $58,62,67,69,414,416$
Inductance 58
Logarithmic Voltmeters 56, 75
Noise Figure 376
Nult 45
Multi-Function 47, 49, 315
Ohmmeters 49, 59
Power 369
Q 68, 69
Radiant Flux (Optical Power) 36
Ratio 45
Resistance 58
RX 64
SWR 399
Selecrive VM 433,435, 444
True RMS 55
Vector Impedance 67,416
Meters, Digital
AC $75,77,83,88,90,93,97$
AC/DC $74,77,83,88,90,93$
Current 74,88
DC $77,83,88,99,101$
Decibel 75, 414
Meters, Digital (continued)
Gain/Phase 407, 414
Multi-Function $74,77,83,88,90,93$
Ohms $74,77,83,90,93$
Power (RF/Microwave) 373
Ratio 83, 93, 247
Sample-and-Hold 82
True RMS 83, 90, 93
Microwave Link Analyzer 438
Microwave Test Equipment 378
Mixers, Coaxial and Waveguide 356, 397, 457
Modular Power Supplies 204
Modulators 355
Monitor, TV 117
Multichanne! Analyzer 466
Multimeters
Analog 47, 49, 315
Digital $74,77,83,88,90,93$
Multiphase Clock Generator 306
Multiple Output Power Supply for Vacuum Tubes 198
Multiprogranmers 472
Multiprogramming System 480
N
Narruw Band TDR 149
Network Analyzers, General Information 403
Noise Analyzers
Acoustic 460, 463
Telephone 429
Noise Figure Measurement Equipment 376
Noise Generator, Pseudorandom 309, 464
Noise Sources 376
Null Meters 45
Nuclear Instrumentation 466
0
OEM Displays 109
OEM Recorders 213, 220, 469
Ohmmeters
Analog 49, 59
Digital $74,77,83,88,90,93$
Optical Mark/Sense Card Reader 332, 471
Optical Radiant Flux Meter/Detector 36
Oscillators
Audio 317
Communications $323,328,430$
Digital 319, 328, 330
General Information 311
Low Frequency 317, 324, 328, 330
Quartz 284
RE 344
Sweep 321, 357, 410
Oscillators (continued)
Test 323, 430
Transfer 256
Wideband $317,324,328,330$
Oscillaters, Function Generators, General Information 311
Oscillographic Recorders 225
Oscilloscopes 118
Accessories 173
Cameras 178
Field Portable 156
General Information 118
High Frequency 122
High Writing Speed 129
Instruments 122
Large Screen 124
Low Frequency 151, 172
Probes 173
Sampling 143, 150
Testmobiles 182
TV Waveform 172
Variable Persjstence/Storage 126
Phase Measurement Equipment 403, 407, 414
Phase Shifters, Waveguide 396
Plotters, X.Y 207, 470
Plug-in Oscilloscope 122
Plug-in Pulse Generator System 298
Pocket Scientific Calculator 482
Point Plotting System 212
Portable Oscilloscopes 156
Portable Storage Oscilloscopes 164
Potentiometric Chart Recorders 207
Power Measurement Equipment 369
Power Supplies 184
Atomic Clock 287
Condensed Listing 185
Digirally Programmable 202, 472
Frequency Standards 287
General Purpose Laboratory 186
Industrial 194
Modular (Slot) 204
Multiple Output for Vacuum Tubes 198
Options and Accessories 201
Oscilloscope Probe 175
Power Supply/ Amplifier 198
Precision Constant Current Source 200
Precision Voltage Source 196
Precision Noise Generator 309
Pressure Gauge 40
Printers Digital 87, 241
Probes
Active 174, 419
Current 57, 175
Logic 103
Oscilloscope 173
Slotred Line 391
Voltage Divider 57,173
Processor, Automatic Waveform 150
Programmable Waveform Processor 150
Programmer, Computing Counter 273
Pseudorandom Binary Sequence Generator 305
Pulse Generators 107, 275, 288 325
Q
Q.Meters 68
Quartz Pressure Gauge 40
Quartz Thermometer 39
R
Rack Cabinets and Enclosures 488, 491
Radian Flux Meter/Detectors (Optical Power) 36
Raster Display, Precision 117
Rate Generators 300
Ratio Meters 414
Receiver, VLF 286
Recorders
Analog Chart 207, 470
Analog Tape 236
Digital Printer 241
Digital Tape 469
Disc 474
Oscillographic 225
Strip Chart 217
X-Y 207, 470
Recorders and Printers 207
RF to IF Converter 438
RX Meter 64
S
Sampling Oscilloscope 167
Accessories 148
Scanner, for X.Y Recorder 211
Scanner, for DVM 82
Selective Voltmeters 433, 444
Sensors
Displacement and Velocity 37
Pressure 40
Radiant Flux 36
Temperature 40
Services 25
Servo Chart Recorders 207
Shorts, Coaxial and Waveguide 393
Signal Analyzers
Digital 459
Spectrum 450
Wave and Distortion, General Information 441
Signal Averager 462
Signal Generators
Accessories 356
Avionics 354
Low Frequency 328
RE/Microwave 336
Telemetry 348, 354
Slot Power Supplies 204
Slotted Lines, Coaxial and Waveguide 390

ALPHABETICAL INDEX

U
Universal Timers/Counters/DVM's 222
v
VEF Comparator 286
Variable Transition Time Output 302
Vibration Analyzer 460
Video Tapes 26
Voltage Calibrators, AC/DC 196, 314
Voltage Sources
DC 185
Precision AC/DC 314
Precision DC 196
Volage Standards
AC 313
DC 196, 315
Voltmerers
Accessories 57, 492
Analog 42
dB 75
Digital 71, 264
Differential 45, 315
Logarithmic 54, 56
RF 50
Selective 433, 444
True RMS $55,83,90,93$
Vectar 67, 417
W
Warranty 25
Wave Distortion Analyzers
Communication 433
General Information 441
Selective Voltmeters 435, 446
Waveform Analyzers Automatic 150
Digital and Fourier 459
Waveguide Instrumentation and Accessories 382
Word Generator 290, 306
X-Y
X.Y Displays 117
X-Y Plotter 470
X.Y Recorders 207
HP-35 Pocker Scientific Calculator 482
100
10SA Quartz Oscillator 284
105B Quarrz Oscillator 284
117A VlF Receiver 286
120B Oscilloscope 172
123A Oscilloscope Camera 178
130C Oscilloscope 172
136A 2-Pen X.Y Recorder 216
140B Oscilloscope Mainframe 169
140T Spoctrum Analyzer-Display Section 455
141B Variable Persistence/Storage Mainframe 169
141 T Specrrum Analyzer-Display Section 455
143A Large Screen Oscilloscope 169
1435 Spectrum Analyzer-Display Section 455
780 series Plug-in Oscilloscopes 122
180C/D High Writing Speed Oscilloscope Mainframe 125
181A/AR Variable Persistence/Srorage Mainframe 128
182C Large Screen Oscilloscope Mainframe 124
183A/B/C/D W'ideband Oscilloscope Mainframes 129
184A/B High Speed Oscilioscope Mainframe 126
190A Q Meter 69
191A TV Waveform Oscilloscope 172
195A Oscilloscope Camera 179
197A Oscilloscope Camera 179
198A Oscilloscope Camera 178
200
200AB Audio Oscillator 317
200 CD Audio Oscillaror 317
201C Audio Oscillator 317
202C Audio Oscillator 317
202H FM-AM Signal Generator 348
202J FM-AM Signal Generator 348
203A Oscillator, Variable Phase 320
204C Oscillator 318
204D Oscillator 318
207 H Univerter 348
208A Test Oscillator 319
209A Sine/Square Oscillator 318
211 A Crystal-A Conitored Signal Generator 354
211 B Square Wave Generator 309
214A Pulse Gonerator 309
221A Square Wave Generator 309
226A Time Mark Generator 176
230B RF Power Amplificr 35
232A Glide Slope Signal Generator 354
236A Telephone Tesc Ostillator 430
236 A Opr. H20 Telephone Test Oscillator (CCIT) 430
250日 RX Meter 64
281 series Coaxial-Waveguide Adaplers 398
292 series Waveguide-Waveguide Adapters 398
297A Sweep Drive 448
300
302A Wave Analyzer 448
310A Wave Analyzer 449
312A Selective Volemeter 433
313A Tracking Oscillator 433
331A Distortion Analyzer 442
332A Distortion Analyzer 442
333A Distortion Analyzer 442
334A Distortion Analyzer 442
$340 B$ Noise Figure Meter 376
342A Noise Figure Meter 376
343A VHF Noise Source 376
345B IF Noise Source 376
347A series Noise Sources 376
349A Noise Source 376
350D Attenuator Set 70
353A Patch Panel 431
354A Step Arrenuator 384
355 series Siep Attenuators 384
360 series Coaxial Low-Pass Filters 394
362 A secies Waveguide Low.Pass Filters 394
375 series Waveguide Variable Attenuators 385
392 series Waveguide Precision Variable Attenuators 385
393A Coaxial Variable Attenuator 384
394A Coaxial Variable Attenuator 384
400
400 D AC Vacuum Tube Voltmeters 53
400 E AC Voltmerer 54
400 EL AC Volmeter 54
400 F AC Voltmeter 54
400FL AC Voltmerers 54
400GL Logarithmic AC Voltmeter 54
400 H AC Vacuum Tube Voltmeters 53
403A AC Volmeter 52
403B AC Volmerer 52
410C Multifunction Voltmeter 50
412A. DC Volt-Ohm-Ammeter 47
$415 B$ SW'R Indicacor 400
415E SWR Meter 399
416B Ratio Meter 400
f19A DC Null Volr-Anmerer 46
420A/B Coaxial Crystal Detectors 389
422A series Wraveguide Crystal Detecrors 389
423A Conxial Crystal Detector 389
424A series Waveguide Crysral Detectors 389
425A DC Microvolt-Anmeter 47
427A Nulti-Funcrion Merer 49
428 B Clip-on Milliammeter 48
432 series Powar Merers 373
435 A Power Meter 371
440A Detector Migunt 392
442B Slotted Line RF Probe 392
444A Slotted Line Detector 391
446B Slotted Line Derector 392
449 B Sloted Line Detector 391
448A Slotted Line Sweep Adapter 392
456A Current Probe for Volmeters 57
461 A General Purpose Amplifer 31
462A Pulse Ampliner 31
4ósA Genera! Purpose Amplifor 30
467A Power Amplifier 30
477B Coaxial Thermistor Mount 375
378A Coaxial Thermistor Mount 374
X485B Waveguide Detector Mount 389
486A series Waveguide Thermistor Mounts 374
487 B series Waveguide Thermistor Mounts 375
489A Microwave Amplifice 35
491C Microware Amplifer 35
493A Mictowave Amplifier 35
495A Microwave Amplifier 35
500
532 series WIaveguide Frequency Meters 395
536A Coaxial Frequency Meter 395
537A Coaxial Frequency Meter 395
562A-16C Cable, 5326/27 Counter.to-Counter Printer 265
580A Digital to Analog Converter 224
581A Digital to Analog Converter 224

600

606A Signal Generator 346
606 B Signal Generator 346
608E Signal Generator 347
608F Signal Generator 347
612A Signal Generator 349
614 A Signal Generator 351
616B Signal Gonerator 351
618C Sigmal Generator 352
620B Signal Generator 332
626A Signal Generator 353
628A Signal Generato 353
651B Test Oscillator 323
652A Test Oscillator 313, 323
653A Opt, H01 Test Oscillator 432
654A Test Oscillator 323
675A Sweeping Signai Generator 413
675A/676A Network Analyzer 413
680 Strip Chart Recorder 223
700
712C DC Porer Supply 198
721A DC Power Supply 188
7388 R Opt. E02 Voltmeter Calibrator 313
TAOB DC Standard / Δ Volmeter 315
745A AC Calibrator 316
746A High Voltage Amplifier 316
752 series Waveguide Directional Couplers 388
774D Coaxial Dual Directional Coupler 386
775D Coaxial Dual Directional Coupler 386
776 D Coaxial Dual Directional Coupler 386
777D Coaxial Dual Directional Coupler 386
778D Coaxial Dual Directional Coupler 386
779D Coaxial Directional Coupler 387
784A Coaxial Directional Detector 87, 440
786D Cozxial Directional Detector 387
787D Coxxial Directional Detector 387
788 C Coaxial Directional Detector 387
789C Coaxial Directional Detector 387
796D Coaxial Directional Coupler 387
797D Coaxial Direcrional Coupler 387
798C Coaxia! Directional Coupler 387
800
805C Coaxial Sloted Line 390
809C Universal Carriage 391
810B series Waveguide Slotted Sections 391
$814 B$ Carriage 392
815B series Waveguide slotred Sections 392
816A Coaxial Slorted Section 391
817 A Coaxial Surept Slotted Line System 390
870 A series Waveguide Slide-Screw Tuners 396
885A series Wareguide Phase Shifters 396
890A DC Power Supply 192
895A DC Power Supply 192
900
905A Coaxial Sliding Load 393
907A Coaxial Sliding Load 393
908A Coaxial Termination 393
909A Coaxial Termination 393
910 series Wareguide Terminations 393
911A Coaxial Sliding Load 393
914 series Waveguide Sliding Loads 393
920 series Waveguide Moving Shors 393
X923A Waveguide Sliding Short 393
X930A Waveguide Shorting Switch 393
P932A Waveguide Harmonic Mixer 397
934A Coaxial Harmonic Mixer 397
938A Frequency Doubler Ser 353
940A Frequency Doubler Set 353
1000
1051A Combining Case 490
1052A Combining Case 490
1104A Trigger Counidown 144
1104A/1106B 18 GHz Trigger Coundown 148
1104 d/1108A 10 GHz Trigger Countdown 148
$1105 \mathrm{~A} \cdot 1106 \mathrm{~B} 20 \mathrm{ps}$ Pulse Generalor 148
1105A.1108A 60 ps Pulse Generatos 148
1106B Tunnel Diode 144, 147
1108A Tunnel Diode 144, 147
1109B High-Pass Filter (Type N) 148
1110A Current Probe 175
1111 A AC Current Amplifier 175
1116A Testmobile Oscilloscope 183
1117B Testmabile Oscilloscope 182
1118A Testmobile Oscilloscope 183
1119A, B, C, D, Testmobile Oscilloscope 182
1120A 500 MHz Active Probe 174
1121A AC Probe f19
1122A Probe Power Supply 175
$1124 \mathrm{~A} 100 \mathrm{~A} \mathrm{H} \mathrm{H}_{2}$ Acrive Probes 174
1125 A 250 MHz Active Probe 174
1150A Programmable Waveform Processor 150
1200A, B Dual Trace Oscilloscope, $100 \mu \mathrm{~V} / \mathrm{div}$ 151
1201A, B Dual Trace Seorage Oscilloscope, $100 \mu \mathrm{~V} / \mathrm{div}$ 151
$1202 \mathrm{~A}, \mathrm{~B} 500 \mathrm{kHz}, 100 \mu \mathrm{~V} /$ div Oscilloscope 151
$1205 \mathrm{~A}, \mathrm{~B}$ Dual Trace Oscillostope $5 \mathrm{mV} / \mathrm{div}$ 151
$1206 \mathrm{~A}, \mathrm{~B} 5 \mathrm{mV} / \mathrm{div}, 500 \mathrm{kHz}$ Oscilloscope 151
1208A, B Display 116
1217A,B $7 \mathrm{MHz}, 5 \mathrm{mV} /$ div Dual Trace Oscilloscope 151
1300A X.Y Display 113
!310A Compurer Graphic Display 110
1311A Computer Graphic Display 110
1330A X.Y Display 114
1331B X-Y Display, Storage 114
1331D X-Y Display, Storage 114
1400B Differential Amplifer 170
1402A Dual Trace Amplifier 170
1404A Four Channel Amplifer 170
1405 A Dua! Trace Amplifier 170
1406A Difforential Amplifier 170
1 f0SA Dual Trace Amplifier 170
1410A Sampling Vertical Amplifier 171
1411A Sampling Vertical Amplifier 171
1415A Time Domain Reffectometer 171
1416A Swept Frequency Indicator 171
1421A Time Base \& Delay Generator 170
1423A Time Base 170
1424A Sampling Time Base 171
1425A Sampling Time Base \& Delay Generator 171
1430 C Sampling Head, 18 GHz 144, 171
1432A Sampling Head, 4 GHz 144,171
1580A Narrow Band TDR 149
1700 series Portable Oscillascopes 156
1700B Portable Oscilloscope 158
1700B Opt. 30035 MHz Ruggedized Portable 160
1701B Portable Delayed Sweep Oscilloscope 158
1702A Porrable Storage Oscilloscope 164
1703A Portable Storage Oscilloscope, Delayed Sweep 164
1705 A Poreable Storage Scope Delayed Sweep, $100 \mathrm{~cm} / \mathrm{ms}$ 164
1706B Portable Oscilloscope 75 MHz 158
1707 B Portable Delayed 5 weep Oscilloscope 75 MHz 158
1707B Opt. 30050 MHz Ruggedized Portable 160
1710A 150 MHz Portable Oscilloscope 162
1801A Dual Channel Vert Amp 50 MHz 130
1803A Differential/DC Offset Amplifier 132
1804A Four Channel Vertical Amplifier 132
1805A Dual Channel Vertical Arplifier (100 MHz) 134
1806A 100μ V Dual Differential 133
1807A Dual Channel Vertical Amplifier 35 MHz 131
1808A Dual Channel Vert Amp 75 MHz 130
1810A 1 GHz Dual Chamel Sampler 142
1811 A or 18 GHz Sampler 143
1815A.1815B TDR/Sampler 146
1816A Sampling Head, 4 GHz 147
1817A Sampler, 2.4 GH. 147
1818A Time Domain Refiectomerer 145
1820C Time Base 137
1821A Time Base/Delay Genetator 137
1824A Tinve Base and Sweep Expander 138
1825A Time Base and Delay Generatar 139
1830A Dual Channel Verical Amplifier (250 MHz) 135
1831 A Direct Access Vertical (600 MHz) 135
I8318 Direct Access Verical (500 MHz) 135
1834 A 200 MHz , 4 Channel Amplifer 136
1840A Time Base 140
1841A Time Base/Oelap Generator 141
1900 series Plug-in Pulse Generators 298
1900A/1901A Pulse Generator Mainírame 299
1900A-6940A Programmable Pulse Generator 307
1905A Rate Generator (25 MHz) 300
1906A Rate Generator (125 MHz) 300
1908A Delay Generator (25 MHz) 300
1909A Delay Generator (125 MHz) 301
1910 Delay Generator (125 M Hz) 301
1915A Variable Transition Time Output 302
1916A Variable Transision Time Ourput 302
1917A Variable Transition Time Output 303
1920A Pulse Output, < 350 ps Rise Time 303
1921 A Positive Output Plug.in 304
1922A Negarive Outply Plug-in 304
1925A Word Generator 306
1927A Fan-In Amplifier 304
1928A Fan-Out Amplifier 304
1930A PR Binary Sequence Generator 305
1954 A Mulaiphase Clock Generator 306
2000
2000E/F Time-Sharing Systems 450
2019A Coupler/Coneroller Systems 243
2070A Data Logger 82
2100A Digital Computer 468
2120 A Disc Operating System 475
2155A Input/Output Extender 468
2212B V to F Converter 06
2402A Integrating Digital Voltmeter 97
2470 B Amplifier, Data 32
24708 Option 003 Data Amplifier 32
2471A Data Amplifier 33
2570A Coupler/Consroller 243
2748 B High Speed Tape Reader 485
2761A/B Optical Mark Reader 471
2801A Quartz Thermometer 112
2811A Quartz Pressure Gauge 40
2895A Tape Punch 485
3000
3000 Multiprogramming Compueer System 480
3040A Network Analyzer 407
3041A Network Analyzer 410
3042A Network Analyzer 411
3200B VHF Oscillator 344
3205A FM Signal Generaror 354
3260A Marked Card Programmer 332
3300A Function Generator 321
3301A Auxiliary Plug-in 321
3302A Trigger/Phase Lock Plug.in 321
3304A Sweep/Offser Plug-in 521
3305A Sweep Plug-in 321
3310A Function Generator 324
33108 Function Generator 324
3311A Funcrion Generator 325
3320A Frequency Synthesizer 328
3320B Frequenc' Synthesizer 328
3330A Auromatic Synthesizer 330
3330 B Automatic Synthesizer 330
3400A RMS Volimeter 55
3403A True RMS Voltmeter 75
3406A RF Voltmeter 51
3420B DC Voltmeter/Ratiometer 43
3440A Digital Voluneter 88
3443A High Gain/Auto-Range Linit (3439A/3440A) 88
3444A DC Multi-Function Únit (3439A/3440A) 88
3445A AC/DC Range U'nit (3439A/3440A) 88
3450B Multi-Function Meter 93
3460 B Digital Volmeter 99
3462A Digital Voltmerer 101
3469 B N. H rimeter 74
3470 System Measurement Systera 73
3480A Mrulti-Funcrion Digital Volmeter 83
3480B Multi-Function Digital Volemeter 83
3482A DC Range Unit for 3480A/B 84
3484A Nulti-Funcion Unit for 3480A/B 84
3485A Scaming Unit for 3480A/B 86
3489A Data Punch 87
3400A Disital Multimeter 90
3528A Large Aperrure Current Probe 48
3529A Opr. Cll Masnetometer Probe 48
3529A Magneinmerer Probe 48
3550A Portable Test Set 431
3555B Transmission \& Noise Measuring Set 429
3556A Psophomere 129
3570A Tracking Detector 408
5575A Gain Phase Merer 414
3590 A Wave Analyzer 446
3501A Selective Volimeter 435
3592A Auxiliary Piug-in 446
3593A Sreeping Local Oscillator Plug-in 446
$359 \not 4$ A Swecping Local Oscillator Plug-in 446
3595A Sweeping Local Oscillacor Plug-in 446
3603A Auromatic Tape Degausser 199
3604A Voice Channel 199
3680A AC Power Supply 199
3681 A Tape Servo 199
3702B JF/BB Receiver 438
37038 Group Delay Detector Pluge in for 3702B 438
3705A Differential Phase Deterror Plug-in for 3702B 438
3710A [F/BB Transmitter 438
3715A BB Transmituer Plog-ins for 37L0A 438
3716A BB Transmitter Plug-ins for 3710A 438
3720A Spectrum Display 465
3721A Correlato 463
3722A Noise Generaror 464
3730A Down Converter: RF to IF 438
3731 A Oscillator (Pluz-in) for $3730 A$ 438
3736 A Oscillator (Plug-in) for 3730 A 438
3737A Oscillator (Plug-in) for 3730 A 438
3738A. Oscillator (Piug-in) for 3730A
3701A Error Detector 436
3007.11A Remote Control Unit 199
3950 series Instrumentation Tape Recorder 238
3955 series Instrumentation Tape Recorder 238
3960 series Inscrumentation Tape Recorder 236
4000
4050A Analog Comparator 66
4204A Digital Oscillator 319
f260A Liniversal Bridge 61
4265 A Liniversal Bridge 62
9270A Capatitance Bridge 63
4271A Digital LCR Meter 65
4304B DC Volt-Ammeter 45
4328A Millohmmerer 59
4329A Resistance Meter 60
4332A LCR Meter 66
4342A Q Meter 68
4350A High Capacitance Merer 66
4350A High Capacitance Meter 66
4436A Attenuator 70
44i7A Atenuator 70
4440 B Decade Capacior 70
4800A Vector Impedance Meser 66
4815A Vector Impedance Meter 416
5000
5010A Lugic Troubleshooting Kit 106
sol1T Lngic Trbubleshooting Kir 106
s015T Logic Troubleshooting Kit 106
5050B Digital Recorder 24
5055A Digital Recorder 42
KO2-5060A Standby Popier Supply 287
5061A Cesium Beani Frequency Standard 280
E21.5061A Flying Clock (cesium) 280
5065A Rubidium Frequency Standard 282
E?l-schsa Portable Rubidium Time Srandard 282
508sA Standby Power Supply 287
5087A Disrribution Amplifier 279
Sloob Frequenc: Synthesizcix 333
5105A Freguenc Synthesizer 3.35
sllob Srothesizer Driver 333
s210A Frequency Meter 276
5245L Electroms Comiter 253
524sM Electronic Counter 255
s2abl Electronic Councer 255
524SL Elecrronic Counter 255
5248M Electronic Cnumer 255
5252A Prescaler Plug-in 257
s253B Frequency Cunverter Plug-in 256
s254C Frequence Converter Plugz-in 256
s2ssA Frequency Cunverter Plug-in 256
5256A Frequency Cunverter Plug-ín 256
5257A Transfer Oscillator Plugein 256
5258A Prescaler Pluz.in 257
s261A Viden Amplifer Plug-in 257
5262A Time Interval Plug-in 257
5264A Preset Plug.in 257
5265A Digital Voltmerer Plug.in 256
5267A Time Interval Piug-in 257
5300 A Measuring System 258
5301 A 10 MHz Counter Module 260
5502A 50 MHz Universal Counter Module 260
5303 B 500 MHz Counter Module 261
5304A Timer/Counter Module 261
5310A Bartery Pack 262
5323 A Automatic Counter 276
5326A Universal Timer/Counter 264
5326B Universal Timer/Counter DVM 264
5320C Multi-Function Counter 264
5327A Unirersal Timer/Counter 264
5327B Universal Cimer/Counter/DVM 264
5327C Multi-Function Counter 264
s330A Presat Counter 275
5330B Preset Counter 275
5332B Preset Counter 275
5340 A Microwave Frequency Counter 270
5360A Computing Counce 272
K01-5360A Serial-Parallel Converter (for 5360A) 274
5365A Inpur Module (for 5360A) 273
s375A Computing Councer Keyboard 274
5376 A Systems Programmer 273
5379A Time Interal Plug-in 273
5401 B Multichannel Analyzer 466
5402A.MCA/Brsic System 467
54068 Nuclear Analyzer System 467
sisia Fourier Analyzer System 150
5466A (New) Analog to Digital Converter 460
5470A Fast Fourier Transform Arithmetic Unit 461
s471A Fast Processor 461
stisos Signal Analyzer 462
s481A Signal Analyzer System 462
5489 A Low Pass Filter-Amplifer 465
S501A Laser Transducer 38
5510A Auromatic Compensaror 3
5526A (New) Laser Interferometer 37
5554 A Preamplifer 466
55s0B NTM Power Supply. 466
5582A Linear Amplifer 460
5583A Single Channel Analyzer 466
5586A Spectrum Stabilizer 466
6000
6101 A, 6102A DC Power Supply 196
6104A. 6105A, 6106A Power Supply 196
6110A.6116A DC Poner Supply 196
6128B-6151B Digitally Conirolled Voltage Sources 202
G145A Power Supply 202
6177B DC Power Supply 200
61818 DC Power Supply 200
6186B DC Pnwer Supply 200
6200B DC Power Supply 186, 198
fro1B DC Power Suppl: 186
6202B DC Power Supply' 188
6203B DC Power Supply 186
6204B, 6205B DC Prwer Supply 186. 188
6206B DC Power Supply 190, 188
6207B DC Power Supply' 192
$6209 B$ DC Power Supply 192
6211A, 6212A DC Power Supply 192
6215A, 621\&A DC Pnwer Supply 186
6215A, 6216A DC Power Supply 188
6217A, 6218A DC Power Supply 190
6220B DC Power Supply 190. 188
6224B DC Prwer Supply 188
6226B DC Power Supply 190
6227B DC Power Supply 188
6228B DC Power Supply 190
6253 A DC Poner Supply: 186
6295A DC Power Supply 190
6256B DC Pon'er Supply 186
6259B. 6260B DC Power Supply 186
6261B DC Power Supply 188
6263B, 6264B DC Poxer Supply 188
6274B DC Power Supply 192
6281A, 6282A DC Power Supply 186
6284A, 6285A DC Power Supply 186
6286A DC Power Supply 188
6289A.6291A DC Power Supply 190
6294A DC Power Supply 190
6296A DC Power Supply 192
6299A DC Power Supply 192
6384A DC Power Supply 186
6427B, 6428B DC Power Supply 194
6433B, 6434B DC Power Supply 194
6433B. 6439B DC Power Supply 194
6443B DC Power Supply 194
6448B DC Power Supply 194
6433A DC Power Supply 194
6456B DC Power Supply 194
6459A DC Power Supply 194
6464C DC Power Supply 194
6468C DC Power Supply 194
6469C DC Power Supply 194
$6472 C$ DC Power Supply 194
6475C DC Power Suppiy 194
$6477 C$ DC Power Supply 194
6figC DC Power Supply 194
6483C DC Power Supply 194
6515A. 6516A DC Power Supply 192
6521A, 6522A, 6525A DC Power Supply 192
6610A Directed Beam Display 117
6823A. 6824 A DC Puwer Supply 198
6825A, 6826A, 6827A Power Supply/Amplifier 199
6830A, 6831A, 6832A Power Supply/Amplifer 199
$6920 \mathrm{~B} \mathrm{AC/DC}$ Meter Calibrator 314
6933B Digital-ro-Analog Converter 203
6940A Multiprogrammer 472
6941A Mulciprogrammer Extender 472
6947A Precision Raster Display 117
7000
7001A X.Y Recorder 216
7004 B X.Y Recorder 209
7034A X.Y Recorder 209
035B X.Y Recorder 208
7040A X.Y Recorder 21.3
7041 A X.Y Recorder 213
7044A X.Y Recorder 214
7045A X.Y Recorder 214
7046A 2.Pen X-Y Recorder 213
7100B Strip Chart Recorder, 2 Pen 218
7101B Strip Charl Recorder, 1 Pen 218
7123A Serip Chart Recorders 220
7123B Strip Chart Recorders 220
7127A Strip Chart Recorder. 1 Pen 218
7128A Strip Chart Recorder. 2 Pen 218
7130A Surip Chart Recorder, 2-Pen 222
71 䄧A Strip Chart Recorders 220
7143B Strip Chart Recorders 220
7200A Graphic Plocter 470
7201A Graphic Plutter 470
7202A Graphic Ploter 470
7210A Digital Ploter 470
7402A 2-Channel Oscillographic Recorder 226
7414A 4-Channel Oscillographic Recorder 228
7562A Log Voltmetrer/Converter 56
7563A Log Voltmerer/Amplifer 56
7591A Point Plotting System 212
7702B Oscillographic Recorder, 2-Channel 229
7706B 6-Channel Ostillographic Recorder 230
7708B 8.Channel Oscillographic Recorder 230
7727A 6.Channel Oscillographic Recorder 230
7729A 8-Channel Oscillographic Recordes 230
7731A 16-Channel Oscillographic Recorder 230
7858B 8.Channel Oscillographic Recorder 231
7878A 8.Channel Oscillographic Recorder 231
7900A Disc Drive 474
7901A Dise Drive 474
7970 series Digital Magnetic Tape Unit 469
8000
8002A Pulse Generators 291
8003A Pulse Generators 291
8004 A Pulse Generator 292
8005A Pulse Gentrator 294
8006A Word Generator 290
8007A Pulse Generato 296
8008A Pulse Generator 297
8010A Pulse Generator 293
8012A Pulse Generator 295
8013 A Pulse Generator 295
8320 series Stabilized 5xeep Osc. Systems 367
8321 series Stabilized Sweep Osc. Systems 367
8324 series Stabilized Sweep Osc. Systems 367
8330A Radiant Flux Meter 76
8334A Radiant Flux Detector 76
8403A Mrodularer 355
8404A Leveling Amplifer 366
8405A Vecior Volemeter 417
8406A Comb Generator 457
8407 series RF Network Analyzer Pamily 418
8407A Network Analyzor Mainframe 119
8410A Nework Analyzer Mainframe 424
8410S series Network Analyzers $42 i$
8411A Harmenic Frequency Converter 424
8412A \varnothing-Magnitude Display 419, 424
8413A \varnothing-Gain Indicator 424
8414 A Polar Display 419,424
8418A Auxiliary Porver Supply 424
8430A.8436A Bandpass Filters 394
84-43A Tracking Generator/Counter 456
8443B Tarking Generator 456
8444A Tracking Generator 456
844sA Automatic Preselector 456
8447 series Amplifiers 34
8457 series Microwave Synthesizers 367
8470A Coaxial Crystal Detector 389
8471A Conxial Crystal Detector 389
8472A Coxial Crjstal Derecios 389
8477A Power Merer Calibrator 374
8478B Coaxial Thermistor Mount 374
8481A Power Sensor 371
8491 series Conxial Fixed Attenuators 383
8492 series Cosxial Fixed Attenuators 383
8493 serics Conitial Fixed Actenuators 58
8540 series Automatic Network Analyzers 426
8592A Spectrum Analyzer.IF Section 455
8952B Spectrum Analyer-IF Section 455
8553B Spectrum Analyzer.Tuning Section 454
8554I Spectrum Analyzer-Tuning Section 4.54
8553A Spectrum Analyzer. Tuning Section 454
8556d Spectrum Analyzer-Tuning Section 454
8580 series Automatic Spectrum Analyzers 458
8600A Digital Marker 368
8601A Generator/Sweeper 368
8605A Sweep Oscillator 440
8614A Signal Generatos
8620A Sweeper Mainframe 361
8620B Sweeper Mainirame 360
8621B RF Drawer for $8620 \mathrm{~A} / \mathrm{B}$ 363
86.f0A ANI-FM Signal Generator 339
8640B AM.FM Signal Generator 339
8654A Signal Generator 345
8660A Sjnthesized Signa! Generator 342
8660B Synthesized Signal Generator 342
E15-8690 series Leveled High Porver Sreetp Oscillator Systems 3
8690B Sweep Oscillator 364
8691A.8697A RF Units (Grid-leveled BWO) for 8690 B 365
8691 B.8695B RF Lnits (PIN Lereled BWO) for 8690 365
8698B RF Unit for 8690 B 364
3699B RF Unit for 8690B 364
8700A RF Drawer for 8690B 364
8701A Sequencial Sweep Control 366
8705A Signal Multiplexer 366
8706A Control Linir for 8690 B 366
8707A RF Unit Holder 366
8708A Synchronizer 346
8709A Synchronizer 367
8717B Transistor Blas Supply 423
8721A Coaxial Directional Bridge 420
8728B Nerwork Comparator 419
8731.8735 series PIN Modulators 355
8740A Transmission Test Uni 425
8741A Reflection Test Lnit 425
8742A Refecrion Test Unit 425
8713A Reflection/Transmission Test L'nit 425
874SA S-Parameter Test Set 423, 425
8746B S-Parameter Test Set 423,425
8747A series Waveguide Reflection/Transmission Test Ünits 42
8755 series Frequency Response Test Sets 401
8761A.B Coaxial Switch 397
8801A Low Gain Preamplifer 232
8802A Medium Gain Preamplificer 232
8803A High Gain Preamplifier 232
8805A Carrier Preamplifer 233
880sB Carrier Preamplifier 233
8806B Phase Sensitive Demodulator 233
8807A AC/DC Converter 234
8508A Logarithmic Converter 234
8809A Signal Coupler 234
8820A Amplifier for Recorder 225
8821A Amplifier for Recorder 255
8875A Differential Amplifier 29
8900B Peak Poxer Calibrator 375
892sA DME/ATC Test Ser 354
9000
9211 Transir Case 416
9211 Field Cases 416
9211 Operaling Cases 416
9500 series Automatic Test Systems 475
9540 series Transceiver Test Systems 476
9550 series Jnstrument Calibration Systems 477
9600 series Data Acquisition Systems Computerized 478
9800 series Calculator 408
9810 A Calculator 48.3
9820A Calculator 483
9830 A Calculator 483
9860A Card Reader 484
9861A Typewriter 484
9862A X.Y Plotter 484
9863A Tape Readec 484
9864A Digitizer 484
9865A Tape Cassette 484
9866A Thermal Printer 485
9868A [/O Expander 485
10476 A 8 in. Drawer for 1117B 183
10479A Tilt Tray for 119A/B 182
10479B Till Tray for 1119C/D 182
10480B Storage Cabinet for 1119 A 182
10480B Storage Cabinet for 1119 C 182
10478A Blank Plug-in (140 series) 142
10501A Cable 492
10502A Cable 492
10503A Cable 492
10509A Loce Antenna, VLF 286
10511A Spectrum Generator 356
10512A Cable, Antenna 286
1051áA Double Balanced Mixer 356
10515A Frequency Doubler 356
10519A Cable 492
10525E (New) Logic Probe 106
10525 H (Nerv) Lugic Probe 107
10525T (New) Logic Probe 106
10526 I (Nem') Logic Puiser 107
10528A Logic Clip 105
10529A Logic Comparator 108
103:1A Filter Kit (for 5201A) 276
10533A Printer Jmer!ace (for 5300A Counter) 260
10534A Double Balanced Mixer 350
10536A Adapter (for 5360A) 274
10542A Remote Program Interface (for 5326/27) 265
10543A Component Oscillator 285
105-14A Component Oscillator 285
10548A Diagnostic Kit, for 5300 A 259
10550B Rerroreflector 37
10557A Turning Mirror 38
10558A Beam Bender 38
10559A Reflecior Mount 38
10565A Remote Interferometer 37
KO8-1056sA Non-Contact Converter 37
105658 Reanote Interferometer 37
10581A Plane Mirror Converter 37
11000
11000 A Cable 492
11001A Cable 49, 492
11002A Tesc Lead 49, 492
11003A Test Lead 49, 492
11004A Line Matching Transformer 317
11005A Line Matching Transformer 317
11028A 100101 Current Divider 57
11035A Cable 431,492
$11036 A$ AC Probe for 410 C 50
11039A Capacitive Voltage Divider 49
11042A Probe Coaxial "T" Connector 57
11043A Probe Coxial "N" Connector 57
11045A DC Volage Divider for 410 C 57
1046A Combining Case 431,490
11048 B Feed-Thru Termination 323
11048C 50@ Feedthrough 329
11049A Themal Converter 313
11050A Thermal Conserter 313
11051A Thermal Converter 313
11065A Input Cable for 3460A 100
11074A Volage Divider Probe 57
11075A High Impact Case 49,57
11085 A Remote Contral Cable 100
11086A Cable 492
11094B 75』 Feedithrough 329
11096A High Frequency Probe 49.57
11135A AC Power Pack for 204 C/D 318
11136A Mercury Power Pack for 204 C/D 318
11137A Rechargeable Battery/AC Pack for 204C/D 318
$11143 A$ BNC to Clip Leads 64, 492
11202A TTL I/O Interface Card 485
11203 A BCD Inpur Interface Card 485
11268A Sysrem Table 412
1456A Readout Test Card 80
11457A Rack Mount Kit (34740A) 80
11s00A Cable 492
11501A Cable 492
11507A Output Termination 356
11508A Terminared Ourpuc Cable 356
11509 A Fuseholder 356
11511A Type N Shor 393
11512A Type N Short 393
1517A Mixer 457
11518A Mixer Taper Section 457
11519A Mixer Taper Section 457
11520A Mixer Taper Section 457
11524A APC7.N Adapter 398
11525A APC7-N Adapter 398
11527A Thermistor Moun: Adapter 374
1528A Thermistor Mount Adaptet 374
11531A Test Unit for 8690B 367
11533A APC7.5d1A Adapter 398
11534 A APC7.SALA Adapter 398
11536A Tee (for 3405A) 417
11539A Reproduce Track Selecror 199
11540A Waveguide Stand 398
$11543 \mathrm{~A}-11548 \mathrm{~A}$ Whaveguide Clamps 398
11540A Power Splitter (for 8405A) 417
11553A Pack Sensor 199
11565A APC-7 Short 393
11570A Accessory Kit for 8405A 417
11581A Aucentator Ser 383
11582A Auenuator Set 383
11583A Atrenuator Set 383
11587A Accessory Kic for 8\$10 Series 424
11588A Rotary Joinc 398
11589A Bias Network 424
11590A Bias Nerwork 424
11599A Quick-Connect Adaper for 8745A 425
11600B Transistor Fixture 423
11602B Transistor Fixzure 423
11604A Universal Extension for 8745A -25
11605A Flexible Arm for 8743A 425
li606A Rotar' Air Line 398
11607A Small Signal Adapter for 8745A 425
1608A Transistor Fixture 423
11650A Accessory Kis for 8410 series 424
11652A Reflection/Transmission Kic for 8407A 419
11654A Passive Probe Kit for 8407A 419
11655A Impedance Probe for 8407A 419
11658A Matching Resistor for 8407A 420
11661A Extension Module for 8660A,B 342
11664A Derecror for 8755 402
11665 A Modulator for 8755 402
11675A Leveling Cable Assembly for 784A 44012000
12569A Disc Cartridge 474
12970A Magnetic Tape Subsystem 469
12971A Magnetic Tape Subsystem 469
12972A Magnelic Tape Subsystem 469
13000
13060A Remote Stary/Stop Switch 159
13061A,B DC-AC Inverter (for 3960) 190
13062A Tape Loop Adapter 129

MODEL NUMBER INDEX

13066A Fiber Glass Transir Case 199
13068A/B Rack Slide Mounting Kir 199
13181A Controller (for 7970) 401
13211A Rack Mounting Kit 474
13215A Disc Power Supply 474
13219A Disc Service Unit 474
13515A Frequency Doubler Probe 344
14000
14si3A DC Power Supply Accessory 201
14515A DC Power Supply Accessory 201
14521A DC Power Supply Accessory 201
14523A DC Power Supply Accessory 201
14525A DC Power Supply Accessory 201
14333B Multiprogrammer Accessories 473. 203
14534A Multiprogrammer Accessories 473
14535A Power Supply Accessory 203
14536A Power Supply Accessory 203
14539A Power Supply Accessory 203
14540A Multiprogrammer Accessories 473
14541A Multiprogrammer Accessories 473
14543A Multiprogrammer Accessories 473
14544A DC Power Supply Accessory 203
14545A DC Power Supply Accessory 201
14903A-14905A Multiprogrammer Accessories 475
149.07A Mulxiprogrammer Accessories 473
14909A Multiprogrammer Accessories 473
14913A Multiprogrammer Accessory 473
15000
15108A Microphone Preamplifier 396
15109B Condenser Microphone 396
15114A Microphone Power Supply 396
15117A Ssund Level Calibrator 396
15118A Microphone Preamplifier 396
15119C/D Condenser Microohone 396
15127A Cable Amplifer 396
16000
16008A Resistivity Cell 60
16011A BNC to Binding Posts 64
16012A BNC to Test Axial Lead Devices 64
16013A BNC to Test Vertical Lead Devices 64
16014A Series Loss Test Adapter 69
16150A Interface Kit (4270A) 63
16151A Interface Kit (4270A) 63
16462A Auxiliary Capacitor 69
16470A-16490A Reference Inductors 69
17000
17005A Tncremental Chart Advance 212
17012B Point Plotter 211
17012C Point Pjorter 211
17108A Time Basc 208
17170A DC Coupler 210
17171A DC Amplifier 210
17172A Time Base 210
17173A Null Derctor 210
17174B DC Offset 211
17175A Filrer 211
17176A §canner 211
17177A AC/DC Converter/DC PreampliGer 212
17178A DC Altenuator 211
17400A High Gain Preamplifer 226
17401A Medium Gain Preamplifier 226
7402A Low Gain Preamplifier 226
17500A Multiple Span Input Module 219
17501A Multaple Span Input Module 219
17502A Temperature Module 219
17505A High Sensitivity Module 219
17506A Single Span Input Module 219
18019A Carrying Case 80
29400A/B Rack Cabiners 488
33000-86632A
33300 series Siep Attenuators 384
34701 A DC Volimeter (3470 System) 000
34702A Multimeter (3470 System) 000
34703A DC/DCI/Ohm M(eter (3470 System) 000
34720A Battery Module (3470 System) 000
34721 A BCD Module (3470 System) 000
34722A Prearnp/Ammeter 79
34740A Display (3470 System) 000
34750 A Display (3470 System) 000
60063A-60246B DC Power Supply 206
62003A-62048G Power Supply 204
62410A-62415A Power Supply Accessory 206
62604J-62628 J DC Power Supply 205
69321 B Multiprogrammer Card 473
69330A, 69331A Muleiprogrammer Card 473
69310 A Muleiprogrammer Card 473
69351 A Mulaprogrammer Card 473
69360A Multiprogrammer Card 473
69370A Multiprogrammer Card 473
69380A Multiprogrammer Card 475
69430A. 69431A Multiprogrammer Card 473
$69433 \mathrm{~A}, 69434 \mathrm{~A}$ Multiprogrammer Card 473
69480 A Multiprogrammer Card 473
69500A-69504A Multiprogrammer Cards 473
69510 A.69513A Multiprogrammer Cards 473
80500A Aircraf: Noise Monitoring System 395
85404 B S -Parameter Test Set 419
85426A Bias Insertion Network 419
85428 B Natching Network 419
86200 serics RF Plug-ins !or 8620A,B 362
86300 series RF Nodules for $8620 \mathrm{~A}, \mathrm{~B} ; 8700 \mathrm{~A}$ 363
86601A RF Section for 8660A,B 342
86602A RF Section for 8660A, B 342
86631B Auxiliary Sectinn for 8660A, B 342
86632A Modulation Section for 8660A, B 342

Although Hewlett-Packard products are manufactured throughout the United States and other parts of the world, the Hewlett-Packard field office or distributor in your area is best equipped to handle all your needs concerning products described in this catalog, and for parts and service on HewlettPackard products you already own. The worldwide listing of field offices, representatives, and distributors, current at the time of publication, is found on inside back cover.

Order by model number

Technical assistance in selecting equipment and preparing orders is available, without charge, from field engineers at all sales offices. When you place your order, please specify the catalog model number as well as the name of the product desired. Whenever you want special options or features, such as special color or non-standard power line voltage, ask your Hewiett-Packard field engineer about availability of these options, then, to prevenr misunderstanding, include significant specifications and specific instructions in your order.
Many Hewlett-Packard instruments are supplied in cabinets along with easily attached hardware for direct mounting in
standard 19 -inch equipment racks. Others are available in two configurations: one a cabinet for bench use and the other with a 19 -inch panel for rack mounting. Catalog listings indicare the a vailability of cabinet or rack mounting arcangements.

Pricing policy and delivery information

Prices appearing in this catalog are net prices prevailing at the time of printing and are FOB USA factory or warehouse. They apply only to domestic USA customers and do not include an import surcharge on applicable products. Such surcharge is to be added to the price shown. Prices prevailing at the time the order is received will apply. Please consult your nearest field sales office to confirm prices at your location and to obtain current delivery information, Customers ousside the USA should consult their Jocal Hewlett-Packard sales organization for price information. Although the illustrations and product information in this catalog were cursent at the time the catalog was approved for printing, Hewlett-Packard, in a continuing effort to offer the finest equipment available, reserves the right to change specifications, designs, models or prices without notice.

FOR CUSTOMERS IN USA

Where to send your order

Your order should be made out to the Hewlett-Packard Company and sent to the Hewlett-Packard office nearest you. Each field office has special communication channels to Hew. lett-Packard manufacturing facilities to assure prompt and efficient handling of your order.

Shipping methods

Shipments to destinations in the USA are made directly from local factories or warehouses. Unless specifically requested otherwise, express or rruck transportation is used, whichever is less expensive and most serviceable to you. Small items are sent parcel post. If fast delivery is needed, we gladly ship by air freighr, air express, or air parcel post, when specified on your order, at prevailing rates. In many parts of the USA, a consolidated air freight service provides the speed of air transport at surface rates. Ask your field engineer for details.

Terms in the USA

Terms are net 30 days from invoice date. Leasing and extended financial terms are available. Your local Hewlett-Packard sales office will be pleased to discuss your requirements. Unless credit with Hewlett-Packard has already been established, shipments will be made COD or on receipt of cash in advance.

Economic stabilization act

Hewlett-Packard is a prenotification firm and prices for its products manufactured and sold in the United States are controlled by the Price Commission. Please direct any inquiries regarding these prices to Hewlett-Packard, 1501 Page Mill Road, Palo Alro, California 94304.

Quotations

Upon request, quotations including destination prices, will be furnished to you by your local Hewlett-Packard sales office.

FOR CUSTOMERS OUTSIDE THE USA

Pricing

Prices as listed in this catalog, unless otherwise ooted, apply only to domestic USA customers; all other customers should consult their local Hewlett-Packard sales organization for price information.

Where to send your order

in many countries, your order can be placed directly with your local Hewlett. Packard distributor or representative. If there is none as yet in your area, your order should be placed directly with the office indicated for your part of the world.

Shipping methods

Shipments to customers outside the USA or Western Europe are made from the appropriate Hewlett-Packard facility by
either surface or air, as requested. Sea shipments usually require commercial export packaging at a nominal extra charge.

Terms

Terms for orders from countries outside the United States of America which are placed with the Hewlett-Packard Company, Hewlett-Packard S.A., or Hewlett-Packard Inter-Americas, are ircevocable letter of credit or cash in advance, unless other terms have been arranged previously. Terms for otders placed with authorized Hewlett-Packard distributors are mutually determined between customer and distributor.

Quotations and pro forma invoices

FAS, CIF, C\&F, etc. quotations or pro forma invoices, as well as exportation and importation assistance, are available on request from local authorized Hewlett-Packard sales offices or representatives.

Hewlett-Packard is one of the world's leading designers and manufacturers of electronic, medical, analytical, and computing instruments and systems. From its founding in 1939, the company has conscientiousiy followed its basic philosophy of offering only products representing significant technological advancements. The company's first instrument -an economically priced audio oscillator that was far more stable and easier to use than any other instrument available at the time-met this demanding criterion, as have the more than 2,000 Hewlett-Packard products that have followed.

The largest single segment of the company's business is the test instrumentation market. Hewlett-Packard electronic test and measuring instruments and systems are used by scientists, engineers, and technicians to accurately measure and record a wide variety of information-bearing signals. There are also Hewlett-Packard instruments that are used to provide known signals to passive devices so that test and measuring instruments can be utilized. Many Hewlett-Packard electronic instruments have built-in computing abilities. Most are designed to interconnect with computers, as well as with other test and measuring instruments, to develop automated test, measurement, and analysis systems.

As the company has grown, the product line has expanded to include a broad selection of data processing equipment, instruments and systems for medical diagnosis and monitoring, and electronic instrumentation for chemical analysis and measurement.

In the data processing field, Hewlett-Packard products include powerful pocket-sized electronic calculators; programmable electronic desktop calculators; small digital computers; computer systems for business, industry and education; and the first small-scale computer system with multi-programming and multi-lingual capabilities. Hewlett-Packard also manufactures peripherals such as disc memories, magnetic tape units, information input readers, and high speed plotters. Complementing this equipment is an extensive selection of Hewlett-Packard-developed software for computer pro. gramming.
For the medical profession, instrumentation includes medical computer systems, patient monitoring equipment, and precision instruments for diagnosis and research. In addition to instrumentation for cardiovascular measurement and mon. itoring, the company has entered other related medical felds when significant contributions are possible. Examples of this

are Hewlett-Packard's instrumentation line fos perinatal care, and a family of products for automated pulmonary function test.

The company's analytical products include gas chromatographs, several types of spectrometers, and instruments for precise measurement of pressure and temperature.

To maintain its leadership in instrument technology, Hew. lett-Packard invests heavily in new product development. Research and development expenditures traditionally average about 10 percent of sales revenue, and 1,500 engineers and scientists are assigned the responsibilities of carrying out the company's various R\&D projects. As a result of this effort, about half of the company's current business is represented by products that were not in existence six years ago.

The company has also shown Ieadership in manufacturing techniques, developing many innovations that make it possible to offer high quality products at moderate cost. Engineering and production of solid-state devices, integrated circuits, and hybrid microcircuitry are prime examples. In many cases, specialized equipment is required for the production of these components as well as other unique parts. Often this equipment is designed and built in-house either because it is not available on the outside, of because it allows HewlettPackard an extra measure of control in maintaining the quality and performance expected of its products.

Hewlett-Packard is a well-established, multinational company that has controlled its growth so that expansion is financed generally from incone on a pay-as-you-go basis. From its modest beginnings in Palo Alto, California, the company now has ten manufacturing plants in California, two in Colorado, and one each in Massachusets, New Jersey, and Pennsylvania. Hewlett-Packard overseas manufacturing facilities are located in Scotland, German Federal Republic, France, Japan, and Singapore.

However, for the customer, Hewlett Packard is no farthes away than the nearest telephone. There are 60 field sales offices in the United States, and the company's products are marketed in over 100 countries abroad. All of these offices offer immediate assistance in solving measurement problems and providing advice on equipment selection, or with any help needed to keep equipment already in service in frstclass operating condition. The field offices are staffed by trained engineers, each of whom has the primary responsibility of providing technical assistance and data to customers. A vast communications network has been established to link each field office with the factories and with corporate offices. No matter what the product or the request, a customer can be accommodated by a single contact with the company.

Hewlett-Packard is guided by a set of written objectives. One of these is "ro provide produrts and services of the greatest possibie value to our customers." Through application of advanced technology, efficient manufacturing, and imaginative marketing, it is the customer that the more than 20,000 Hewlett-Packard people strive to serve. Every effort is made to anticipate the customer's needs, to provide the customer with products that will enable more efficient operation, to offer the kind of service and reliability that will merit the customer's highest confidence, and to provide all of this at a reasonable price.

MEDICAL ELECTRONICS

A_{n} evolution for an involvement

Hewlett-Packard's service to the medi. cal community is at the Medical Electronics Division (MED) in Waltham, Massachusets, where more than 250 products for health care including diag. nostic instruments, patient monitoring equipment, medical systems instrumentation, and computerized medical systems are manufactured.

Sanborn Company's (which later merged with Hewlett-Packard) first principal products were a water level recorder, a blood pressure gauge, the Benedict Metabolism Tester, the first string. galvanometer electrocardiograph, and the first portable ECG. These were followed by the present line of cardiological measurement instrumentation, which includes several models of electrocardiographs, heart sound instrumentation, and a vector.cardiography system.

In 1961, Sanborn became a division of Hewlett-Packard. The combined strengths of Sanborn, with its acknowledged leadership in understanding and providing for the needs of the medical community together with its experienced sales and service personnel, and Hewlett-Packard. with its leadership in development and support of electronic instrumentation, resulted in well-conceived, well-designed, and well-supported product lines.

MED's product lines

The producr lines, which are listed in the Medical Instrumentation Catalog

Central Station
(5952-3525), of Hewlett-Packard's Medical Electronics Division (MED) currently contains more than 250 instruments comprising patient monitors, medi. cal systems (for the operating room, eath lab, etc.), diagnostic instruments, and computerized medical systems. Current engineering efforts are expanding to relemetry for progressive coronary care monitoring, and monitoring equipment for new born intensive care units.

780 series patient monitors

Continuous monitoring of coronary and critically-ill patients is undoubtedly among the most important innovations in patient care in the last decade. In response to this innovation. Hewlett-Packard designed the 780 Series of patient monitors for coronary care units, intensive care units, and recovery room monitoring.

The units of the 780 series electronically monitor various physiological phenomena such as ECG, pressures, temperature, and respiration. Monitoring is done on a round-the-clock basis; the patient is effectively never left alone. 780 bedside monitoring units are small, compact, self-contained instruments used to monitor various combinations of pa tient parameters. Patient data, transmitted by telemetry or cable, is dis. played in analog or digital form on a variety of devices for convenient and effortless monitoring by the medical staff.

Because of the building block design of the 780 Series, units can be combined into an almost unlimited variety of systems to meet each hospital's specific monitoring needs. Other advantages of the building block approach are economycost zeflects only those monitoring capa. bilities needed; and expandability-sys. tems are easily enlarged to monitor more patients or more parameters per patient.

The Hewlett-Packard 780 Series also includes resuscitation capability. Defibril. lation can be performed asynchronously for emergency treatment of ventricular fibrillation or the defibrillator can be used synchronously for the elective cardioversion of arrbychmias such as atria! fibrillation or atrial flutter. Pacing can be done in either the fixed-rate or demand (as-required-by-the-patient) made.

8800 series medical systems

Late in the ' 60 's the need for moniroring syscems for clinical and research applications became apparent. This prompted Hewlett-Packard into develop. ing the 8800 Series of Medical Systems comprising transducers, signal condition. ers, recorders, and other display devices. The versatility of 8800 instrumentation permits customer configuration of systems for research, operating rooms, cath labs, and teaching applications.

The equipment provides substantial flexibility in meeting the requirements of the individual clinizian and researcher. By combining standard sub-assemblies in building block fashion, vittually a limit. less number of different configurations is possible. These range from two-channel systems in a small mobile cart, to highly sophisticated mulcichannel systems including chart recorders, oscilloscopes, numerical readouts, analog meters, and magneric tape recorders.

Hewlett-Packard has developed an exrensive group of instruments primatily for clinical applications. These instruments monitor and/or display ECGs, VCGs, heart sounds, simultaneous fetal ECGs and labor contractions, nerve conduction and muscle voltages, and internal bady strucrures. This was followed by our present sing!e-channel electrocardiographs which provide all solid state circuitry and the mosr modern electronic rechnology available.

Electrocardiography

Hewlett-Packard offers two 3 -channel electrocardiographs. One allows the nurse or physician to obtain a complete 12 -lead electrocardiograph automatically in ren seconds. The second unit includes facilities for obtaining automatic cardiographs and/or provides a 3 -channel display for electrocardiograph, phonocardiograph and pressure signals.

Electromyography

The Hewlerr-Packard compact, 2-channel clinical electromyograph provides all of the sophisticated electronic gean necessary to do electromyography and nerve conduction studies in one package. It also urilizes a Hewletr-Packard developed variable persistence oscilloscope, which is unique to our instrument.

Pulmonary

Hewlett-Packard bas met the growing need for pulmonary function testing by offering the Vertek Series of instrumentation. These include a Lung Function Aralyzer which prints out test results within seconds, a Digital Pneumotach for research and clinical use, a Nirrogen Analyzer for accucate determination of nitrogen concentration in a gas sample, a Patient Respiratory Monitor for sur. veillance of patients on respirators or in ICU conditions and a Respiratory Function Analyzer mobile console which mea. sures, plots, and digitally displays results of the five tests most commonly used in pulmonary function evaluation.

Fetal monitoring

Recently, a fetal monitoring instrument has been developed by our manufacturing facility in Boblingen, Germany, in conjunction with Dr. Koncad Hammacher of Dusseidorf. It combines both the phonocardiograph and fetal ECG techniques and aliows the obstetrician to monitor fetal heart rate during the last trimester of pregnancy, or at the time of labor, and compare it with recorded labor contractions. In this way, the number of Caesarean sections can be reduced and the baby can be continually monitoced during the most traumatic time of labor. The idea of monitoring the fetus is not new, but instrumentation that will elim. inate extransous noises and maternal heart sounds is, and all of this is com. bined in the new Cardiotocograph, which uses logic circuitry to eliminate heart sounds or other extraneous noises.

Computerized medical systems

One of the goals of Hewlett-Packard's Medical Electronics Division is to provide medical systems and support that allow the computer to be a time-saving, accurate tool of the physician and re. searcher. To implement this goal, the concept of staellite, or dedicated, computers has been developed. Separate small computers perform their functions in the various areas of the hospital-in. tensive care, cath lab, operating room, etc-and, if desired, communicate with a larger machine concaining patient files and billing information. Three total sys. tem packages (both hardware and soft. ware) are cursently avaliable for medical. systems applications. They are the Computerized Catheterization Laboratory, the ECG Interpretive System and the Computerized ICU/CCU Monitoring System. Additional available softroare includes a set of 52 statistical programs (the "StatPac") written for biostatistical applica. rions.

Computerized cardiac cath lab

This package aids the physician by re. ducing the analog data obtained during the cateterization procedure to a useful set of calculated values such as heart rate, systolic and diastolic pressure values, pressure gradients, cardiac out. put, etc. At the conclusion of the procedure, a report is generated for inclusion with other patient documentation.

ECG interpretive system

A specially-developed operating system controls the user's choice of two pro. grams for ECG analysis, Mayo or USPHS, each based on different diagnos. tic criteria and both widely field-tested. Designed for operation by an ECG tech. nician, the system merges patient history cards with ECG records and prints history, ECG, and interpretation in less than one minute. Results can be printed at both the computer site and the ECG rerminal location. The system also produces patient billing reports upon zequest.

ICL/CCU monitoring system

A computerized, integrated, hardware/ software system for patient monitoring is currently being developed and tested at Peter Bent Brigham Hospital. Boston, Massachusetts. This system is modular in nature, making it easily adaptable to any monitoring situation. Application tasks include scheduled automatic sam. pling of signals from bedside monitors (ECGs, pressures, respiration, temperature) ; plotting crends on a scope; logging nurses notes; cardiac output by dye curve; pulse waveform analysis: arrhythmia monitoring in conjunction with a preprocessor; acid-base analysis: and generating patienr summary reports at the end of each nursing shift.

Hewlett-Packard's ablding commitments

Responsible concern is not confined to creating designing and manufacturing medical instruments alone. Since the ultimate value of medical instruments to physicians and hospital personnel must be measured by intrinsic benefits, the ad. ministrative staff of Hewlett-Packard's Medical Electronics Division has spent hundreds of man-years developing a "total concept" package, existing from the earliest stages of a medical instru. ment's definition and continuing throughout the useful life of the product.

Curcently the full-time responsibility of more than 100 Hewlett-Packard professionals, the total concept package comprises regularly scheduled teaining programs, complere publicstions complements, on-site calibration and checkout procedures, extensive sales and service capabilities, emergency service loaner equipment, and systems analyst and field engineering support.

ANALYTICAL INSTRUMENTATION
Gas Chromatographs and Spectrometers For chemical analysis

Widely recognized as the nation's foremost supplier of electronic measuring instruments for the engineer, HewlettPackard is fast developing a similar position in analytical instrumentation for the scientist. Fully described in a separate Hewlett-Packard catalog "Analytical Instruments for Chemistry," these instruments are briefly characterized in these rwo pages.

Gas chromatographs

Although less than 20 years old, gas chromatography (GC) has taken over from classical and other instrumental methods the bulk of analytical work performed in laboratories around the world. There is an excellent reason for the revo. Iutionary popularity of the gas chromatograph in analytical chemistry: no other method gets more accurate results, at greater speed, and for less cost.

For the scientist whose interest is the chemical analysis of unknown samples, Hewlett-Packard offers four basic types of gas chromatographs, a more complete line than is available from any other manufacturer in the world:

Series 7600A Chromatograph System, a fully automatic GC that takes over the traditional work of the chromatographer, from sample measurement and injection to the final report of the analysis. Operating completely unattended, it performs the GC analysis more accurately and teliably than a skilled technician, at a fraction of the operating cost.

Series 7620A and 5750B Research GC's, multiple-detector instruments that permit the highest possible level of performance for a great variety of analyses. They are designed expressly for the research iaboratory that requires an extremely versatile instrument.

Series 5700A Laboratory GC, the most modern instrument on the marker, available in a variety of configurations for dedicated applications. Its modular de. sign makes possible the most economical GC at the highest performance level for laboratories that specialize in specific analyses such as drugs, pesticides, natural gas and air pollution.
Series 7610A and 402B High-Efflclency GC's, whose large oven accommo.
dates glass U-tube columns for the analysis of materials that are difficult to chromatograph. These instruments incorporate other design features that make them especially effective with biological samples and thermally sensitive or polar materials.

Model 5795B Preparative GC Attachment which converts analytical GC's to fully automatic small-scale preparative work. The 5795B is used to separate and collect pure components for further chemical studies, without interfering in any way with the gas chromarograph's analytical capability.

Model 7670A/7671A Automatic Sampler, an accessory that automates the measurement and injection of samples into a gas chromatograph. Operating un. attended overnight and even over weekends, the $7670 \mathrm{~A} / 7671 \mathrm{~A}$ reduces operating costs so significantly that even the smallest labs can justify its purchase.

Data handling

Since GC produces both qualitative and quantitative information on large

The gas chromatograph and mass spoctrameter form the most powerful tool avallable to the scientist for rapld, positive and accurata analyses of unknown samples, especially when they are Integrated with a computer as they are in the Hewlett-qackard GC/Mass Spec/Computer system.
numbers of complex samples in a very short time, its data output is so large that automatic methods for handling it are economical if not essential. HewlettPackard manufactures a variety of instruments and systems for automatic data handling to satisfy all budget levels:

3360A GC Data Processing System. Complete automation of the data han. dling process is achieved with the 3360 A which can handle the output of up to eight GC's simultaneously, without intervention by the chromatographer. It prepares a full analytical repore for each sample and is easily operated even by laboratory technicians who have literally no previous computer experience.

3370B Dlgital Integrator. An electronic integrator, the 3370 B automatically mea. sures the retention time and area of each peak on a chromatogram. It presents the data either on a builtin printer, on punched paper tape for use with timeshare computers, or directly to a digital computer in real time.

Strip Chart Recorders. Several Hew. lett-Packard recorders are available with special input circuitry for use in GC: Models 7127A, 7128A, $7143 \mathrm{~A} / \mathrm{B}, 680$. All solid-state instruments, they offer a choice of one or two recording pens and five or ren-inch calibrated charts.

Hewlett-Packard manufactures a broad line of other data handling instruments including digital computers, programmable calculators, magnetic tape recorders and oscillographic recorders which are described elsewhere in this catalog.

Mass spectrometer

It is generally agreed among scientists that the most powerful tool for the qualitative and quantitative identification of unknown marerials is the combination of a gas chromatograph and mass spectrometer. In the Hewlett-Packard system, these two instruments are fully integrated with a compurer, further increasing their analytical porver and operator conve. nience. All three components-gas chromatograph, mass spectrometer and com-puter-are manufactured and serviced world-wide by Hewlett-Packard.

The 5930 A Mass Spectrometer can be operated either manually or automatically. In the automatic mode, the computer controls the operation of the spectrometer and accumulates the analytical data while it performs the necessary calculations. It does a complete mass scan
every two seconds, fast enough to analyze every peak separated by the gas chroma. tograph, and stores all the analytical data for as many as 1000 scans on a single tape cassette. Later, the computer can search the cassette, find the scan of in. terest and type out a list of every peak, identifying each peak by mass number and celative abundance.

MRR spectrometer

Molecular rotational resonance spectroscopy (MRR) measures the absorp. tion of microwave energy by molecules in the vapor state at low pressures. The technique has been widely used in fundamental molecular research for a number of years. With the introduction of the 8460A MRR Spectrometer, which is easy to use and more versatile than previous instrumentation, the technique has been extended to the analysis of complex gas mixtures, especially in air pollurion studies and quantitative mixture dererminations.

Microwave absorption occurs in any molecule that has a permanent dipole moment. The absorption pattern, or MRR spectrum, consists of sharp individual lines which always occur at the same frequencies regardless of sample composition and total pressure. Measurement resolution is so high that molecular conformers and non-radioactive isotopes can be separately identified. Compounds of molecular weight up to 350 can be measured. Impurities do not interfere and no sample preparation is required.

ESCA spectrometer

Electron spectroscopy for chemical analysis (ESCA) is a relatively new technique for measuring the binding energies of core and valence efectrons in atoms and molecules. It has great potential in both structural and analyical chemistry, with applications in the study of surface chemistry, oxidation states, molecular structure and chemical analysis generally.

The HP 5950A ESCA Spectrometer advances the state-of-the-art in some ex. tremely significant ways. It incorporates an X.ray monochromator and dispersioncompensated electron optics, each an entirely unique rechnological break-through. When combined with the s950A's posi-tion-sensitive detector, these design fea. tures serve to eliminate the line-width of the exciting radiation without introducing any slits in the spectrometer. The resule is an instrument that can be operated
under optimum conditions of both sensitivity and resolution at all times.

The main performance characteristics of the 5950 A include freedom from back. ground and freedom from satellites as well as greatly improved resolution and sensitivity.

CHN analyzer

The Model 185B Carbon Hydrogen Nitrogen Analyzer performs a complete elemental analysis of organic materials simultaneously and automatically in less than 10 minutes. The 185 has gained considerable acceptance among microchemists, because of its ability to perform, even under difficult circumstances, elemental analyses whose accuracy is well within the accepted allowable error of $\pm 0.3 \%$, at a speed advantage of 4 to 8 times over classical methods.

Molecular weight instruments

A polymer solution invariably consists of a number of different molecules of different chain lengths and weights. It is often useful to the polymer chemist to make different kinds of molecular weight determinations because each gives him a better idea of the acrual molecular weight of the sample and also tells him something of the distribution of the rype of molecules in his sample.

Hewlert-Packard offers the polymer chemist a choice of two instruments to help him make fase and accurate molecular weight dererminations of all sizes of molecules: Model 302B Vapor Pres. sure Osmometer for number-average molecular weight determinations between 50 and 25,000: Series 500 Membrane Osmometers for the same rype of determination between 10,000 and 1,000 ,000.

Quartz thermometer

The Model 2801A Quartz Thermometer measures absolute or differential temperature with a resolution of 0.0001° over the range -80 to $+250^{\circ} \mathrm{C}$. It $\epsilon \mathrm{m}$ ploys a small quartz disc transducer that operates as a piezoelectric resonator for a sensor oscillator. The resonant frequency of the quartz crystal varies as the tempetature in such a manner that the frequency of the sensor oscillator output signal is a linear function of tem. perature. Probe temperature is displayed as a direct digital readout in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$. A BCD ourput is also provided for inpur to computers and other data handling systems.

DELCON TELEPHONE CABLE MAINTENANCE INSTRUMENTS

Hervett-Packard's Delcon Division is dedicated to the development and manufacture of instruments for telephone cable plant maintenance. Of prime interest is the location of physical damage to the cable.

Fault location has become an especially acute problem in recent years as more cable is placed underground. Although better protecred from the environment, the cable is subject to new dangers and the telephone craftsman is faced with locaring damage hidden by several feet of earth. In addition, higher traffic den. sity on cables and demands for higher qualicy transmission have placed more emphasis on cable reliability and quality.

From the standpoint of the cable main. tenance supervisor, íault location prob. lems can be divided into five categories:
L. Maintaining the integrity of pressur. ized cable systems. Since pressuriza. tion is a preventive measure to keep moisture out of the cable, it is essential that leaks be located and repaired quickly before more serious damage results.
2. Locating conductor faults before they become catastrophic. High resistance shorts and grounds are usually indica. tive of water in the cable, which, if not located and repaired quickly, can result in complete cable failure.
3. Locating catastrophic faults. Time and location accuracy are of the essence in these cases in order to return the cable to service quickly with a mini. mum of excavation.
4. Cable utilization. This problem be. comes most apparent when most of the pairs in the cable have been as signed and it is no longer possible to pick up a "spare" pair to seplace a faulty pair. Faults on abandoned pairs must then be located and repaired in order to more fully utilize the cable's capacity.
5. Cable path and depth determination. This information is necessary in conjunction with accurately locating the fault. It is also necessaryfor accurately marking the cable location to protect it from construction and excavation work being performed in the vicinity of the cable.
Delcon Division strives to solve these problems with instruments that are easily operated by non-technica! personnel and that will withstand the rigors of the outside plant environment.

Ultrasonic leak detection

As pressurized gas escapes through an aperture it creates considerable noise in the ultrasonic region of 36 to 44 kHz . The Delcon Ulrasonic Translator Detector (such as Model 4905A) detects this characteristic sound with a sensitive, directional Barium Titanate microphone and translates the signal to audio by mixing it with a 40 kHz local oscillator signal. The audio signal is then amplified and monitored on a speaker and level meter.

To detect leaks in aerial cables. the craftsman merely scans the cable from the ground with the flashlight-size microphone, listening for the characteristic hissing sounds of a leak. By simulta. neously observing the level meter, he can "peak in" on the leak and determine its exact location. Pole mounted accessories are also available for closer scanning of the cable.

Leaks in ducted underground systems are locared with a unique "Duct Probe" accessory. Consisting of a miniacure mic. rophone connected to a system of aluminum rods, the Duct Probe can be used to explore up to 500 feet into a cable conduit. The leak is thereby pinpointed precisely. permitting repair of the damage with a minimum of excavation.

Direct reading fault locators

Fault locators that provide a direct distance-to-fault reading in feet (or meters) have the beneft of relieving the crafrsman of the drudgery of performing manual calculations. Locating faults becomes faster, requires less training and is less error prone than with manual bridge techniques.

The Model 4912F Conductor Fault Locator is a direct reading, automatic calculating bridge operating on the Varley principle. This instrument is designed to locate extremely high resistance shorts, crosses and grounds, such as might occur from minute amounts of moisture in plastic insulated cable (PIC). The 4912 F is connected to an access point on the
cable and the far-end of the cable is strapped to form a bridge configuration. The distance-to-fault resule is obrained by a simple sequence of adjustments of the instrument controls. The 4912 F is battery powered, light and compact. It is housed in a rugged fibergiass case and is designed to withstand the demands of field use.

Similar in construction and operation to the 4912F, the Model 4910F Open Fault Locator is designed to provide direct distance readings to open faules in paired telephone cable. The 4910 F operates on a capacitance charge sampling principle. Since the capacitance per unit length of a pair is known for a particu. las type of cable, this capacitance can be related to the length of the pair. The 4910 F measures this length by charging the pair capacity, C_{1}, with a known dc voltage; ransfering a portion of this charge to a standard capacitor. C_{s}, in the instrament for a given length of time; and measuring the charge across C_{5} with a voltmeter calibrated in feet. This entice sequence is performed automatically by the 4910 F , providing an answer in just a fere thousandehs of a second.

Tone type tault locators

The tone type locator. such as the Model 4904 A , places a 990 Hz signal on the faulted circuit which is traced by an inductive pickup coil and a sensitive tuned receiver. At the point of the fault, the signal drops in level, thereby indicaring the exact physical location of the fault. The tone locator also has the advantage of being able to precisely trace the path of the cable and, by triangulation, determine its depth at any point. The rone locator system is designed such that only the transmitted signal is detected, so that interfering signals (such as power line harmonics) do not interfere with the measurement. Output power of the transmitter is kept low to prevent interference with other working circuits in the cable and to prevent "carry-by" of the signal beyond the fault.

MORE INFORMATION ON DELCON PRODUCTS

U.S.A. Customers: Delcon products are sold directly to the customer from the manufacturing division. Please direct all orders and inquiries to:

Hewlett-Packard Company
 DELCON DIVISION
 690 E. Middlefietd Road
 Mountain View, Callfornia 94040
 Telephone (415) 969.0880

Customers outside the U.S.A.: Orders should be direcred to your local HewlettPackard distributor or representative. See inside rear cover.

DIGITAL INSTRUMENT INTERFACE BUS

General-Purpose Instrument Interface Bus

Instrumentation systems equire a good communication link among system elements in order to solve measurement problems in a useful way. This need applies equally to systems ranging in size from the small bench top configuration to large computer-controlled instrumentation systerns. The rapid increase in the use of automated systems. remote data acquisition systems, and timeshare techniques, to name a few applications, have all helped to increase the demand for improved communications within and between instrumentation systems. In addition, new programmable instrumentation operating at higher cates, with an increased percentage of programmable features, suited to remore (out of visual and physical contact) operation have similarly contribured to the demand for better ways of putting systems together. What then can be done to assist both the manufacturer and user of programmable instrumentation to simplify the instrument interface problem and reduce the costs involved in such a way as to not jeopardize either instrument or system performance?

What is An Intertace?

The exchange of digital messages (address, basic, control, and status data) between instruments involves much more than the basic hardware elements of cables, connectors, and interface circuit devices. The repertoire of messages to be communicated, the method of exchanging these messages between points in the network, and the interface structure necessary to manage an unambiguous hlow of messages are all important. The codes and formats, assertion convention (polarity or logic assignment of binary data), control techniques, timing guidelines, to name a few parameters, are all important. Effective communication demands that a complete digital interface system be defined taking into consideration all of these parametecs. Only then will interproduct compatibility be accomplished with ease, reliability, and reasonable cost.

A General-Purpose Interface Bus

A practical interface for instrumentation systems must be capable of interconnecting measurement, stimulus, dis.
play, storage, and processor products. Any or all of these product types may find use in instrumentation systems. Recent advances in microcircuit device technology, the advent of intelligent in struments (internal microprocessors for instrument control and data seduction), and the necessity to be compatible with many serially interfaced devices (e.g., word serial processors, byte serial paper and magnetic tape units, bit serial common carrier links) have all contributed to making feasible this General-Purpose Interface Bus.

Basic Network: The system accommodates up to 15 devices (i.e., instruments, data peripherals, etc.) interconnected over one contiguous bus interface. Each device is fitted with an interface connector and interconnected to other devices via a single passive cable. This inrerface system utilizes an 8 -line Data Bus, a 3 -line Transfer Bus and 4 additional Control Bus lines to manage the How of information over the Data Bus and Transfer Bus. Figure 1 illustrates this communication network. Fifteen assigned signal lines, one reserved signal

Figure 1. Typical Bus System Communication Network.
line, 7 ground lines, and one overall shield, make up the entice 24 -line inter. face. Information flow over the Data

Bus is exchanged in byte serial fashion with each byte being transferred from one talker to one or more listeners. The data is carried bi-directiona!ly (i.e., data is both transmitted and received, at dif. ferent times, on the same signal lines to a given device). Data formats may be variable in length to suit the needs of a wide variety of products. Each message (one to N bytes) is preceded by an address byte to identify the specific location to which the message is addressed. Measurement data of a numeric nature is typically formatted in free-field form (e.g., 456, $+123.45,987$ E-6). Data is exchanged asynchronously over the interiace at rates up to 1 megabyte per second as a function of the type of interface circuit device (TT-compatible) used.

Bus Signals: Each of the fifteen assigned signal lines has been named for its basic function in the interface systern. An abbreviated description of́ each signal line indicates its primary function. The Data Input Outpur (D101...D108) lines cacfy information (address, basic, control, and status data) between devices, typically encoded with low-state assertion. Any code, up to 8 bits, may be used; however, the ASCII code is preferred. A Data Valid (DAV) signal indicates data on DIO1-DI08 carries a valid message and may be transferred across the interface. One Ready for Data (RFD) line indicates the readiness of bus-connected devices to accept data, and a Data Accepted (DAC) line indicates acceptance of data by devices on the bus. A Multiple Response Enable (MRE) line identifies whether information on the Dlo lines is to be directed to specific devices or common to all devices. If the data is common to all devices, it contains either address or command dara. A Remote Enable (REN) line signals to all bus-connected devices that they should respond to either their front panel switch setting or communicate over the interface connector. End Output (EOP) enables whichever device is in control of the system to balt all communications over the bus. One Service Request (SRQ) Jine permits devices on the bus to alert the system controller of the need for further action (e.g., status data reporting, next event in programmed sequence, etc.)

Bus Management: Each byte of data is transferred across the interface by means

GENERAL PURPOSE INTERFACE BUS For programmable instruments and instrumentation systems

of the Transfer Bus. These three lines combine their actions to form an interlocked bandshake across the interface, the purpose of which is to assure that the slowest responding device on the bus receives the message. This rectmique is particularly useful when all devices arc being addressed when the communica. tion path is being set up or when one device is talking to two or more listeners simuitaneously. Devices are addressed via the DI01-Dlos signal lines. Each device may be addressed specifically as a talker or listener. Address and command data are sent with MRE in the Low stare. With DiOG and DI07 both in the High state, command data common to all devices (e.g., Device Clear Command) may be sent over the interface. Each device may gain the attention of the controller by pulling SRQ Low (a common wire-OR'd line) asynchronously to other action on the bus. When ready to respond, the controller then identifies which device needs attention and proceeds to carry on further dialogue with that particular device.
Physical Implementation: Driver circuits are typically open collector NPN gates, and receiver circuits TTL Nand gates. Messages are conveyed in the Low assertive state with one exception (the dedicated RFD and DAC lines), Low-state assertion implies that the High state ($\geq+2.4 \mathrm{~V}$) is a logical 0 and the Low state $(\leq+0.4 \mathrm{~V})$ is a logical 1. Each device is terminated with a unit load so
that no additional circuits, terminations, or power supplies are required beyond the passive cables. Interconnecting cables are available in 3, 6 , and 12 foot lengths for ease in assembling systems.

Bus Features

The interface bus system described in this section, and being implemented in a number of new Hewlett-Packard products, significantly increases interproduct compatibility. This interface system is intended to beneft design engineers, manufacturers, and customers alike. While nor all characteristics or features of the bus system take on equal signif. cance or priority as used in different applications, the following summary of key features outlines some of the more fundamental bus system qualities. The interface bus system:

- Enables the configuration of small, relatively low-cost bench top systems by means of simple interconnecting cables without imposing significant restrictions on individual instrument performance or cost.
- Aids the interconnection of a wide range of products required to complement and support programmable instruments including control devices ranging from simple card readers to complex processors.
- Enables greater systern performance and flexibility by permitting an in-
strumentation system to be config. ured with more than one device capable of controlling the system, one ar a time, and permits an unambiguous shift in control from one device to another.
- Recognizes the need for and permits translation of the interface to and from other, more specialized, interface environments.
- Enables asynchronous communication among two or more devices.
- Utilizes the commonly available and easily generated ASCII code as one of many permissible code forms.
- Allows changes in codes, data rates, and network communication paths to achieve an efficient system operation with direct communication between the affected devices.

One word of caution is in order. While this interface system goes much further than ever before in defining a standard interface, it does not guarantee instant systems or uqqualifed compatibility. Fig. ure 2 illustrates an instrumentation system interconnected with the interface bus. It is believed this General-Purpose Interface System will help provide good interproduct comparibility in a straightforward, reliable, and cost-effective manner.

Figure 2. New Network Analysis System Utilizes General.Purpose Interface Bus.

WHAT YOU CAN EXPECT WITH YOUR H. P, EQUIPMENT

Warranty

All Hewlett-Packard producss are warranted against dejects in materials and workmanship. The period of coverage is spectfied in a warranty statement provided with eath product. Hew. lett. Packard will repair or replace products which prove to be defective during the warranty period. In some cases reference is made 10 a requirement for preventive maintenance. No otber warranty is expressed or implied. Hewlett-Packard is not liable for consequential damages.

Certification

Products, materials, parts, and services furnished on this order bave been provided in accordance with all applicable Hewlett-Packard specifications. Actual inspection and test data pertaining 10 this order is on fle and available for examination.

Hewlett-Packard's calibration measurements are traceable to the National Bureall of Standards to the extent allowed by she Bureau's calibration facilities.

The Hewlell-Packard Quality Program satisfies the requirements of MIL-Q.9858, MIL-1.45208, and MIL-C. 45662.

Assurance that your equipment will continue to perform as expected for years to come is provided by Hewlett-Packard's world-wide Customer Service organization. There is a HewlettPackard field office not far from you-you don't have to correspond with a factory several thousand miles away to get information, replacement parts, or service assistance when you need ir. This customer secvice program is one of the major factors in Hewlett-Packard's reputation for integrity and responsibility towards its customers.

Customer Service Agreements

Your instrument maintenance needs in many cases may be handled most economically by entering into a Hewlett-Packard Customer Service Agreement. When you have a customer service agreement, Hewlett-Packard assumes your maintenance responsibilities for a basic annual charge, relieving you of the need for hiring your own trained specialist, for maintaining replacement parts inventories, and for doing the paperwork needed for maintenance scheduling.

Contact your nearby Hewlett-Packard field office for details.

Replacement Parts

Hewlett-Packard makes every effort to shorten spare parts delivery time and as a result, over 90% of the replacement parts orders are filled the same day they are received.

To sustain equipment operation in remote areas, or where equipment downtime is extremely crítical, spare parts kits are available.

When ordering a replacement part, please specify the Hew-lett-Packard part number listed in the table and give the complete name.
If circumstances require your ordering a part without specifying the part number, please include in your order the instrument model number, its serial number, a complete description of the part, its function, and its location in the equipment.

Repair Service

Help in maintaining your Hewlett-Packard equipment in first-rate operating condition is as close as a phone call to the nearest Hewlett-Packard field office. Whether you want to repair an instrument yourself, or send it to a Hew'lett-Packard facility for repair, recalibration, or overhaul, your local Hew. lett-Packard field office can offer a complete range of technical assistance.

Local repair facilities are backed up by Regional Repair Centers. located in major industrial areas around the world. The Regional Repair Centers have more sophisticated test equipment, factory-trained specialists, and a full line of replacement parts.
If your equipment installation is fixed, and if justified by the type of service required, Hewlett-Packard will perform service at your facility.

You have access to all of Hewlett-Packard's extensive service network through your local Hewlert-Packard field office.

Service Publicatlons

The Operating and Service Manual supplied with each Hewlett-Packard product contains maintenance, calibration, diagnostic and repair procedures, with trouble-shooting charts and complete circuit diagrams. All replaceable parts are listed. Extra manuals are suailable at reasonable cost from your nearby Hewlett-Packard field office. Most operating and service manuals with changes and service notes are now available on COSATl standard, positive microfiche.

New or special calibration procedures. instrument modifications, and special repair procedures are described in detail in the Hewlett-Packard Service Notes. This series of publications serves as a convenient means for updating Operating and Service Manuals.

Bench Briefs, a periodic newsletter, has servicing tips, new modifications and other suggestions to help repair and maintenance personnel get maximum performance from HewlettPackard instruments. It describes new Service Notes and other company publications as they become available. To become a regular subscriber, merely ask your local Hewlett-Packard field offe to place your name on the mailing list.

TRAINING/VIDEO TAPES

Part of the "extra value" which comes with each HewlettPackard product is our continuing commitment to provide Hewlett-Packard customers with useful training information in the areas of applications and service. In the past, this information has often been in the form of classroom seminars, either at your nearby Hewlett-Packard sales office or at one of our training facilities in California,

Now our capability is expanding by offering you both service and applications training via video tape. Video tape training is exceptionally convenient and readily avaifable, ready for your own use at any time or any place, including within your own facilities.

Tralning in equipment operation and maintenance is easier with vidso tape because concepts are clearly visualized.

HP video tapes

 A better way to learnEffective. Hewlett-Packard has found that video tape is a highly effective training medium, Video tapes can convey more information in less time, and with bigher reten. tion, than even the best live instruction. Hewlett-Packard programs are professionally produced and are based on measurable instructional objectives. They consider what the student alceady knows, emphasize what he needs to know, and omit what he does not need to know. Many video tapes utilize split-screen techniques, allowing students to watch a procedure on one part of the screen while observing its effert on another part. Most Hewlett-Packard video tapes are 100% visualized, as opposed to conventional, partially visualized video tape "lectures."
Flexible. With video tapes, you can tailor gour teaining program to suit the many needs of your organization. You may select training programs for individuals with different backgrounds and specific needs, present effective programs to audiences of just one or hundreds, and offer a library of technical programs your staff members can easily consult on their own . . for new information or for refresber purposes.
Faster. It has been our experience that Hewlett-Packard video programs compress learning time by a factor of 6 -to-1. A video tape library also reduces the time needed to organize and schedule your training. You can schedule highly professional presentations anytime and anywhere, without arranging for outside instructors or juggling the detailed logistics that are often required for live training sessions. More effective training in one-sixth the time!

Convenient. Video tape programs come on small, easy-tofile reels of magnetic tape. Inexpensive playback equip. ment is easily operated by unskilled personnel. Programs may be viewed on small portable monitors or on fullscreen TV sers. Video tapes can be quickly searched for specific information using "fast forward" or "fast rewind," and many recorders can stop on a single frame for more detailed study.
Time-Tested. All the video tapes offered in the Hewlett Fackard Videotape Catalog were developed to serve Hew-lett-Packard's needs for a practical, low cost source of up-to-date training in a wide variety of subjects. Now, after having been tested in Hewlett-Packard training activities throughout the world, many of these video programs are available to help meet your training objectives.

Vides tape programs provide an elficient and convenient means of in-depth training which may be tailored to speelfic needs. The flexible medium has the ability to impart detailed information quickly and effectively, making it especially useful for technical training.

> A best seller
> Practical Transistors, a 15 -program series for training electronic service technicians, is one of the most effective and widely used video tapes courses of its kind.

> The purpose of the series is to teach technical service personnel the truly practical aspects of transistor and other semiconductor circuitry. The programs avoid the usc of complex mathematical equivalent circuirs, and instead concentrate on presenting a clear and under. standable look at the what, why and how of transistor circuits and the common techniques for troubleshooting them.

> Throughout the rapes, ample use is made of demonstrations to compare measured with predicted results. Actual user experience has shown that the course is not only well received by technicians, bur also creates a definite improvement in their troubleshooting and maintenance performance.

> This Hewlett-Packard video tape course is in wide use throughour industry, colleges and universities, teclinical institutes, research organizations, vocational schools, and military training departments.

> A supplementary textbook, plus a complete ser of homework problems and answers, is included with the nine hours of video taped material.

TRAINING/VIDEO TAPES

VIDEO TAPES-A MINI INDEX*

Advanced Learning Modules

Each of these video tapes cover a single electronics measurement concept with a clarity and depth of understanding not found in texts or conventional classroom lectures. Unique, self-scoring quizzes are included.
Reflection Terms
Source VSIVR
Transmission Lines
Whas's a dB:
Count Any Signal
Time Interial Measurements
Power Measurement

Computers \& Peripherals
Digisal Magnetic Tape Basics HP Basic Computer Langrage 9300 Disc Menery: Theory 9300 Disc Memory Alignmens 2895A Tape Punct Maintenanct 2600A CRT Terminal Service

9820A Algebraic Language Calculator

9820A Calculator: Introduction 2820A Calsulator: Peripheral Control

Calculator Service

9810A Calculator: Introduction to Servicing
*Space permits only a representative sample of an index approaching 200 rapes. A complete Index so Hewlets. Packard Videa Tapes, detailing titles, running times, order numbers and prices, is available free of charge from your local Her:lett-Packard sales office.

Laser Interferometer
S525A Laser Operation and Alignmens
Instrument Fundamentals
Oscilloscope Basies
Troubleshooting Series
Logica! Troubleshooting
Troubleshoosing Transistor Circuils Paster

How to Use HP Instruments
5630A Computing Counter
Fourjer Analyzer Applications 141T/8S52B/85S3B Specirnm Analyzer

How to Maintain HP Instruments
1700 Series Oscilloscope Service 2:
Power Supply and Trigger Circuits
8064A Spectrum Analyzer Service (board level)
s061A Cesjum Beam Tube Replacement
3590A/3591A Wate Analyzer
Mainsenance

Yideo Cassettes offer the ultimate in convenience and handling ease. Programs are available in this form as well as reel.foreel.

For more information on

- Tapes
- Formats ($1 / 2$-in., l-in., cassette)
- Equipment (playback/ recorders, cameras, monitors)
- Prices (averaging $\$ 100 /$ tape) Contact your local Hewiett.
Packard field representative or:
Corporate Training
Hewletr-Packard
6.40 Page Mill Road

Palo Alto, California 94304
(115) 193-1212

Professionally produced videotâpes ario deverộpéd iô meet measurable instructional objectives in a wide variety of subjects. Note splitscreen effect, above.

DIFFERENTIAL AMPLIFIER Wideband amplifier for data acquisition systems

Input overload tolerance: $\pm 30 \mathrm{~V}$ differential; $\pm 70 \mathrm{~V}$ common mode will not damage the amplifier.
Output circult: $\pm 10 \mathrm{~V}$ across $100 \Omega(100 \mathrm{~mA})$, output impedance (de) 0.201 max . Short circuit proof; current limited to approx 150 . ma. Will not oscillate with any value of capacity load.
Zero drift: $\pm 3 \mu \mathrm{~V}$ referred to input, $\pm 0.2 \mathrm{mV}$ referred to outpur, at constant ambient temperature for 30 days. in $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ referred to input, $\pm 0.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ referred to output. $\pm 2 \mathrm{mV}$ referred to outpur for $\pm 10 \%$ change in line voluage.
Gain stabllty: $\pm 0.01 \%$ at constant ambient temperature for 30 days, $\pm 0.005 \% /{ }^{\circ} \mathrm{C}$ (fixed gain steps only). $\pm 0.01 \%$ for $\pm 10 \%$ change in line voltage.
Nonlinearity: iess than 0.01% of full scele 10 V outpur (zero bascod terminal lincarity).
Current feed to source: $0.001 \mu \mathrm{~A} \max$ at constant ambient temperaruse: $\pm 0.001 \mu \mathrm{~A} /{ }^{4} \mathrm{C}$.
Settilng tlme: 100μ s 1099.9% of final value for step input.
Overload recovery time: from differential overload signal of ± 10 V ar gains of 300 to 1000 , recovery in 10 ms to within $10 \mu \mathrm{~V}$. referred to input plus 10 mV referred to outpur: for gains of 1 to 100, recovery in 1 ms . For a 10 X full scale overload of any duration. recovery in 2 ms for gains of 300 to 100 , and $100 \mu \mathrm{~s}$ for gains of 1 to 100.
Nolse: measured at gain of 1000 with respect to input, 1000Ω source impedance:

Bandwldth	Noise	Bandwidith	Nolse
dc .10 Hz	$1 \mu \vee \mathrm{pp}$	dc .10 kHz	$3 \mu \mathrm{~V}$ /ms
dc .100 Hz	$3 \mu \vee \mathrm{PP}$	dc .50 kHz	$4 \mu \mathrm{Vrms}$
$\mathrm{dc}-1 \mathrm{kHz}$	$6 \mu V D D$	dc. 250 kHz	$5 \mu \mathrm{~V}$ \%ms

Slewing: gain of 1 or $3,0.7 \mu \mathrm{~V} / \mathrm{s}$; gain greater than $3,1 \mu \mathrm{~V} / \mathrm{s}$ referred to output, for 10 mV de ofiset al outpul with resistive load of 100Ω or greater.
Input-output isolation: greater than $200 \mathrm{M} \Omega$ shunted by less than 2 p E .
Temperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$

General Specifications

Power: $115 / 230 \mathrm{~V} \pm 10 \%$. 50 to $400 \mathrm{~Hz}, 6 \mathrm{VA}$.
Dimensions: $43 / 4^{\prime \prime}$ high, $1-9 / 16^{\prime \prime}$ wide, $15^{\prime \prime}$ deep ($121 \times 40 \mathrm{x}$ 381 mm).
Weight: $3.516(1,6 \mathrm{~kg})$.
Prices: 8875A Differential Amplifier, $\$ 990$.
Option 001: dual outputs (10 mA and 100 mA capability: short on one has negligible effert on other), add $\$ 75$.
Optlon 002: swich selected filters (single-pole. low pass, with corner frequencies of $2,200,2000$ and $20,000 \mathrm{~Hz}$). add $\$ 75$.
Optlon 003: gain ranges of $10,20,30,100,200,500$ and 1000. add $\$ 25$
Option 004: 14010A Cord Connector Set for bench-top use (required for single-channel operation), add $\$ 63$.
Option 005: combines Option 001 and 002 (filers on 10 mA output only), add $\$ 150$.
Option 006: combines Opcion 002 and 003, add 8100.
Note: must order 1069.01 A case for multichannel banks of 10 or less, Sufficient blank panels (01069.61069) to fill case are re. quired to maintain temperature stability specifications, $\$ 10$ each.

AMPLIFIERS

5

SOLID-STATE AMPLIFIERS
 Precision general-purpose amplifiers
 Models 465A, 467A

Accurate gain, low noise and distortion, stability and versatility are offered at a low price by the Hewlett-Packard Model 465A. Sritchable 20 dB or 40 dB gain (X 10 or X 100) with flat frequency response from 5 Hz to 1 MHz makes this amplifier a valuable tool in laboratories, production, maintenance, etc.

The 465 A has numerous applications as a general-purpose amplifer or preamplifier, as an amplifier component in sys. tems, and also as an impedance converter ($10 \mathrm{M} \Omega$ to 50Ω).

The instrument can be isolated from chassis ground by dis. connecting the ground strap on the front panel, which allows it to be floated up to 500 V de above chassis ground.

465A Specifications

Voltage gain: $20 \mathrm{~dB}(\mathrm{X} 10)$ or $40 \mathrm{~dB}(\mathrm{X} 100)$, open circuit.
Gain accuracy: $\pm 0.1 \mathrm{~dB}(\pm 1 \%)$ ar 1000 Hz .
Frequency response: $\pm 0.1 \mathrm{~dB}, 100 \mathrm{~Hz}$ to $50 \mathrm{kHz} ;<2 \mathrm{~dB}$ down at $S \mathrm{~Hz}$ and 1 MHz .
Output: $>10 \mathrm{~V}$ rms open circuit; $>5 \mathrm{~V}$ rms into 50Ω (0.5 W),
Distortion: $<1 \%, 10 \mathrm{~Hz}$ to $100 \mathrm{kHz} ;<2 \%$, 5 Hz to 10 Hz and 100 kHz to 1 MHz .
Input impedance: $10 \mathrm{M} \Omega$ shunted by $<20 \mathrm{pF}$.
Output impedance: son.
Noise: $<25 \mu \mathrm{~V}$ roms referred to input (with $1 \mathrm{M} \Omega$ source resistance).
Temperature range: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to $440 \mathrm{~Hz}, 10 \mathrm{VA}$ max.
Dimensions: $51 / 8^{\prime \prime}$ wide, $3^{\prime \prime}$ high (without removable feet), $11^{\prime \prime}$ deep ($130 \times 76 \times 279 \mathrm{~mm}$).
Weight: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: HP 465A, $\$ 260$.

HP 467A Amplifier/Power Supply

The solid-state HP 467A Power Amplifier/Supply is a 10 watt peak power amplifier and -20 to +20 volt de power supply. The power amplifier has a wide bandwidth and low do drift, suitable for many applications wherever a power source is required. Unique features are low distortion ($<0.01 \%$), low drift and high-gain accuracy.
An output greater than ± 20 volts peak and ± 0.5 A peak is available from dc up to 1 MHz . At full output the distortion of the 467 A is less than 3% up to 1 MHz . The amplifer is a threeterminal device isolated from chassis and may be floated up to 200 rolts dc above chassis ground.

467A Specifications

Power amplifier

Variable: $0-10$ resolution is better than 0.1% of full output.
Accuracy: $\pm 0.3 \%$ from ds to $10 \mathrm{kHz} ; \pm 1.0 \%$ from 10 kHz $10100 \mathrm{kHz} ; \pm 10 \%$ from 100 kHz to 1 MHz with load of $>40 \Omega$.

Output: $\pm 20 \mathrm{~V} p$ at 0.5 A p .
Distortion: $<0.01 \%$ at $1 \mathrm{kHz} ;<1 \%$ at $100 \mathrm{kHz} ;<3 \%$ at 1 MHz .
Input impedance: $50 \mathrm{k} \Omega$ shunted by 100 pF .

DC power supply

Voltage range: $> \pm 20 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 4 \mathrm{~V}, \pm 2 \mathrm{~V}, \pm 1 \mathrm{~V}$; with adjustable vernier. Resolution: berter than 0.1% of full output.
Current: $=0.5 \mathrm{Ap}$.
Load regulation; (front panel) $<10 \mathrm{mV}$, no load to full load.
Line regulation: $<10 \mathrm{mV}$ for a $\pm 10 \%$ change in line voltage.
General
Output Impedance: (front panel): $5 \mathrm{~m} \Omega$ in series with 1 $\mu \mathrm{H}$.
Capacitance load: $0.01 \mu \bar{\mu}$ or less does not cause instability.
Ripple and noise: $<5 \mathrm{mV}$ p-p (referred to output) for am. plifier and power supply.
Current limit: $<800 \mathrm{~mA}$.
Temperature coefficient: $< \pm 0.05 \% /{ }^{\circ} \mathrm{C}$ of outpur or ± 2 $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ at output, whichever is greater.
Input-output terminals: front panel: $3 / 4^{\prime \prime}$ spaced banana terminals for input, output, and chassis. Rear panel: BNC terminals. Circuit ground can be floated 200 V dc above chassis ground.
Operating temperature range: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Power required: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to 440 Hz ; 60 VA max.
Dimenslons: $51 / 8^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (withour removable feet), $11^{\prime \prime}$ deep ($130 \times 159 \times 279 \mathrm{~mm}$).
Welght: ner, $10 \mathrm{lbs}(4,5 \mathrm{~kg}$): shipping, $15 \mathrm{lbs}(6,8 \mathrm{~kg})$.
Price: HP $467 \mathrm{~A}, \$ 640$.

SOLID STATE AMPLIFIERS Wide-band, 40 dB general purpose amplifiers Models 461A, 462A

 AMPLIFIERS

Uses

Loop-gain measurements.
Measurement of wide-band noise and VHF signals.
Preamplifier for voltmeters, oscilloscopes and counters.
Pulse preamplifier.
Linear amplifier
Wide-band video amplifier.
General laboratory preamplifier.
The solid-state HP 461A and 462A Amplifiers are excellent wherever wide frequency range, low distortion, and portability are desired.

The 461A Amplifier is a general purpose instrument designed to deliver stable gain over a wide frequency range. Either 20 dB or 40 dB gain may be selected with a front-panel switch. Both inpur and output impedances are matched to so olms. Maximum output is one-half volt ems.

The ability of the 462 A to amplify very fast pulses can be seen in Figure 1. The upper trace (A) shows a 20 ns pulse applied to the inpur of the 462 A Amplifier. The lower trace shows the same pulse amplifed at 40 dB vierved on the Hewlett-Packard Sampling Oscilloscope.

Figure 1. (A) Input Pulse to HP 462A 5 mV peak to peak). (B) Oukput Pulse of HP 462 A (500 mV peak-to-peak). Gain control is set in 40 dB position. Sweep speed is $5 \mathrm{~ns} / \mathrm{cm}$. This amplifier glves maximum usefulness for fast-oulse applications, television, and vhf work.

Specifications, Model 461A

Frequency range: 1 kHz to 150 MHz .
Frequency response: $\pm 1 \mathrm{~dB}, 1 \mathrm{kHz}$ to 150 MHz when operat. ing into a son resistive lord (500 kHz reference).
Galn at $500 \mathrm{kHz}: 40 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$ or $20 \mathrm{~dB} \pm 1.0 \mathrm{~dB}$, selected by front-panel swirch (inverting).
Input impedance: nominal 50Ω.
Maximum input: 1 V rms or 2 V p-p pulse.
Maximum de input: $\pm 2 \mathrm{~V}$.*
Maximum output: 0.5 V rms into 50Ω resistive load.
Equivalent wide-band Input nolse level: $<40 \mu \mathrm{~V}$ in 40 dB position when loaded with 50 .
Distortion: < 5% at maximum output and rated load.
Overload recovery: $<1 \mu \mathrm{~s}$ for 10 times overload.

Specifications, Model 462A

Pulse response: leading edge and rrailing edge: rise time, <4 ns; overshoot, < 5%.
Pulse overload recovery: $<1 \mu \mathrm{~s}$ for 10 times overload.
Pulse duration for 10% droop: $30 \mu 5$.
Pulse delay: nominally 12 to 14 ns .
Equlvalent input nolse level: $<40 \mu \mathrm{~V}$ in 40 dB position (sos) load).
Input impedance: nominal son.
Maximum input: : V rms or 2 V P.p pulse.
Maximum de input: ± 2 V.*
Gain: 20 or 40 dB selected by front-paael switch (inverting).
Output: l V p-p into son resistive load.

General specificatlons

Dimensions: $51 / 8^{\prime \prime}$ wide, $3^{\prime \prime}$ high (without cemovable feet). $11^{\prime \prime}$ deep ($130 \times 76 \times 279 \mathrm{~mm}$).
Weight: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping, $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 30 to 400 Hz , s W.
Connectors: BNC female.
Accessories avallable: 11048 C , 50Ω Feed thru Termination, \$15; Combining Cases: 1051A (holds six HP 461A Amplifiers). \$135.
Price: HP 461A, $\$ 380$; HP 462A, $\$ 380$.

[^0]
DATA AMPLIFIER
 DC - 50 kHz differential amplifier

Model 2470B \& Option 003

Description

The HP 2.470B Amplifier is a wideband differential amplifier. Its high common mode noise rejection (120 dB) and low zero drift make the 2470 B paricularly well suited to all types of signal conditioning applications. Typical inputs to the 2470B include strain gauge bridge transducers, thermocouples, potentiometer pick-ups, and resistance ransducers. Excellent
gain stability, both long and short term, avoids the need for frequent gain adjustment . . . real convenience in multiple amplifer systems . . . and also allor's the 2470 B to be used for monitoring drift of de signal sources in conjunction with a strip chart recorder.

The amplifier with its power supply is packaged compactly. Ten instruments fit side-by-side in $51 / 4^{\prime \prime}$ of standard $19^{\prime \prime}$ rack space, or two instruments may be installed in a portable case.

Specifications

Specifications include $\pm 10 \%$ line voltage variation, hold for $1 \mathrm{k} \Omega$ max. source resistance, (any unbalance) and assume calibration after specified warmup. (rti and roto mean referred to inpur and referred to output.)
DC gain: 6 fixed steps of X1, X10, X30, X100, X300, X 1000. Vernier (Opt 003) selected at front panel $10-\mathrm{tu}$ (on potentiometer (front panel) extends gain up to X3.s, for any gain setting.
DC galn accuracy: calibrated gain: $.01 \%$ of output; other gains: $.03 \%$, consisting of $.02 \%$ gain-to-gain accuracy and $.01 \%$ gain trim resolution. Vernier (Opt 003) Dial Accuracy: $\pm 3 \%$ of outpur. Resolution: $\pm .05 \%$ of full scale. Re. sertability: $\pm .08 \%$ of full scale.
Galn stabillty: $\mathrm{dc}: \pm .005 \%$ of output per month; $26: \pm .1 \%$ per month, for ac to 2 kHz , temp. coeff: $\pm .001 \%$ per ${ }^{\circ} \mathrm{C}$. ($\pm 0.002 \% /{ }^{\circ} \mathrm{C}$ in Opt 003.)
Linearity: dc: $\pm .002 \%$ of full scale, referred to straight line through zero and full scale output; ac: $\pm .01 \%$ of full scale; inputs to 2 kHz .
Zero drift (offset): per day: $\pm 5 \mu \mathrm{~V}$ ri (referred to input) $200 \mu \mathrm{~V}$ ro (referred to output); per month: $\pm 24 \mu \mathrm{~V}$ rti $\pm 500 \mu \mathrm{~V}$ ro: temp coeff: $\pm 1 \mu \mathrm{~V} \pm .5$ namp sti $\pm 40 \mu \mathrm{~V}$ rto per ${ }^{\circ} \mathrm{C}$. (Opt 003 increases sto offset by a factor of up to 2.5).
Maximum input signal: $\pm 11 \mathrm{~V}$ referred to input.
Differential Input impedance: 10^{\oplus} ohms shunted by $.001 \mu \mathrm{~F}$.
Common mode rejection: 120 dB at 60 Hz for gains of X 30 and higher.
Common mode return: from input common ro output common; 1 megohm, max.
Nolse: 0 to $10 \mathrm{~Hz}: 1 \mu \mathrm{~V}$ p-p rei and $10 \mu \mathrm{~V}$ p-p rto: 0 to 30 kHz : $s \mu \mathrm{~V}$ rms rti and $300 \mu \mathrm{~V}$ rms rto.
Output: $\pm 10 \mathrm{~V}$ max, 0 to 100 mA , Self -limits.

Output impedance: 0.1 ohm in series with $10 \mu \mathrm{H}$ max.
Load capability: 100 ohms or $.01 \mu \mathrm{~F}$ for full outpur.
Slewing: $10^{0} \mathrm{~V} / \mathrm{s}$ at gain of 1 ; $5 \times 10^{6} \mathrm{~V} / \mathrm{s}$ at gain of 1000 .
Bandwidth: for any gain step, 0 to $50 \mathrm{kHz} \pm 3 \mathrm{~dB} ; 0$ to 15 kHz $\pm 1 \mathrm{~dB}$; 0 to $5 \mathrm{kHz} \pm 1 \%$; 0 to $1.5 \mathrm{kHz} \pm .1 \% ; 0$ to 500 Hz $\pm .01 \%$.
Setting time: 100μ s to dithin $.01 \%$ of final value.
Overload recovery: $200 \mu \mathrm{~s}$ to within $.01 \%$ of final value for signal of 10 times full scale, but less than 10 V ; less than 5 ms for signal plus common mode up to 20 V .
Overload slgnal: -17.5 to -19.5 V with no overload, 0 to - I V in overload: 5 mA drive capability: front panel lamp indication.
Operating conditlons: ambient temperatures 0 to $55^{\circ} \mathrm{C}$; rela. tive humidity to 95% at $40^{\circ} \mathrm{C}$.
Warmup: operates immediately after turn.on, but requires three hours in free air. 30 minutes to Portable Case or Combining Case (plus one hour additional sarmup for each $10^{\circ} \mathrm{C}$ difierence between storage temperature and operating ambient) for specified accuracy and zero drift.
Rellabillty: prediced MTBF (90% confidence) 20,000 hours when operated at $29^{\circ} \mathrm{C}$ ambient.
Power: lls of $230 \mathrm{~V} \pm 10 \%$, 48 to $440 \mathrm{~Hz}, 10 \mathrm{VA}$ max.
DImensions: $1-9 / 16^{\prime \prime}$ wide, $47 /{ }^{\prime \prime}$ high, $15^{\prime \prime}$ deep ($39.7 \times 123.9 \times$ 381 mm).
Weight: net. $4 \mathrm{lbs}(1.8 \mathrm{~kg})$: shipping, $61 / 2 \mathrm{lbs}(2.9 \mathrm{~kg}$).
Accessories avallable: mating rear connector; mating rear connector with porver cord, input/output cables; combining case: holds up to 10 instruments in $51 / 4^{\prime \prime}$ of standard $19^{\prime \prime}$ rack space (mating connectors furnished) includes fower cord and fan; portable case holds tro amplifiers (mating connectors (urnished) and includes power switch, pilot light. power cord and fan.
Price: HP 2470B, $\$ 725$: Oprion 003 with vernier, add $\$ 100$.

SYSTEM DATA AMPLIFIER Excellent performance at lower cost Model 2471A

 AMPLIFIERS

2471A System Data Amplifier

The HP 2471A System Data Amplifier is a wideband dif. ferential-input amplifier featuring excellent system performance at low per-channel cost through extensive use of integrated circuits and modern plug-in-design packaging techniques.

The 2471A is a single plug-in circuit board which consists of two identical and independent amplifier channels, each providing up to $\pm 10 \mathrm{~V}, 50 \mathrm{~mA}$ full-scale output. Each channel has four switch-selectable calibrated gains from 1 to 1000 in decade multiple steps. Bandwidths are also selectable for each channel by plug-in jumpers with a choice of $10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$, and 10 kHz controlled bandwidths with 12 dB -per-octave rolloff, and full bandwidth (greater than 50 kHz). Common mode rejection is $>80 \mathrm{~dB}$ at the
two lowest gains and $>120 \mathrm{~dB}$ at the highest gain
Up to 10 amplifier boards (20 channels) may be installed in a model 12670A Combining Case which includes power supplies and connectors for all boards. The case occupies only $101 / 2$ inches of rack space. A pull-down front panel allows direct access to the boards. The amplifier boards are furnished with mating connectors, simplifging installation where the combining case is not used.
The system data amplifier is ideally suited for amplification of strain gage bridge, thermocouple and other low. impedance sources. The ampliffer output is compatible with high-speed analog-to-digital converters such as used in computerized data acquisition systems.

Specifications, 2471A*

DC gain: selectable in 4 fixed steps of $\times 1, \times 10, \times 100, \times 1000$,
DC gain accuracy: $\pm 0.01 \%$.
DC gain stablity: $\pm 0.02 \%$ of output for 6 months; temp. coeff. $\pm .005 \%$ per ${ }^{\circ} \mathrm{C}$.
DC IInearity: $\pm 0.01 \%$ of full scale, refersed to straight line through zero and \pm full scale oucput.
Zero drift: per day: $\pm 10 \mu \mathrm{~V}$ rti $\pm 1 \mathrm{mV}$ rto. Voltage temp. coeff.: $\pm 1 \mu \mathrm{~V}$ rit $\pm 0.2 \mathrm{mV}$ rto per ${ }^{\circ} \mathrm{C}$. Current temp. coeff.: $\pm 0.5 \mathrm{nA}$ rti per ${ }^{\circ} \mathrm{C}$.
Maximum Input signal: $\pm 11 \mathrm{~V}$ differential plus common mode; combined input of $\pm 20 \mathrm{~V}$ will not damage the amplifier.
Common mode rejection (CMR): dc to 60 Hz , up to $1 \mathrm{~K} \Omega$ line unbalance:

Gain	CMR
1000	$>120 \mathrm{~dB}$
100	$>100 \mathrm{~dB}$
10,1	$>80 \mathrm{~dB}$

Common mode return: from input common to output common: 10 megohms max.

Nolse:

$$
\begin{array}{lcl}
\text { (with source } & \text { Bandwidth } & \text { Noise } \\
\text { resistance }<1 \mathrm{k} \Omega) & 0.10 \mathrm{~Hz} & 3 \mu \mathrm{~V} \text { peak-to-peak } \\
& 0.50 \mathrm{kHz} & <5 \mu \mathrm{~V} \text { rms rti, } \\
& & <0.5 \mathrm{mV} \mathrm{~ms} \text { to }
\end{array}
$$

Dutput: ± 10 V max. 0 to 50 mA . Short-circuit proof.
Output Impedance: <0.1 ohm in series with $10 \mu \mathrm{H}$.
Load capability: 200 ohms resistive. Capacitive load up to $0.01 \mu \mathrm{~F}$ will not cause instability.
Slewing rate: $>1 \mathrm{~V}$ per $\mu \mathrm{sec}$.
Bandwidth: selectable in 5 steps: $10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$, 10 kHz with 12 dB -per-octave colloff and max. amplifier bandwidth of $>50 \mathrm{kHz}$.
Operating conditions: ambient temperature 0 to $55^{\circ} \mathrm{C}$; rela. tive humidity to 95% at $40^{\circ} \mathrm{C}$.
Power required: +30 V @ $50 \mathrm{~mA},-30 \mathrm{~V} @ 50 \mathrm{~mA},+15$ V @ 60 mA plus 50 mA max. load current, $-15 \mathrm{~V} @$ 60 mA plus 50 mA max. load current.
Power supply lmmunity: $\pm 30 \mathrm{~V},>120 \mathrm{~dB}$ sti; $\pm 15 \mathrm{~V}$, $>40 \mathrm{~dB}$ rto.
Dimensions: $73 / 4$ " H (197 mm), $11 / 4^{\prime \prime} W(31,8 \mathrm{~mm})$, $105 / 8^{\prime \prime} \mathrm{D}(269 \mathrm{~mm})$
Weight: net $11 / 4 \mathrm{lb}(567 \mathrm{gm})$; shipping $2 \mathrm{lb}(0,91 \mathrm{~kg})$.
HP 12670A Combinlng Case: (includes integral power supply and holds up to ten 2471 A Amplifiers (20 channels).
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50.400 \mathrm{~Hz}, 110$ watts (for full complement of 20 channels).
Dimensions: $101 / 2^{\prime \prime} \mathrm{H}(267 \mathrm{~mm}), 19^{\prime \prime} \mathrm{W}(483 \mathrm{~mm}), 205 / 8^{\prime \prime}$ D (508 mm) .

[^1]
AMPLIFIERS

WIDE BAND AMPLIFIERS
Low noise, flat response
Models 8447A, 8447B, 8447C, 8447D, 8447E, 8447F

Thin film hybrid integrated circuit amplifiers have been combined with fully regulated, solid state power supplies to form a series of general purpose amplifiers. The HP 8447 secies of amplifers embodies the inherently high reliability of integrated circuits and the convenience of a small, lightweight package.

The series features low noise and wide bandwidch. Flat frequency response and low distortion enhance the general utility of the amplifers. Long term stability and reliability is assured by the use of microelectronic amplifier circuits.

Specifications

	8447A Proamp	8447B Proamp	$8447 C$ Powar Amp	84470 Proamp	8447 E Powor Amp	8447 F Preamp. Power Antp
Frequency Range	0.1-400 M 4 Hz	$0.4 \cdot 1.3 \mathrm{GHz}$	30.300 MHz	$100 \mathrm{kHz} \cdot 1.3 \mathrm{GHz}$	100 kHz 1.3 GHz	$100 \mathrm{kHz}-1.3 \mathrm{GHz}$
Typical 3 dB Bandwidth	$50 \mathrm{kHz} \cdot 700 \mathrm{MHz}$	$0.35 \cdot 1.35 \mathrm{GHz}$	10.400 MHz	50 kHz - 1.4 GHz	$50 \mathrm{kHz}-1.4 \mathrm{GHz}$	$50 \mathrm{kHz}-1.4 \mathrm{GHz}$
Mean Gain	$\left\lvert\, \begin{aligned} & 20 \mathrm{~dB}=0.5 \mathrm{~dB} \text { at } \\ & 10 \mathrm{MHz} \end{aligned}\right.$	$\begin{aligned} & >20 \mathrm{~dB} \\ & 22 \mathrm{~dB} \text { Typical } \end{aligned}$	$30 \mathrm{~dB}=1 \mathrm{~dB}$	$\begin{aligned} & 26 \mathrm{~dB} \pm 1.5 \mathrm{~dB} \\ & \left(20^{\circ}-30^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 22 \mathrm{~dB}=1.5 \mathrm{~dB} \\ & \left(20^{\circ}-30^{\circ} \mathrm{C}\right) \end{aligned}$	d in a single package
Gain Fratness across full Fre. quency Range	$\pm 0.5 \mathrm{d8}$	$=1.5 \mathrm{~dB}$	$=1 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$=1.5 \mathrm{~dB}$	
Noise figure	$<5 d B$	$\begin{aligned} & <5 \mathrm{~dB} 0.4 \cdot 1.0 \mathrm{GHz} \\ & <6 \mathrm{~dB} 1.0 \cdot 1.3 \mathrm{GHz} \end{aligned}$	$<11 \mathrm{~dB}$	$<8.5 \mathrm{~dB}$	<11 dB Typical	
Oulput Power forldB Gain Compression	$>+7 \mathrm{dBm}$	$>-3 \mathrm{dBm}$	$>+17 \mathrm{dBm}$	$\begin{aligned} & >+7 \mathrm{dBm} \\ & \text { Typical } \end{aligned}$	$>+15 \mathrm{dBm}$	
Harmonic Distortion	$\begin{aligned} & -35 \mathrm{~dB} \text { for } 0 \mathrm{dBm} \\ & \text { output } \end{aligned}$	$\begin{array}{\|c\|} \hline-30 \mathrm{~dB} \text { for }-15 \mathrm{~d} 8 \mathrm{~m} \\ \text { output } \end{array}$	$\begin{array}{\|l\|} \hline-35 \mathrm{~dB} \text { for }+10 \mathrm{dBm} \\ \text { output } \end{array}$	$\begin{aligned} & -30 \mathrm{~dB} \text { for } 0 \mathrm{dBm} \\ & \text { output (typical) } \end{aligned}$	$\begin{aligned} & \hline-30 \mathrm{~dB} \text { for }+10 \mathrm{dBm} \\ & \text { output } \end{aligned}$	
Typical Ouput for $<-60 \mathrm{~dB}$ Harmonic Distortion	-25 d8m	-45 d8m	-15dBm	-30 dBm	-20 dBm	
VSWR	<1.7	$\begin{aligned} & <2.0 \text { Input } \\ & <2.2 \text { out out } \end{aligned}$	<2.0	$\begin{aligned} & <2.0 \text { Input } \\ & <2.2 \text { output } \\ & 1-1300 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & <2.2 \\ & 1.1300 \mathrm{MHz} \end{aligned}$	
Impedance	508	50Ω	50Ω Opt 00275Ω	50Ω	50Ω	
Reverse Isolation	$>30 \mathrm{~dB}$	>40 d8	$>35 \mathrm{~dB}$	$>40 \mathrm{~dB}$	$>40 \mathrm{d8}$	
Maximum DC Voltage Input	$\pm 10 \mathrm{~V}$	$=10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$=10 \mathrm{~V}$	$=10 \mathrm{~V}$	

General

Power requirements: 110 or $230 \mathrm{~V} \mathrm{ac} \pm 10 \%, 48.400 \mathrm{~Hz}$ 15 watts.

Dimensions: $81 / 2^{\prime \prime}(216 \mathrm{~mm})$ deep by $51 / 8^{\prime \prime}(130 \mathrm{~mm})$ wide by $33 / 8^{\prime \prime}(85,8 \mathrm{~mm})$ high.
Weight: net, $3 \mathrm{lb}, 7 \mathrm{oz}(1,56 \mathrm{~kg})$; shipping, $5 \mathrm{lb}, 1 \mathrm{oz}(2,30$ kg).
Price: Model 8447A, $\$ 550$; Model 8447B, $\$ 600$; Model $8447 \mathrm{C}, \$ 450$; Model $8447 \mathrm{D}, \$ 650$; Model $8447 \mathrm{E}, \$ 700$; M Todel $8447 \mathrm{~F}, \$ 1175$.

Options Avaliable

	Option 801 Dual Channed BNC Conneotors	Optlan 810 Type \mathbf{N} Connectors	Option ©11 Dual Channel Type \mathbf{N} Conmasters	Option 002 75Ω Input and Output Impedanae
8447A	* \$400	-	-	-
84478	* \$450	* 550	* \$500	-
8447C	-	-	-	\$10
84470	* \$500	* \$25	* \$550	-
8447 E	-	* \$25	-	-
8447F	-	* $\$ 50$	-	-

[^2]e.g.4 8447A Opt 001. Option price is extre.

MICROWAVE/POWER AMPLIFIERS
 Broadband, high-gain, high power amplification

AMPLIFIERS

Microwave TWT amplifiers

Advantages:

DC-coupled modulation circuitry allows power leveling and remote programming
Periodic-permanent-magnet focusing means fewer alignment problems

Uses:

Antenna efficiency and pattern measurements
Extends attenuation measuring systems capability by at least 30 dB .

Amplification of frequencies from 1 to 12.4 GHz is accomplished in four canges by the Hewletr-Packard microwave amplifiers. Each delivers over 1 watt with an input of 1 mW or less, a gain of at least 30 dB .

Specifications

input/output: impedance, son: connectors, cype N iemale. Amplitude modulation:

Sensitivity: modulation input of $>-20 \mathrm{~V}$ peak reduces RF output by more than 20 dB from dc to 50 kHz .
Frequency response: dc to $500 \mathrm{kHz}(3 \mathrm{~dB})$.
Pulse response: $<1 \mu \mathrm{~s}$ rise and fall times.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $183 / /^{\prime \prime}$ deep ($426 \times 140 \times$ 467 mm).
Weight: net, $33 \mathrm{lbs}(14,9 \mathrm{~kg})$; shipping $40 \mathrm{lbs}(18,0 \mathrm{~kg})$.

	4894	4910	493 A	4964
Frequency range (GHz)	1-2	2-4	6-8	7-12.4
Power outout (with 1 mW or less input)	IW	1W	1 W	1 W
Gain at ratad output	30 dB	30 dB	30 dB	30 dB
Gain variation with freq. at rated output small signal across any 10% of tand across full band	$\begin{aligned} & \leq 6 \mathrm{~dB} \\ & \leq 5 \mathrm{~dB} \\ & \leq 12 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \leq 6 \mathrm{~dB} \\ & \leq 5 \mathrm{~dB} \\ & \leq 12 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \leq 6 \mathrm{~dB} \\ & \leq 5 \mathrm{~dB} \\ & \leq 12 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \leq 6 \mathrm{~dB} \\ & \leq \mathrm{SdB}\left\{\begin{array}{l} \text { for } \\ \mathrm{gon} \\ \mathrm{MHz} \end{array}\right. \\ & \leq 10 \mathrm{~dB} \end{aligned}$
Nolse max. noise figure	30 dB	30 dB	30 dB	30 dB
Price	\$2450	32450	\$2800	\$2800

230B Tuned RF power amplifier

The HP 230 B is a tuned RF power amplifier covering 10 to 500 MHz in six continuous ranges. It provides up to 30 dB of gain, and has a maximum rated power ourput of 4.5 watts. With a typical noise figure of 6 to 9 dB , it is also suitable for low-level applications. High and Jow-level applications of the power amplifier are discussed in Application Note 76.

Specifications, 230 B
Frequency range: 10 to 500 MHz in six bands: 10 to 18.5 MHz . 18.5 to $35 \mathrm{MHz}, 35$ to $65 \mathrm{MHz}^{2} 65$ to $125 \mathrm{MHz}, 125$ to 250 $\mathrm{MHz}, 250$ to 500 MHz .
RF gain: 30 dB (10 to 125 MHz) , 27 dB (125 to 250 MHz), 24 dB (250 to 500 MHz), with 10 volts output inro 50 ohms.
RF bandwidth: $>700 \mathrm{kHz}$ (10 to 150 MHz), $>\mathrm{I} .4 \mathrm{MHz}$ (150 to 500 MHz), with 10 volts ourput into 50 ohms.
RF output:
Level: up to is volts across external 50 ohm load (1.5 watts).
Level monitor: full scale ranges of 3,10 , and 30 voirs, ac. curate to 10% from 10 to 500 MHz .
AM range: reproduces 0 to 100% modulation of driving source.
Connectors: type N female.
Dimensions: $163 / 4^{\prime \prime}$ wide, $3 / 16^{\prime \prime}$ high, $181 / 16^{\prime \prime}$ deep (42 s $\times 183 \times 459 \mathrm{~mm}$).
Weight: ner. $35 \mathrm{lbs}(15,8 \mathrm{~kg}$) ; shipping $52 \mathrm{lbs}(23.4 \mathrm{~kg})$.
Price: $\$ 1190$.

Description

The Model 8330A Radiant Flux Meter and Model 8334A Radiant Flux Detector combine to form a complete, multipurpose optical radiometer system ideally suited for use in a wide variety of exacting applications involving the accurate measurement of radiant power density in the ultraviolet, visible and infrared regions of the electromagnetic spectrum.

Direct readout in absolute units

The complete system is fully calibrated and reads directly in absolute radiometric units of watts per cm^{2} at any wave. length and at any power level within the range of the detector. The uniform, flat spectral response of the detector eliminates the need for inconvenient spectral calibration curves, thus enabling the convenient measurement of monochromatic radiation as well as the accurate measurement of spectrally-distributed (non-monochromatic) raciation from oprical sources such as thermal blackbody' radiators.

Thln-fllm Thermoplfe Detector

Key to the exceptionally high performance of the complete system is the unique, Hervlett-Packard-designed and manufactured thin-film thermopile detectoc. This multijunction thermocouple.type detector exhibits a combination of Hat spectral response, fast rise time and mechanical ruggedness not found in conventional designs.

Conventent to use

The instrument is particularly convenient and easy to use compared with previously available optical radiometers. The front panel meter can be automatically zeroed by simply depressing the front-panel MODE switch. No manual zero knob adjustment is needed. A pushbutton-operated, built-in electrical substitution-type calibrator keeps the fully integrated system operating at maximum accuracy at all times.

Applications

The $8330 \mathrm{~A} / 8334 \mathrm{~A}$ system is useful in a wide range of laboratory, industrial and field applications in a number of different areas such as optical science and engineering, process control, biological science and many others.

Specifications, 8330A/8334A

Dynamic range: irradiance measured in 10 overlapping ($1: 3: 10$ sequence) ranges from $; \mu \mathrm{W} / \mathrm{cm}^{\wedge}$ to $100 \mathrm{~mW} / \mathrm{cm}^{2}$ full scale.
Accuracy: absoluce measurement uncerraincy of broadband irradiance is less than $\doteq 5 \%$ of full scale on any range.
Spectral range and flatness: standard version of Model 8334 A is equipped with Infrasil quartz uptical window and responds from at least 0.3 to more than 3.0 microns, flat to within $\pm 3 \%$ or less (measured with grating monochromator with better than 0.1 micron resolution). Spectral range is extendable bevond these limits using specifed alternate optical window materials. Windows are not interchangeable.
Response time, $10-90 \%$: measured at recorder/DVM oucput is: $<70 \mathrm{msec}$ on $3,10,30,100 \mathrm{~mW} / \mathrm{cm}^{2}$ ranges: <0.7 sec on 100 , $300 \mu \mathrm{~W} / \mathrm{cm}^{2}$ and $1 \mathrm{~mW} / \mathrm{cm}^{2}$ ranges, <2.7 sec on $3,10,30 \mu \mathrm{~W} /$ cm^{2} ranges.

Zero drift: wrically less chan $3.0 \mu \mathrm{~W} / \mathrm{mm}^{2} / \mathrm{hr}$ in labaratory environment with reasonably constant ambiens temperature,
Recorder/DVM output: 0.1 vole dc. BNC connector.
Power requirements: $115 / 230 \mathrm{~V}$ ac $=10 \%, 50-400 \mathrm{~Hz}, 2.5$ watrs.
Weight: 8330 A : net. 6 lbs 15 oz (3.2 kg): shipping, 9 lbs 14 oz ($4,6 \mathrm{~kg}$) . $8334 \mathrm{~A}:$ net, I lb 5 oz (0.8 kg): shipping, 1 lb 15 oz (1 kg).
Dimensions: (approximare), 8330A: $61 / 2^{\prime \prime}$ high, $51 / 8^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ deep $(165 \times 130 \times 285 \mathrm{~mm}) 8334 \mathrm{~A}$: (including stand) $61 / 4^{\prime \prime}$ high, $13 / 4^{\prime \prime}$ wide, $5^{\prime \prime}$ long ($160 \times 121 \times 127 \mathrm{~mm}$).
Accessories furnished: $71 / 2{ }^{\prime}(2,3 \mathrm{~m})$ power cable. Adjustable height srand and $3 / 8^{\prime \prime}$ diameter support rod (pin mount) for detector.
Price: Model 8330A, $\$ 850$. Model 8334A with Infrasil quartz window, \$550; detectors with alternate rypes of optical windows can be supplied on special order at extra cost.

LASER INTERFEROMETER Linear \& Angular Measurement Models 5526A, 5510A

 MEASURING DEVICES

Configuration

The Laser Measurement System is a major advance in economical dimensional metrology. With a multi-purpose two channel laser head, interferometer options are available to measure length, angle, hatness, straightmess and square. ness and two measurements simultaneously. The 5526A, which forms the base of the system, includes the 5500 C Laser Head and the 5505A Laser Display.

General capabilities

The system is a highly accurate displacement measuring tool with a resolution of one millionth of an inch (linear) and 0.1 arc-second (angular). Fully automatic tuning, instant warm-up, and remote interferometry assure drift-free accuracy from the instant of switch-on. A laser tube lifetime in excess of 10,000 hours can confidently be expected. The unique optical heterodyning principle makes for practical, convenient measurements in adverse environments.

There is no interferometer in the laser head so all users benefit from the advantages of remote interferometry at no extra cost. Price: 5526A Laser/Display: $\$ 9,100$.

Interterometer options

Option 010-Linear Interferometer
This consists of the 10565 B Remote Interferometer (Magic Cube) and a 10550 B Retroreflector. Since the Remote Interferometer is completely passive it makes for an almost perfect linear measuring instrument. Although it may be placed in the laser head, it offers significant advantages when used remotely. Complete thermal stability is assured since the laser head can be some distance away on a tripod, while its small size makes for easy fixturing and minimal distortion. Deadpath can be virtually eliminated and, due to its small size, permanent installation in machines is very attractive. Price: $\$ 3,300$.

Optlon 020—Linear + Angular/Flatness interferometer
The addition of two simple optical modules to the Magic Cube converts it into an angular measuring interferometer for fast, accurate measurements of pitch, yaw, or flatness. The option also includes two turning mirrors designed especially for rapid calibration of surface plates. Price: 5,120.

Option 030-Straightness Interferometor

This option converts the 5526A into an interferometric straightedge. Lateral deviations from a perfectly straight line are displayed to a resolution of one millionth of an inch to an axial range of 10 feet or more. Unlike alignment lasers the Hewlett-Packard system does not depend on the pointing stability of the laser beam for its reference, but instead uses two rigidly mounted plane mirrors and a special prism interferometer. Accuracy is ± 5 microinches/ft ± 1 count.

Squareness: By passing the straightness interferometer beam through a 90° beam bender, Option 030 can be used to check squareness. Thus, the same instroment which calibrates a machine tool or measuring machine for coordinate positioning accuracy can also check geometry. Price: To be announced.

Option 040-Single Beam Interferometer
This is a special type of remote interferomerer for use where a cube-corner would present serious disadvantages. With the K08-10565A Non-contact Converter it measures displacement of refective surfaces. Price: $\$ 2,500$.

Option 011-Second Axis Add-on
The laser head is equipped with two sets of photodetectors. By the addition of Option 011, two measurements may be made simultaneously, Price: $\$ 7,650$.

Option 012-Plane Mirror ConversIon Kit

This includes the 10581A Plane Mirror Converter which, when assembled onto the Remote Interferometer of Option 010, converts it into a plane mirror interferometer. This is a very useful method of measuring XY displacements. Since it is insensitive to tilt of the mirror, alignment is not critical. Price: $\$ 460$.

Option 021—Angulay/Flanness Add-on

Angular or flatness measurement may be added to Option 010 at any time with this option which includes a Beam Bender, Reflector Mount, two Turning Mirrors and a Storage Case. Price, $\$ 1,820$.

Optlon 013—Second Axis Add-on (Plane Mirror)

For two-axis plane reflector measurements, this option should be ordered with Option 010, 011 and 012. It is very useful for XY table applications. Price: $\$ 8,110$.

5510A-Autorratle Compensator

The Automatic Compensator provides accurate, continuous correction for variations in the refractive index of air and for temperature of the material being measured. Air temperature, pressure and humidity and material temperature are measured by rugged sensors designed especially for use in machine shops. Sensor readings can be observed at the Laser Display without disturbing the measurement. Price: \$3,750.

Other options

Additional options include real time error-plotting, fringe based pulse or quadrature signals for closed-loop control, and a real-time resolution extender for applications where 0.1 millionths of an inch (0.001 micrometers) is needed, or where the high update rate of the normal mode is needed with the resolution of the X 10 mode. A printer is also available.

Brief specifications
 5526A Laser/Display

Laser: Helium-Neon type. Fully automatic tuning. Instant warmup. Accuracy: (for all linear displacement measurements):

Inch units: ± 0.5 parts per million ± 1 count in last digit.
Metric units: ± 0.5 parts per million \pm ? ounts in last digit.

Resolution: Normal and Smooth modes:
Normal 0.000,01 in. Merric: 0.1, 4 . Angular: 1 arc-sec.
X10 $0.000,001 \mathrm{in}$. Metric: $0,01 \mu$. Angular: 0.1 arc-sec.
Maximum allowable signal loss: 95% (-13 dB).
Maximum measuring velocity: $720 \mathrm{in} / \mathrm{min}$ ($182 \mathrm{~m} / \mathrm{min}$)
Maximum lateral return beam offset: ± 0.2 inch ($\pm 5 \mathrm{~mm}$).
Atmospheric and material compensatlon: manual inpur from cables. 5510 A Automatic Compensator optional.

Dimenslons:

Display: $5.53^{\prime \prime}$ high $\times 16.95^{\prime \prime}$ wide $\times 13.25^{\prime \prime}$ deep ($141 \mathrm{~mm} x$ $436 \mathrm{~mm} \times 337 \mathrm{~mm}$)
Head: $5.00^{\prime \prime}$ high $\times 7.00^{\prime \prime}$ wide $\times 20.70^{\prime \prime}$ long ($127 \mathrm{~mm} \times$ $178 \mathrm{~mm} \times 526 \mathrm{~mm}$).
Weight: Laser Display: $24 \mathrm{lb}(19,9 \mathrm{~kg})$; Laser Head: 17 lb ($7,8 \mathrm{~kg}$).

Option 10-Linear Interferometer

Accuracy: as for 5526A Laser/Display.
Maximum measuring range: up to 700 feet (210 m) depending on conditions.

Maximum lateral offset: The remote incerferomerer or the cubecorner setrorefector may be offset by up to $\pm 0.1 \mathrm{in}$. ($\pm 2.5 \mathrm{~mm}$) since a cube-comer displacement is doubled for the refected beam.
Dimensions: Too numerous to list. Ask for 5526 A data sheet.
Woight: 10565 B Remote Interferometer: $2.7 \mathrm{lb}(\mathrm{f}, 1 \mathrm{~kg}) ; 10550 \mathrm{~B}$ Reflector and Mount: $2.0 \mathrm{Jb}(0.8 \mathrm{~kg}$).

Optlon 20 - Linear + Angular/Fatness Interferometer LInear specificatlons are as for Option 10

Accuracy:

± 0.1 arc-second (± 1 count in last digit) up to ± 100 arcseconds.
± 1 arc-seconds (± 1 count in last digit) up $t 0 \pm 1000$ arcseconds.
± 4 arc-seconds per degree ($\dot{ \pm} 1$ counc in last digit) up to 10 degrees using correction table.

Option 30-Straightness Interferometer

Accuracy:

Straightness Reference: Inch: ± 5 mieroinches/foot ± 1 count in last digit. Metric: ± 0.4 micrometer/meter ± 2 counis in last digit.
Calibration: $\pm 3 \%$ of reading. Can be calibrated out with the gain adjustment of an analog recorder, if used.
Resolution: As for 5526A Laser/Display.
Lateral range: $\pm 0.1 \mathrm{inch}(\pm 2.5 \mathrm{~mm})$.
Axial range: 10 feer (3 m).
Option 012—Plane Mirror Interferometer (with Opt. O1O)
Performance: As for the Model 5526A Laser/Display and Option 10 Linear Interferomerer.
Retlector requirements:
Fiatness: Nust not deviate by more than $\lambda / 8$ (3 microinches) over any 0.8 inch (20 mm) dimension.
Surface Finish: Metal 0.1-0.j microinch arithmetic average Op. tical 80-40.
Maximum Angular Misalignment: Depends on distance be tween interferometer and mirror plane. Typical values are: ± 25 are-minutes for 10 in . (254 mm) ± 15 arc-minutes for 20 in . (508 mm) ± 5 arc-minutes for $50 \mathrm{in} .(1270 \mathrm{~mm})$
Weight: Model 1058 lA 0.5 ib (225 gm).

5510A Automatic Compensator

Dimensions: 6.25 in . $x 7.75 \mathrm{in}, \mathrm{x} 11 \mathrm{in}$. ($159 \mathrm{~mm} \times 197 \mathrm{~mm} x$ 280 mm) w/o sensors. W/ith sensors depth increases by 3 in . (76 mm).
Weight: $10.8 \mathrm{lb}(4.9 \mathrm{~kg})$.

5501 A Laser Transducer

This new product is a laser-based linear and angular transducer designed primarily for original equipment manufacturers of numerically-controlled machine tools, measuring machines, and other precision positioning equipnent. Using a single remore laser source and miniacurized optical and electronic components, the modular system is able to monitor up to eight axes simultaneously. Since pitch and yaw can be measured, as well as position, the same transducer yields both positioning and corrective control feedback. The transducer requires no periodic recalibration. The s501A Laser Transducer conrains options to interface with most hard-wired and mini computer controllers. Price: To be announced.

Specifications

Resolution: 6 microinches (0.15 mirrometers)
Accuracy: $1 / 2$ parrs per million.
Range: 200 feet (65 meters), sum of axes.
Maximum Allowable Velocity: 720 inches/minute (0.3 meters/ sec).
Number of Axes: 1 to 8.

QUARTZ THERMOMETER
$0.0001^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ resolution, direct measurement
Models 2801A, 2831A, 2833B, 2850A/B/C MEASURING DEVICES

Description

The method of temperature sensing employed in the 2801 A Quartz Thermometers is based on the sensitivity of the resonant frequency of a quartz crystal to temperabure change.

Temperature range of the 2801A Quartz Thermometer is -80 to $+250^{\circ} \mathrm{C}\left(-112\right.$ to $\left.+482^{\circ} \mathrm{F}\right)$. The quartz thermometer is considerably more linear than a platinum resiscance thermometer: $\pm .05 \%$ of span from -40 to $+250^{\circ} \mathrm{C}$ compared with a typical figure of $\pm .55 \%$ for the same range for platinum thermometers. Linearity of the quartz thermometer is superior to that of thermocouples and thermistors, which have an exponential characteristic. The excellent sensing characteristics of the quartz thermometer are supplemented by the advantages of direct digital readour (no bridge balancing, or reference to resistance or voltage-temperature tables or curves), immunify to noise and cable resistance effects, no reference junction, and good interchangeability between sensing probes.

The 2801A is equipped with two sensing probes for measuring temperature at either probe or the difference between the tro. A 6 -digit visual readout and recording output with a choice of push-button-controlled sample times provides resolution of $0.01,0.001$ or $0.0001^{\circ} \mathrm{C}$ or F . With Option 010 (100 second sample period) resolutions of $0.001,0.0001$ of $0.00001^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ can be obrained. Signal polarity indication is provided. The 2801A includes the capability for operation as a 300 kHz electronic counter.

Temperature sensing probes

Various standard probe configurations are available for the 2801A Quarz Thermometer. Probes from the 2850 series are furnished with the quartz thermometer.

Remote operation of probes

Each temperature sensing probe has a quartz-crystal which is resonant at a frequency dependent upon temperature, and is driven by a 2830A Sensor Oscillator. The osciliarors are transistorized devices enclosed in small die-cast aluminum housings. They are normally installed in the 2801A flush-mounted in a front panel recess. A 12 foot cable connects each probe to its associated sensor oscillator: this cable forms part of the tuned circuit and cannot be altered in length. Howerer, the sensor oscillators may be unplugged from the instrument and connected ro i: by standard 75 -ohm coaxial cable up to 500 feet in length, with no loss in measurement accuracy. For greater distances, one or two 2831A Amplifiers may be used for a maximum of 4500 Fee:.

Oceanographic temperature sensor

The Model 2833B Oceanographic Temperarure Sensor Assembly for the 2801A Quarcz Thermometer is especially designed for use in rugged environments such as oceans, rivers, harbors and industrial Guids at pressures up to 10,000 psi. It meets all requirements for oceanographic investigations, for temperature profile and thermal pollution studies in rivers and harbors, for well-logging, factory eflaent studies and other difficult industrial environments.

The 2833B combines the functions of a quartz crystal sensor and oscillator which are housed in a stainless steel pressure case approximately $53 / 8$ inch long, with a maximum diameter of $1 / 8$ inch. A single coaxial cable transmits the temperarure signal to, and the de operating power from the 2801 A .

The 2833B connects directly to the 2801A through the cable provided and gives a direct digital readout in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$. Operating range of the 2833 B is -40 to $120^{\circ} \mathrm{C}\left(-112\right.$ to $\left.+248^{\circ} \mathrm{F}\right)$ when used with the 2801A Quarti Thermometer. It may be used with as much as 5000 feet of cable with no loss of accuracy or sensitivity.

Specifications, 2801A

Temperature range: -80 to $+250^{\circ} \mathrm{C}\left(-112\right.$ to $+482^{\circ} \mathrm{F}$ with Option 001).
Callbration accuracy; thermometer-probe combingtion calibrated at factory to within $.02^{\circ} \mathrm{C}\left(.04^{\circ} \mathrm{F}\right)$ absolute, raceable to NBS.

Linearity; $-4010+250^{\circ} \mathrm{C}$: better than $.15^{\circ} \mathrm{C}\left(.27^{\circ} \mathrm{F}\right)$ referred to best fit suaight line through $0^{\circ} \mathrm{C}$; -80 to $-40^{\circ} \mathrm{C}$: better than $0.7^{\circ} \mathrm{C}\left(1.25^{\circ} \mathrm{F}\right)$ referred to same line as above; 0 to $+100^{\circ} \mathrm{C}$: better than $.05^{\circ} \mathrm{C}\left(.09^{\circ} \mathrm{F}\right)$ referred to best fit straight line through $0^{\circ} \mathrm{C}$.
Stability
Short term: betrer than $\pm .0001^{\circ}$.
Long term: zero drift less than $\pm .01^{\circ} \mathrm{C}\left(.018^{\circ} \mathrm{F}\right)$ at constant probe temperature for 30 days.
Ambient temperature effect: less than $.002^{\circ} \mathrm{C}$ per ${ }^{\circ} \mathrm{C}$ change. Display: 2801A: 6-digit in-line readout in C°, or ${ }^{\circ} \mathrm{F}$. Decimal point, ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$, and polarity indication included. Readout and units incation in kHz in counter mode of operation. Storage feature holds display between readings.
Digital recorder oufput: BCD, 4.2'2-1, positive-true, for each digit, decimal point (exponent), polarity, and operating mode. 8.4.2.1 positive true optionally available.

External programming: selected by contact closures or transistor circuit closures to ground. Measurement initiation, probe selection (T1, T2, or $\mathrm{T} 1-\mathrm{T} 2$), and resolution (.01, .001, or $.0001^{\circ}$) programmable.
Counter operation: Frequency Range: 2 Hz to 300 kHz ; Resolution: 10,1 , and 0.1 Hz ; Sensitivity: 0.5 to 10 V rms; Input Impedance: $1 \mathrm{M}, 50 \mathrm{pF}$ shuns; Gate Time: $0.1,1$ and 10 sec .
Power required: $115 / 230 \mathrm{~V} \pm 10 \%, 50$ to $60 \mathrm{~Hz}, 85 \mathrm{~W}$.
Instrument environment: a mbient remperatures from o to $+55^{\circ} \mathrm{C}$ $\left(+32\right.$ to $\left.+130^{\circ} \mathrm{F}\right)$, at relative humidify to 95% at $40^{\circ} \mathrm{C}$.
Welght: net, $22.5 \mathrm{lbs}(10,1 \mathrm{~kg})$; shipping. $35 \mathrm{lbs}(15,9 \mathrm{~kg})$.
Dimensions: $3.15 / 32^{\prime \prime} \times 16-5 / 16^{\prime \prime} \times 163 / 4^{\prime \prime}(88 \times 414 \times 425 \mathrm{~mm})$.
Price: 2801A Quartz Themometer, including two 2830A Sensor Oscillators and two (matched) 2850 series Temperature Sensors, \$3250.

Specifications, HP 2831A Amplifier

Operating frequency: 28 to 29 MHz approx.
Gain: 40 dB approx.
Power required: +12 to +20 V dc , at 8 mA approx. (Normally supplied by HP 2801A.)
Connectors: coaxial output connector mates with HP 2801A Quariz Thermometer.
Operating condltions: same as HP 2830A Sensor Oscillator.
Dimensions, welght, flaish: same as HP 2830A Sensor Oscillator.
Price: 2831A Amplifier, $\$ 100$.

Specifications 2833B Oceanographic Sensor

Temperature range: -40 to $+120^{\circ} \mathrm{C}\left(-112\right.$ to $\left.+248^{\circ} \mathrm{F}\right)$.
Response time (step change): 63.2% of final value in 3 sec ; 99.0% in $16 \mathrm{sec} ; 99.9 \%$ in 24 sec (flow at 2 fps).
Price: $\$ 900$; opt. 001 (50 ft . long waterproof cable) : N / C; opt. 002 (armored 50 ft . long waterproof cable with load-bearing termina. tion): add $\$ 255$ plus $\$ 1.50 / \mathrm{ft}$. above 50 ft .

QUARTZ PRESSURE GAUGE $0.12 \mathrm{Mpsi}, 10 \mathrm{mpsi}$ resolution, remote recording Model 2811A

The HP 2811A Quartz Pressure Gauge uses a unique transducer consisting of a highly stable quartz crystal resonator whose frequency changes directly with applied pressure. It detects pressure changes as small as 0.01 psi in ambient pressures up to 12,000 psia.

The 2811A consists of a sensing probe and a signal processor interconnected by a standard electric line or cable. The probe and processor can be separated by as much as 30,000 feet of electric line without signal impairment. An electronic counter is used to produce a digital display; any of various recorders, printers, computers or other data han. dling devices can be connected to the counter output.

Advantages

The 2811 A is intended primarily for use in oil wells as a bortom hole pressure gauge with topside readout. It has a higher resolution and more consistent accuracy over a wider dynamic range than instruments that are presently used in this application. Its 0.01 psi resolution is essentially constant, independent of operating pressure and temperature. The inherent stability of the quartz resonator practically eliminates hysteresis and zero dift, thus eliminating the need for frequent recalibration. In most cases, annual recalibration will be sufficient.

The ruggedness and simplicity of the 2811A Quartz Pressure Gauge greatly facilitate field use. Housed in a $1.7 / 16^{\prime \prime}$ OD case made of stainless steel, the probe can withstand pressures in excess of 20,000 psia. The signal processor requices no adjustments or tuning during operation. An on/off switch and a press-to-test switch are the only controls on the panel. Normal operation is indicated by two indicator lights. Display is achieved by simply connecting the signal processor output to a general purpose digital counter.

A single-conductor coaxial cable (electric line) connects the probe to the signal processor, furnishing all operating power to the probe and transmitting the measurement signal to the processor. The cable is not supplied, but standard one-conductor (with return sheath) electric line can be used in lengths up to 30,000 feet.

Operation

The 2811's probe contains a quartz crystal pressure sensor oscillator and a reference oscillator. The frequency of the sensor oscillator, which varies with pressure, is subtracted from the frequency of the reference oscillator; the resulting difference frequency is transmitted up the cable to the signal proressor.

Model 2811A Quartz Pressure Gauge uses a unique transducer consisting of a highly stable quartz crystal resonator whose frequency changes directly with applied pressure.

The signal processor, located on the surface, is an amplifier, filter and multiplier which conditions the probe difference frequency to enable it to drive a general purpose electronic counter. The processed output frequency changes about $105 \mathrm{~Hz} / \mathrm{psi}$ which allows a resolution of 0.01 psi. The signal processor also supplies de power to the probe in the hole via the electric line.

Specifications

Callbrated pressure range: 0 to 10,000 psi. Within this range the pressure is expressed as a third degree function of the processor output frequency by the following equation:

$$
\mathrm{P}=\mathrm{G}+\mathrm{Hf}+\mathrm{If} \mathrm{f}^{2}+\mathrm{J} \mathrm{f}^{3}
$$

where G, H, I and J are provided as functions of temperatuce from $0^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.302^{\circ} \mathrm{F}\right)$.

Operating temperature range: probe, $0^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.302^{\circ} \mathrm{F}\right)$; signal processor, $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$.

Sensitivity: $105 \mathrm{~Hz} / \mathrm{psi}$ (nominal) at output of signal processor.

pressure gauge system configurations

Resolution: <0.01 psi when sampling for a 1 second period.
Pracision: ± 0.15 psi over entire range.
Accuracy: (at thermal equilibrium) if operating temperature is known-within $1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right): \pm 0.25$ psi or $\pm 0.025 \%$ of reading; within $10^{\circ} \mathrm{C}\left(18^{\circ} \mathrm{F}\right): \pm 1$ psi or $\pm 0.1 \%$ of reading; within $20^{\circ} \mathrm{C}\left(36^{\circ} \mathrm{F}\right): \pm 5$ psi or $\pm .25 \%$ of reading.

Linearity (wlthout calbration): 1% deviation from straight line through frequency at zero pressure and at 10,000 psia.

Stability: annual recalibration recommended.

Signal processor output: nominal square wave with repetition rate between 490 KHz and 1.8 MHz ; minimum peak-to-peak amplitude of 1.2 V across 600 ohm load.

Power requirements: 115 or 230 V ac $(+10 \%,-25 \%)$ at 48.66 Hz .

Probe connector: mates with $1.7 / 16^{\prime \prime}$ OD Gearhart-Owen single conductor cable-head assemblies (Series 31-1000 and 31-1006) equipped with banana plug end (Part No. 31-1000-20). Other connector configurations quoted upon request.

Cable requirements: total round trip dc resistance ≤ 500, insulation breakdown voltage $\geq 50 \mathrm{~V}$.

Probe pressure case: 17-4 PH stainless steel, 1.7/16 $6^{\prime \prime} \mathrm{OD}$ by $40^{\prime \prime}$ long.

Welght: probe, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$; signal processor, $7 \mathrm{lbs}(3,2$ kg).

Price: $\$ 8980$.

ANALOG VOLTMETERS

Analog Instruments

Voltage, current and resistance measurements are easy, fast, and accurate with electronic instruments using meter movements. Most electronic volemeters, ammeters and ohmmerers use rectifiers, amplifiers and other circuits to generate a current proportional to the quantity being measured, which then drives a meter movement. Devices of this type are called analog instruments.

Meter movements-the meter-movement readout should continue to be popular since it is economical and suitable for many jobs. It also lends itself well to special, nonlinear scales such as dB scales. The pivor-jewel suspension has been replaced by taut-band suspension. This has resulted in excellent repeatability with hysteresis virtually eliminated. This repeatability, in turn, makes practical the individually-calibrated merer scale. Both of these improvements are standard in most Hewlett-Packard analog voltmeters.

DC measurements

The do voltmeter represents a straightforward application of electronics to measuring instruments. This instrument usually has a do amplifier preceding the meter movement. For most dc current measurements, the meter movement by itself serves the purpose admirably. For lower current measurements, the sensitivity of the meter movement must be increased. Electronic instruments over. come this difficulty by measuring the small voltage drop across a low value resistance placed in series with the current to be measured.

$A C$ voltage measurements

Analog (meter) indicating ac voltmeters fall into three broad categories: av-erage-responding, peak-responding, and rms-responding. AC voltmeters in general use are average and peak-responding types, although rms values are of principal interest.

Average-responding voltmeters

Probably the most widely used measurement technique combining acceptable accuracy and reasonable cost is the aver-age-responding (absolute average) method. Figure 1 show's a typical arrangement for making an average measurement.

The average value of an ac voltage is simply the average value of voltage values measured point by point along the waveform. The average value of a sine wave is really zero, because the waveform

(Figure 1. Average-responding voltmeter.)
has equal positive and negative values when averaged for one whole cycle. Since the equivalent $d c$ or energy content in the waveform usually is the quantity of interest, the average value of a sine wave is taken to mean the average rectified value. The average value of one-half cycle of a sine wave is 0.636 cimes the peak value.

The use of average responding is a consequence of the wide use of sine waves in electronic measurements. In cali. brating an average responding meter, a pure sine wiave with an rms amplitude of i volt can be applied to the meter, and the resulting pointer deflection marked on the scale as 1 volt. Actually, the average value of this sine wave is 0.91 volts, but since pointer deflection is linearly proportional to input voltage, an average responding meter calibrated in rms volts provides reliable indications of rms voltage if the input is a sine wave. This indication is not affected more than 3% by as much as 25% second harmonic content in the inpur waveform, and useful indica. tions are obtained on waveforms with even more distortion. For this reason, average responding voltmeters are widely accepted as low-cost substitures for true-rms-responding voltmeters, as long as sinusoidal signals are being measured.

Peak-responding voltmeter

There are situations where the peak amplitude of an ac signa! is significant, such as the moniroring of a transmitter modulating signal, or in studies of vibration components, or in other situations where peak energy must be known. How. ever, the dominant reason for the use of peak-responding ac voltmeters lies in the nature of their circuitry. Peak-responding circuits allow a voltmeter to serve as a multifunction meter and, what is more important, enables it to be used at much higher frequencies. Here again, since the majority of measurement situations in. volve sine waves, peak-responding meters
usually are calibrated in rms volts. Figure 2 shows a typical asrangement for making a peak measurement. A calibrating sine wave of 1 voit rms amplitude causes a pointer deflection equivalent to 1.414 volts, but this point can be marked as 1 volt ims on the scale. As long as the in. put naveform is a sine wave, the peakresponding indication is proportional to the rms value. Honrerer, the peak-re. sponding meter is more susceptible to errors caused by harmonic distortion in the input waveform than the average responding meter. Another consideration is the maximum sensitivity of the instru. ment which is limited by the instrument probe diode characteristics. For this reason, carefu! design is required to achieve even 0.5 vols full scale deflection sensitivity on the lowest range of a peak-responding meter. Conventional voltmeters responding to the absolute average of an ac waveform may somerimes be limited in sensitivity and bandwidth. These restricrions may be relieved by sampling the signal prior to detection and amplifica. tion. Hewlett-Packard's RF volkmeter uses a sampling rechnique (see page 51).

(Figure 2. Peak-responding voltmeter).
For a detailed discussion of the limits of error introduced into peak and aver. age-responding voltmeters by various harmonics, refer to Hewilett-Packard's Application Nore 60.

RMS-responding voltmeter

The true-rms measurements technique is most often used when a high degree of accuracy is required. Instrument indica. tion is proportional to the rms heating value of the impressed waveform. The roor-mean-square (rms) value of any complex quantity is obrained by summing the squares of each component and tak. ing the square root of the sum; this is de. fined as the equivalent heating power of the waveform.

This operation is pertormed by sensing the waveform's heating power. Heating power is measured by feeding an amplified version of an ioput waveform to

(Figure 3. RMS-responding voltmeter).
the heater of a thermosouple. The voltage output is proportional to the wave. form's heating power. The true rms value is measured independently of the waveshape, provided that the peak excursions of the measured waveform does nor exceed the dynamic range of the instrus. ment. Harmonic distortion is not an error contriburing factor. This arrangement allows accurate readings of the rms value of complex waveforms having high crest factors. Crest facror is defined as the ratio of the peak volage to the rms roltage of a ruaveform with the de component icmoved. A voltmeter with a high cress factor rating is able to read accurately the rms values of periodic signals that have waveforms sigaificantly different from sinusoidal. High crest factor performance is not obtained easily. An ems voltmeter with a high crest factor must have ampli-

Figure A. Four different tyoes of meter scales avallsble. (a) Linear $0.3 \forall$ and 0.10 V scales Dlus a dB scale. (0) Linear dB scale plus nonlinear (logarithmic) voltage scales. (c) dB scale placed on larger arc for greater escolution. (d) Linear - 20 to 0 d8 scale usotul for acoustical and communicatlons appllcations.
fers with sufficient dynamic range to pass signals that have a peak amplirude many times larger than full scale rms value. A wide dynamic range is not the only con. sideration. To prevent thermocouple burn-out, the amplifer design should include some provision for power limiting. Because amplitude limiting rould limit the crest factor, the voltmeter musc be designed with a limit on the volrage-time product so that thermocouple burn-outs are prevented without restricting wide dyramic range.

In gencral, rue-rms meters reveal only the rms value of an as signal. Because they are ac coupled, most voltmeters have a frequency cucoff around 20 Hz . This restriction keeps the true.rms volt. meter from accounling for any low trequencies or de components in a signal. Herlett-Packard digital voltmeters solve this probiem. Refer to pages 71-102.

Voltmeter considerations

Accuracy-Before re can discuss meter accuracy, ne must have a familiaricy with che various meter scales avail. able. Many instruments have meter scales marked in borh voles and decibel ($d B$) units. It should be noted that $d B$ and voltage are complentents of each other. That is, if a voltage scale is made linear. the $d B$ scale on the same meter face will be logarithmic or nonlinear. Likewise, if the dB scale is made linear, the voluge scale becomes nonlincar. The term "lin-ear-log scale" is applied to an instrument that has a linear d8 scale and thercfore a nonlinear voitage scale. Several differ. ent types of meter faces are illusrrated in Figure 4.

Analog meters (Figure 5) usually have nonlinearities and/or offsets present in the attenuators and amplifiers. The meter movement itself can have nonlinearities . . . even with individually calibrated meter scales. Nonlinearities cause percent of reading errors, and affsers cause percent of full scalle ecrors. Percent of reading errors are constant no matter where the merer pointer is. Percent of full-scale error increases as the pointer goes further down scale.

Looking at instrument specification sheets, accuracy specifications are usually expressed in one of three ways: 1. (percent of the full-scale value) 2. (percent of the reading) 3. (percent of reading +

figure 5. Nonlinearities cause \% of reading er. rors. Offsels calse \% of full scale êrors.
percent of full-scale). The first is probably the most commonly used accuracy specification. The second (percent of reading) is more commonly applied to meters having a logarithmic scale. The last meethod has been used more recently to obtain a tighter accuracy specification on a linear-scale instrument.

Hewlett-Packard uses the troopart ac. curacy specification to take advantage of the upper-scale accuracy and yet main. tain a reasonable specification for the lower portion of the scale.

For a thorough evaluation of accuracy, the following should be considered: Does it apply at all input-voltage levels up to maximun overrange point? (Linearity specifications may be added to qualify this point.) Does it apply to all frequencies throughour its specified bandwidth? Does it apply on all ranges? Does it apply over a uscful remperature range for the application? If nos, is temperature coefficient specified?

Selecting an Analog Voltmeter

Basic specs for Hewlett-Pachard ana. \log meters are in Table 1. Guidelines are restated below.
(1) For measurements involving $d c$ applications, select the instrument with the broadest capability meeting your re. quirements.
(2) For ac measurements involving sine waves with only modest amounts of distortion ($<10 \%$), the average-responding voltmeter can perform over a band-width extending to several megahertz.
(3) Most broadband average-responding voltmeters are limited in sensitivity ($100 \mu \mathrm{~V}$ full-scale) by inherent noise and spurious signals. For ac measure. ments involving fow level signals that may be obscured by noise or other unrelated signals, the tuned voltmeter provides the best accuracy and most sensi. tivity per dollar (refer to 3410 A data sheer).
(4) For high-frequency measurements ($>10 \mathrm{MHz}$), the peak-responding volt. meter with the diode-prohe input is the most economical choice. Peak-responding circuits are acceptable if inaccuracies caused by distortion in the input wave. form can be tolerated.
(5) For measurements where it is im. portant to determine the effective power of Waveiorms that depart from a true sinusoidal form, the true rms-responding voltmeter is the appropriate choice.
(6) For very wide bandwidths (up ro 1 GHz) and high-sensitivity measurements of sinusoidal or non-sinusoidal waveforms, the HP 3406A is the proper choice. Although the 3406 A is averageresponding, it has a sample hold output which makes analysis of waveforms possible.

Table 1. HP Analog Instruments

DC VOLTMETERS	Voltage Range	Frequenoy Range Acosuracy at FS*	Input Impedames	Model	$\begin{aligned} & \text { See } \\ & \text { Page } \end{aligned}$
OC NULL VOLTMETER	$\begin{aligned} & \pm 3 \mu V- \pm 1 \mathrm{kV} \text { end } \\ & \text { scale } \\ & 0.1 \mu \mathrm{~V} \text { resolution (18 } \\ & \text { ranges) } \\ & \hline \end{aligned}$	$\begin{gathered} d c \\ =2 \%+1 \mu v \end{gathered}$	100 k - $100 \mathrm{M} \Omega \mathrm{de}$. pending on range (in finite when nulled)	419A	48
```DC VOLT-AMMEYER NEW```	$\begin{aligned} & \text { DC: }=1 \mathrm{mV}, \pm 300 \mathrm{~V} \\ & 12 \text { ranges } \\ & \pm 1 \text { nA }=300 \mu \mathrm{Al} \\ & \text { ranges } \end{aligned}$	$\pm 3 \% \mathrm{c}$	10 M ¢ all ranges	43048	45
DC DIFFERENTIAL VOLTMETER	1 V to I kV (4 ranges)	$\begin{aligned} & d \mathrm{c} \\ & \pm \\ & \pm 0.002 \% \text { reading } \\ & +0.0002 \% \text { range }) \\ & \hline \end{aligned}$	$>10^{11}$ at null	3420日	45
DC DIFFERENTIAL VOLTMETER	$1 \mathrm{mV} \cdot 1 \mathrm{kV}$ ( 7 ranges)	$\begin{gathered} d \mathrm{c} \\ =(0.005 \% \mathrm{rgg} \\ +0.0004 \% \mathrm{rg}) \\ \hline \end{gathered}$	$>10^{10}$	740B	315
AC VOLTMETERS	Vollage Rangs	Frequanoy Range   Typloal Acouraoy	Response Inyul lmpedanoe	Made]	$\begin{aligned} & \text { See } \\ & \text { Page } \end{aligned}$
BATTERY OPERATEO AC VOLTMETER	$\begin{aligned} & 1 \mathrm{mV}-300 \mathrm{~V}\{12 \\ & \text { ranges }) \end{aligned}$	$\begin{aligned} & 1 \mathrm{~Hz} \cdot 1 \mathrm{MHz} \\ & =3 \%= \pm 5 \% \end{aligned}$	Average $2 \mathrm{M} \Omega /<25 \cdot<60 \mathrm{pF}$	403A	52
RECHARGEABLE BATTERY AC VOLTMETER	$\begin{aligned} & 1 \mathrm{mV}-300 \mathrm{~V}(12 \\ & \text { ranges }) \end{aligned}$	$\begin{aligned} & 5 \mathrm{~Hz}-2 \mathrm{MHz} \\ & \pm 2 \%- \pm 5 \% \end{aligned}$	Average $2 \mathrm{M} \Omega /<30 \cdot<60 \mathrm{pF}$	4038	52
VACUUM-TUBE VOLTMETER, also useful as ac amplifier. 400L has linear 12 dB log scale.	$1 \mathrm{mV}-300 \mathrm{~V} .706 \mathrm{~B}$. +52 dB (12 ranges)	$\begin{aligned} & 10 \mathrm{~Hz}-4 \mathrm{MHz}=2 \% \\ & \text { to } \pm 10 \%: 400 \mathrm{H} ; \\ & \pm 1 \% \text { to } 10 \% \end{aligned}$	Average $10 \mathrm{Mn} / 20-35 \mathrm{pF}$	$\begin{aligned} & 4000 \\ & 4000 \end{aligned}$	53
FAST-RESPONSE AC VOLTMETER 100 kHz low-pass filler ac amplifier	$\begin{aligned} & 100 \mu V-300 V \cdot 90 \\ & d B \cdot+52 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 20 \mathrm{~Hz} \cdot 4 \mathrm{MHz} \cdot \pm 1 \% \\ & =4 \% \end{aligned}$	Average $10 \mathrm{M} \Omega / 10-25 \mathrm{pF}$	$\begin{aligned} & 400 \% \\ & 400 \mathrm{FL} \end{aligned}$	54
HIGH ACCURACY dB VOLTMETER 20 © 8 log scale (0 dB $=1 \mathrm{~V}$ )	$\begin{aligned} & -100 \mathrm{~dB} \\ & \text { (8 ranges) } \end{aligned}$	$\begin{aligned} & 20 \mathrm{~Hz} \cdot 4 \mathrm{MHz}- \pm 0.2 \\ & \mathrm{~dB} \cdot 0.4 \mathrm{~dB} \end{aligned}$	$\begin{gathered} \text { Average } \\ 10 \mathrm{M} \Omega /<15 \cdot<30 \mathrm{pF} \end{gathered}$	400GL	54
HIGH ACCURACY AC VOLTMETER has dc oulput ( $\pm 0.5 \%$ ) for driving recorder	$\begin{aligned} & 1 \mathrm{mV} \cdot 300 \mathrm{~V} \cdot 70 \mathrm{~dB} \\ & +52 \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \mathrm{~Hz} \cdot 10 \mathrm{MHz} \pm 1 \% \\ & \pm 5 \% \end{aligned}$	$\begin{gathered} \text { Average } \\ 10 \mathrm{Mn} /<12 \cdot<25 \mathrm{pF} \end{gathered}$	$400 \mathrm{E}$ 400EL	54
RMS VOLTMETER provides rms readings of complex signals. Has dc output for driving DVM'S or recorders	$1 \mathrm{mV} \cdot 300 \mathrm{~V} \text { (12 }$	$\begin{aligned} & 10 \mathrm{~Hz}_{2} \cdot 10 \mathrm{MH}_{\mathrm{Z}} \pm 1 \% \\ & \cdot \pm 5 \% \end{aligned}$	$10 \mathrm{MQ} / 15-40 \mathrm{pf}$	3400A	55
SAMPLING RF VOLTMETER provides true rms measurements when used with 3400A. Many accessories	1 mV -3V(8 ranges)	$\begin{aligned} & 10 \mathrm{kHz} 10>1.2 \mathrm{GHz} \\ & \pm 3 \%= \pm 13 \% \end{aligned}$	Statistical Average: Input $Z$ depends on probe lip used	3406A	51
VECTOR VOLTMETER phase and amplitude measurements	$\begin{aligned} & 100 \mu V-10 \mathrm{~V} \\ & \text { (9 ranges) } \end{aligned}$	$\begin{aligned} & 1 \mathrm{MHz}_{\mathrm{Z}}-1 \mathrm{CHz} \pm 0.5 \\ & \mathrm{~dB}- \pm 1 \mathrm{CB} \end{aligned}$	Average   $0.1 \mathrm{MS} / 2.5 \mathrm{pF}$	8405A	417
MILLOHMMEIER; two probes used when making 4 terminal measure. ments	$0.001 \text { to } 100 \Omega \text { FS (11 }$ ranges)	$\begin{aligned} & 1 \mathrm{tHz} \text { (fixed) }=2 \% \\ & \text { FS } \end{aligned}$	Max, output Voltage: 20 mv	4328A	59
HIGH RESISTANCE METER and picoammeter	$\begin{aligned} & 0.5 \mathrm{M} \Omega 102 \times 1016 \Omega \\ & 5(7 \text { anges } 0.05 \mathrm{\rho A} \\ & .20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Voltage: }=10 \% \\ & \text { Current: }=5 \% \end{aligned}$	Max, output Voltage: 1 KV	4329A	60
MULTIFUNGTION METERS	Voltage Range (Aocuracy)	Curtent Range (Acouracy)	Reststance Range (Aocurasy)	Madel	$\begin{gathered} \text { Sea } \\ \text { Page } \\ \hline \end{gathered}$
BATTERY-OPERATED MULTIFUNCTION METER has 10 Ma dc input impedance and $10 \mathrm{Mr} / 20 \mathrm{pF}$ ac input impedance	$D C: \pm 100 \mathrm{mV}$ to $1000 \vee(=2 \%) 9$ ranges $A C$ : 10 mV . 300 V $10 \mathrm{~Hz}-1 \mathrm{MHz}$ ( $=2 \%$ ) 10 ranges		$10 \Omega .10 \mathrm{M} \Omega$ midscale $=5 \%$; from . 3 to 3 on the meter scale 7 ranges	427A	49
VERSATILE VOLTMETER has 100 Mn de inout impedance and $10 \mathrm{M} \Omega / 1.5 \mathrm{pF}$ ac impedance	$\begin{aligned} & \square C: \pm 15 \mathrm{mV} \text { to } \\ & \pm 1500 \mathrm{~V}\{=2 \%) 11 \\ & \text { ranges } A C: 0.5 \mathrm{~V} \\ & 300 \vee 20 \mathrm{~Hz}->700 \\ & \mathrm{MHz}( \pm 3 \% \text { at } 400 \\ & \mathrm{Hz} 7 \text { ranges } \\ & \hline \end{aligned}$	$\begin{aligned} & D C: \pm 1.5 \mu A \text { to } \\ & =150 \mathrm{~mA}(=3 \%) \mathrm{Jl} \\ & \text { ranges } \end{aligned}$	$10 \Omega \cdot 10 \mathrm{M} \Omega$ (center scale) 0 to midscale: $\pm 5 \%$ or $\pm 2 \%$ of midscale (whichever Is greater) 7 ranges	410C	50
DC VACUUMM-TUBE VOLTMETER has $10 \mathrm{M} \Omega 10200 \mathrm{M} \Omega$ input im. pedance	$\begin{aligned} & D C: \pm 1 \mathrm{mV}- \pm 1000 \mathrm{~V} \\ & ( \pm 1 \%) 13 \text { ranges } \end{aligned}$	$\begin{aligned} & O C: \pm 1 \mu \mathrm{~A} \text { to }=1 \mathrm{~A} \\ & (土 2 \%) 13 \text { ranges } \end{aligned}$	$1 \Omega \cdot 100 \mathrm{M} \Omega<=5 \%$ midscale) 9 ranges	412A	47
DC MICROVOLT-AmMETER has $1 \mathrm{M} \Omega$ input impedance (Vollmeter)	$\begin{aligned} & D C: \pm 10 \mu V=1 \mathrm{~V} \\ & ( \pm 3 \%) 11 \text { ranges } \end{aligned}$	$\begin{aligned} & O C: \pm 10 \text { oA to } \pm 3 \\ & \mathrm{~mA}( \pm 3 \%) 18 \text { ranges } \end{aligned}$		425A	47
CURAENT METERS	Curront Range	A00uraoy	Frequenay Range	Model	$\begin{aligned} & \text { See } \\ & \text { Pagt } \end{aligned}$
DC MILL IAMAETE8 with clip-on probe eliminates direct connection	$\begin{aligned} & 1 \mathrm{~mA}-10 \mathrm{AFS} \\ & \text { (9 ranges) } \end{aligned}$	$\pm 3 \%$	dc .400 Hz	4288	48
AC CLIP.ON CURRENT PROBE makes measurements without breaking circuit	$1 \mathrm{~mA} \cdot 1 \mathrm{~A} \mathrm{~ms}$ (to 25A with divider)	$\pm 2 \%$ to 3 dB	$25 \mathrm{~Hz}-20 \mathrm{MHz}$	456A	57

*For exact accuracy reter to page designated.

# DC VOLT/AMMETER $20 \mu \mathrm{~V}$ sensitivity, average response Model 4304B 

## Description

Hewlett-Packard's Model 4304B is a compact, solid-state de volt-ammeter. The 4304 B can make de measurements with large amounts of ac signals superimposed on the input.

The 4304 B can be used as a dc amplifier with a maximum voltage gain of 60 dB and an accuracy of $1 \%$. The amplifier output is proportional to the meter reading.

## Specifications

DC voltmeter
Ranges: $\pm 1 \mathrm{mV}$ to $\pm 300 \mathrm{~V}$ dc, 12 ranges ( $1,3,10$, etc.).
Accuracy: $\pm 1.5 \%$ of total scale length ( $\pm 3 \%$ of range).
loput resistance: 10 M 解 all ranges.
DC ammeter
Ranges: $\pm 1 \mathrm{nA}$ to $\pm 300 \mu \mathrm{~A} d c$ in 12 zero center ranges.
Accuracy: $\pm 1.5 \%$ of total scale length.
Input resistance: $3.33 \Omega$ to $1 \mathrm{M} \Omega, 1 \mathrm{mV} \div$ current range.
DC amplifier
Gain: $1000(60 \mathrm{~dB}$ ) on 1 mV range, decreases to 300,100 , 30 , etc., corresponding to the range setting.
Accuracy: $\pm 1 \%$.
Output: $\pm 1 \mathrm{~V}$ (no load) for end scale reading.
Output resistance: < 50 .

## General

Noise: $<20 \mu \mathrm{~V}$ p-p referred to the input.
Ac normal mode rejection: ac voltages $>50 \mathrm{~Hz}$ and up to 40 dB larger than end scale affects readings $<1 \%$ of total


4304B
scale length ( $2 \%$ of range). Peak voltage (sum of ac and dc) not to exceed maximum overload voltage.

Zero shitting: $\pm 110 \%$ of end scale on any range.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$, 50 Hz to 60 Hz , approx 2 W .


## Weight

43048: $4.8 \mathrm{lbs}(2,2 \mathrm{~kg}$ ); Option $0015.5 \mathrm{lbs}(2,5 \mathrm{~kg})$.
Price
4304B: $\$ 410$.
Battery Operation, Opt 001: add \$33.

## Accessories available

11056A Carrying Handle, $\$ 5$.
$04328-7026$ rechargeable battery/ac power pack. $\$ 62$.

## DC $\triangle$ VOLT/RATIOMETER <br> 1 ppm stability with $\pm 0.002 \%$ accuracy <br> Model 3420B

Specifications, 3420B*
DC voltmeter
Ranges: $\pm 10 \mu \mathrm{~V}$ to $\pm 1000 \mathrm{~V}$ in nine decade ranges.
Accuracy: $\pm 3 \%$ of range.
Input resistance: $\pm 10 \mu \mathrm{~V}$ to $\pm 10 \mathrm{mV}$ ranges: $1 \mathrm{M} \Omega . \pm 100$ mV to 1000 V ranges: $10 \mathrm{M} \Omega$.
DC differential voltmeter
Ranges
Voltage: $\pm 1 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 100 \mathrm{~V}$ and $\pm 1000 \mathrm{~V}$ with up to $10 \%$ overranging available on all ranges.
Resolution: six-digit readout yields resolution of 1 ppm of range; 0.2 ppm of range indicated on meter.
Accuracy: $\left(23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C},<70 \% \mathrm{RH}\right)$. 30 day: $\pm(0.002 \%$ of reading $+0.0002 \%$ of range). 90 day: $\pm(0.003 \%$ of reading $+0.0002 \%$ of range).
Stability: (at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C},<70 \% \mathrm{RH}$ ). $1 \mathrm{hr}:<1 \mathrm{ppm}$ of reading. $24 \mathrm{hr}:<5 \mathrm{ppm}$ of reading.
Input resistance: $1 \mathrm{~V}, 10 \mathrm{~V},>10^{11} \Omega$ at null $100 \mathrm{~V}, 1 \mathrm{kV}$, $10 \mathrm{M} \Omega \pm 0.05 \%$.
DC ratiometer
Ranges Ratio: X1, X.1, X. 01 and X. 001. Resolution: same as dc $\triangle \mathrm{VM}$.
Accuracy: $\left(23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}, 70 \% \mathrm{RH}\right)$. 30 day: $\pm\left(0.002 \%\right.$ of reading $+\frac{0.0004 \% \text { of range })}{E_{(10 \mathrm{COM})}}$


Stability: (at $\left.23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C},<70 \% \mathrm{RH}\right)$.
$1 \mathrm{hr}:<1 \mathrm{ppm}$ of reading. $24 \mathrm{hr}<5 \mathrm{ppm}$ of reading. Input: 3 terminals, $\mathrm{A}, \mathrm{B}$ Common.

and of same polarity

## General

Power: $3420 \mathrm{~B}: 115 \mathrm{~V}$ or $230 \mathrm{~V} \pm 10 \%$. 48 Hz to 440 Hz , 6 VA max. or rechargeable batreries (eight furnished) 30 hours operating per recharge; input for fast charge mode.
DImensions: $163 / 4^{\prime \prime}$ wide, $5-7 / 32^{\prime \prime}$ high, $1101 / 4^{\prime \prime}$ deep ( 425 x $132 \times 286 \mathrm{~mm}$ ).
Weight; 3420 B : net, $21 \mathrm{lbs}(9,3 \mathrm{~kg}$ ); shipping, $26 \mathrm{lbs}(11,7$ kg ).
Accessories furnished: rack mount kit for 19" rack.
Price: HP 3420B, $\$ 1825$.

[^3]

Eighteen voltage ranges with $0.1 \mu \mathrm{~V}$ resolution on the lowest range set this HP solid-state DC Null Voltmeter apart from previous de null meters. The accuracy of this rechargeable battery-operated instrument is $\pm 2 \%$ of end scale $\pm 0.1$
$\mu \mathrm{V}$ on all ranges. Noise is less than $0.3 \mu \mathrm{~V} p \cdot \mathrm{p}$, and drift is less than $0.5 \mu \mathrm{~V} /$ day.

An internal nulling voltage allows inpur voltages up to 300 mV to be nulled giving an infinite input impedance. Input impedance above the 300 mV range is 100 megohms.

## Pushbutton Selection Provides Convenience-versatility

Seven pushbuttons allow the operator to select rapidly the desired function of the HP 419A. This de null voltmeter operates from the ac line or from the internal rechargeable batteries. During operation from the ac line, the batteries are trickle-charged. A fast-charge pushbutton is provided to in. crease the charging rate, recharging the batterics in approximately 16 hours. Baltery voltage may be easily checked with the battery-test pushbutton. The zero pushbutton enables the operator to compensate for any internal offsets before making a measurement. When this pushbutton is depressed, the positive leg of the voltmeter is disconnected from the positive input terminal and connected to the negative input terminal.

When the VM pushbutton is depressed, the HP 419A functions as a zero-center scale $3 \mu \mathrm{~V}$ to 1000 V do voltmeter.

When the AM pushbutton is depressed, the HP 419 A functions as a zero-center scale 30 pA to 30 nA ammeter.

## Specifications

DC nuls valtmeter
Ranges: $\pm 3 \mu \mathrm{~V}$ to $\pm 1000 \mathrm{~V}$ dc in 18 zero-center ranges.
Accuracy: $\pm$ ( $2 \%$ of range $\pm 0.1 \mu \mathrm{~V}$ ).
Zero control range: $> \pm 15 \mu \mathrm{~V}$.
Zero drift: $<0.5 \mu \mathrm{~V} /$ day after 30 min warm-up
Zero temperature coefficient: $<0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
Response time: 3 s to within $95 \%$ of final reading on $3 \mu \mathrm{~V}$ range: I s to within $95 \%$ of final reading on $10 \mu \mathrm{~V}$ to 1000 V ranges.
Noise: $<0.3 \mu \mathrm{~V}$ p-p, input shorted. [Noise amplitude approximates Gaussian distribution. RMS value (standard deviation) is $<0.075 \mu \mathrm{~V}, \mathrm{p} \cdot \mathrm{p}$ noise value is $<0.3 \mu \mathrm{~V} 95 \%$ of the time.]
Input characteristics
At null: infnite resistance on $3 \mu \mathrm{~V}$ through 300 mV ranges in SET NULL mode. Negative input terminal can be floated up to $\pm 500 \mathrm{~V}$ ds from powerline ground. Off null:

Voltage fanga	Ingli resistance
$3 \mu \mathrm{~V} \cdot 3 \mathrm{mV}$	$100 \mathrm{k} \Omega$
$10 \mathrm{mV} \cdot 30 \mathrm{mV}$	$1 \mathrm{M} \Omega$
$100 \mathrm{mV} \cdot 300 \mathrm{mV}$	$10 \mathrm{M} \Omega$
$1 \mathrm{~V} \cdot 1000 \mathrm{~V}$	$100 \mathrm{M} \Omega$

N'egative input terminal can be foated up to $\pm 500 \mathrm{~V}$ do from powerline ground.
$A C$ normal-mode rejection: ac roltages 50 Hz and above and 80 dB greater than end scale affect reading $<2 \%$. Peak ac voltage not to exceed maximurn overload voitage.

## DC ammeter

Ranges: $\pm 30 \mathrm{pA}$ to $\pm 30 \mathrm{nA}$ in 7 zero.center ranges.
Accuracy: $\pm(3 \%$ of range $\div 1 \mathrm{pA})$.

Zero control range: $> \pm 150 \mathrm{pA}$.
Zero drift: $<5 \mathrm{pA} /$ day after 30 min warm-up.
Zero temperature coefficient: $<0.5 \mathrm{pA} /{ }^{\circ} \mathrm{C}$.
Noise: <3 pA p-p, inpur shorted.
input resistance: $100 \mathrm{k} \Omega$ on all ranges.

## Amplifier

Gain: 110 dB on $3 \mu \mathrm{~V}$ range, decreases 10 dB per range.
Output; 0 to $\pm 1 \mathrm{~V}$ at 1 mA maximum for end-scalc reading. Outpur level adjustable for convenience when used with recorders.
Output resistance: depends on setting of outpur level control. $<35 \Omega$ nhen output control is set to maximum.
Noise: 0.01 Hz to 5 Hz : same as voltmeter (referred to in. pur). $>5 \mathrm{~Hz}:<10 \mathrm{mV}$ rms (referred to output).

## General

Overlaad protection: the folioxing voltages can be applied without damage to instrument.
1 V to 1000 V range: 1200 V dc .
10 mV to 300 mV range: 500 V dc .
$3 \mu \mathrm{~V}$ to 300 mV range: 50 V dc .
Operating temperature: instrument will operate within specifications from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Operating humidity: $<70 \% \mathrm{RH}$.
Storage temperature: $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$, 48 Hz to $540 \mathrm{~Hz}, 2 \mathrm{VA} \max$. or 4 internal rechargeable batteries (furnished). 30 hr operation per recharge. Operation from ac line permissible during recharge.
Dimensions: $73 / 4$ " wide, $61 / 4^{\prime \prime}$ high (without removable feet). $8^{\prime \prime} \operatorname{deep}(197 \times 156 \times 205 \mathrm{~mm})$.
Weight: net. $8.3 \mathrm{lb}(3,7 \mathrm{~kg})$; shipping, $12 \mathrm{lb}(5,4 \mathrm{~kg})$.
Price: HP 419A, $\$ 595$.

# DC VOLT-OHM-AMMETER 1 mV to $1 \mathrm{kV} ; 1 \mu \mathrm{~A}$ to $1 \mathrm{~A} ; 1 \Omega$ to $100 \mathrm{M} \Omega$ <br> Model 412A 

## Description

The HP Model 412A is a multipurpose meter designed to measure dc voltage, current, and resistance with laboratory accuracy.

## Specitications

Voltmeter
Voltage range: pos. and neg. voltages from 1 mV to 1000 $V$ full scale, 13 ranges.
Accuracy: $\pm 1 \%$ of full scale on any range.
Input resistance: $10 \mathrm{M} \Omega \pm 1 \%$ on $1 \mathrm{mV}, 3 \mathrm{mV}$ and 10 mV ranges; $30 \mathrm{M} \Omega \pm 1 \%$ on 30 mV range; $100 \mathrm{M} \Omega \pm 1 \%$ on 100 mV range; $200 \mathrm{M} \Omega \pm 1 \%$ on 300 mV range and above.
AC rejection: a voltage at power line or twice power line frequency $40 \mathrm{~dB}>$ fuli scale affects reading $<1 \%$. Peak voltage must not exceed 1500 V .
Ammeter
Current range: pos. and neg. currents from $1 \mu \mathrm{~A}$ to 1 A full scale. 13 ranges.
Accuracy: $\pm 2 \%$ of full scale on any range.
Input resistance:* decreasing from 1000 on $1 \mu \mathrm{~A}$ range to $0.1 \Omega$ on 1 A range.
Ohmmeter
Resistance range: resistarce from $1 \Omega$ to $100 \mathrm{M} \Omega$ center scale, 9 ranges.
Accuracy: $\pm 5 \%$ of reading at center scale.
Short circult current: ${ }^{\text {* }}$ from $0.01 \mu \mathrm{~A}$ on the X100 M $\Omega$ range to 10 mA on the $1 \Omega$ range.
Amplifier*
Voltage gain: 1000 maximum.
DC bandwldtls: dc to 0.7 Hz on all voltage ranges.

- Reler to data sheat for complete specifications.


Output: proportional to meter indication: 1 V at full scale; max, current, 1 mA (full scale corresponds to 1 on upper scale).

## General

Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $60 \mathrm{~Hz}, 60 \mathrm{VA}$ max.
Dimensions: cabinet: $71 / 2^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high, $10^{\prime \prime}$ deep ( $191 \times$ $292 \times 254 \mathrm{~mm}$ ) ; rack mount: $29^{\prime \prime}$ wide. $5.7 / 32^{\prime \prime}$ high, $71 / 2^{\prime \prime}$ deep behind panel ( $483 \times 134 \times 191 \mathrm{~mm}$ ).
Weight: net; 12 lbs ( $5,5 \mathrm{~kg}$ ); shipping $14 \mathrm{lbs}(6,4 \mathrm{~kg}$ ) (cabiner); net $!2 \mathrm{lbs}(5,5 \mathrm{~kg})$; shipping; $21 \mathrm{lbs}(9,5 \mathrm{~kg})$ (rack mount).
Price: HP 412A, $\$ 525$ (cabinet). HP 412AR, $\$ 535$ (rack mount).

## DC MICROVOLT-AMMETER

## Description

Hewlett-Packard's 425A, DC Microvolt-Ammeter, makes measurements of extremely small do voltages from $1 \mu \mathrm{~V}$ to I V; de currents, from I pA to 3 mA .

## Specifications

## Microvolt-ammeter

Voltage range: pos, and neg. voltages from $10 \mu \mathrm{~V}$ end scale to 1 V end scale, 11 steps, $1,3,10$ sequence.
Current range: pos. and neg, currents from 10 pA end scale to 3 mA end scale, 18 steps. $1,3,10$ sequence.
input impedance: voltage ranges, $1 \mathrm{M} \Omega \pm 3 \%$; current eange. depends on range, $1 \mathrm{M} \Omega$ to $0.33 \Omega$.
Accuracy; within $\pm 3 \%$ of range; line frequency variations $\pm 5 \mathrm{~Hz}$ affect accuracy $< \pm 2 \%$.
Amplifier"
Gain: 100,000 maximum.
DC bandwidth:
dc to 0.1 Hz on $10 \mu \mathrm{~V}$ range.
de to 0.3 Hz on $30 \mu \mathrm{~V}$ range.
dc to 0.7 Hz on $100 \mu \mathrm{~V}$ range and above.
Output: 0 to 1 V for end-scale reading, adjustable ( 5000 n shunt potentiometer), 1 mA maximum at $\mathrm{I} V$ outpur.

## General

Power: 115 or ( 230 V must be specified) $\pm 10 \%, 60 \mathrm{~Hz}, 50 \mathrm{VA}$ max.; 50 Hz operation is available as option 001.


Dimensions: cabinet: $73 / s^{\prime \prime}$ wide, $113 / 4^{\prime \prime}$ high, $12^{\prime \prime}$ deep ( 186 x $299 \times 305 \mathrm{~mm}$ ): rack mount: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $11^{\prime \prime}$ deep behind panel ( $483 \times 178 \times 279 \mathrm{~mm}$ ).
Welght: net $17 \mathrm{lbs}(7,7 \mathrm{~kg})$; shipping $18 \mathrm{lbs}(8,2 \mathrm{~kg})$ (cabinet): net 21 lbs ( $9,5 \mathrm{~kg}$ ); shipping 31 lbs ( 14 kg ) (rack mount).
Price: HP 425A, $\$ 695$ (cabinet). HP 425A Option 001, for operation from 50 Hz power, no extra charge.

[^4]

## Description

Direct current from 0.02 milliampere to 10 amperes can be measured with the HP 428B without interrupting the circuits and without the error-producing loading of conventional methods.

For any measurement of do within its range, simply clamp the jaw's of the 428 B around a wire and read.

This case and speed of operation are unparalleled, especially for applications where many do measurements must be made. Wide current range of the 428 B will handle most signals directly. For even greater sensitivity, several loops may be put through the probe. increasing the sensitivity by the same factor as the number of loops.
In addition to making current measurements directly, the 428B is also valuable for measuring sums and differences of currents in separate wires. When the probe is clipped around two wires carrying current in the same direction, their sum is indicated on the meter; when one of the wires is reversed, their difference is measured. Thus, current balancing is possible by obtaining a zero difference reading.

Mode! 4288 provides an outpur roitage proportional to the mea. sured current, which is useful for driving recorders or making low-frequency (dc to 400 Hz ) current measurements.

## Specifications

DC current range: 1 mA to 10 A full scale, nine ranges.
Accuracy: $\pm 3 \%$ of full scale $\pm 0.15 \mathrm{~mA}$, from $0^{\circ} \mathrm{C}$ io $59^{\circ} \mathrm{C}$ (when instrument is calibrated to probe).
Probe inductance; $<0.5 \mu \mathrm{H}$.
Probe inducted voltage: $<15 \mathrm{mV} p$ (worst case at 20 kHz and harmonics).
Output: variable linear outpur level with swich position for calibrated 1 V into open circuit (corresponds to full scale defection), 1.5 V max. into open circuit in uncalibrated position. 0.73 $\pm .01 \mathrm{~V}$ into $1 \mathrm{k} \Omega$ in calibrated position.

Noise: 1 mA range, $<15 \mathrm{mV} \mathrm{ms}$ across 1 k m .
3 mA range, $<5 \mathrm{mV}$ ms across $1 \mathrm{k} \Omega$.
10 mA through 10 A ranges, $<2 \mathrm{mV}$ rms across $1 \mathrm{k} \Omega$.
Frequancy range: dc to 400 Hz ( 3 dB point).
AC rejectlon: signals above 5 Hz with p value $<$ full scale affect meter accuracy $<2 \%$ (except at 40 kHz carrier frequency and its harmonics). On the 10 A range, as $p$ value is limited to 4 A .
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 60 Hz , approx. 75 VA max.
Operating temperature range: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Storaga temperature: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Probe insulaton: 300 V maximum.
Probe tip size: approximately $1 / 2^{\prime \prime}$ by ${ }^{2} 1 / 32^{\prime \prime}$; aperture diameter $5 / 2^{\prime \prime}$ ".
Dimenslons: $71 / 2^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high, $141 / 2^{\prime \prime}$ deep ( $191 \times 292 \times$ 369 mm ) : rack mount: $19^{\prime \prime}$ wide, $6.31 / 32^{\prime \prime}$ high, $13^{\prime \prime}$ deep ( $483 \times$ $177 \times 330 \mathrm{~mm}$ ).
Waight: net $19 \mathrm{lbs}(8,6 \mathrm{~kg})$, shipping $24 \mathrm{lbs}(10,9 \mathrm{~kg})$ (cabinet); net $24 \mathrm{lbs}(10,8 \mathrm{~kg})$; sinipping $32 \mathrm{lbs}(14,4 \mathrm{~kg})$ (rack grount).
Price: HP 428B, (cabinet) $\$ 675$; HP 428 BR , (rack mount) $\$ 680$.

## Accessories Available

## 3529A Magnetometer Probe

The HP 3529A Magnetometer Probe is wiseful in applications where determination must be made of the direction or magnitude of a magnetic feld. It is useful in applications ranging from acoustical transducer design to investigations involving the Zeeman effeck. Conversion factor is $1: 1$, producing a reading on the 428 B in milliamperes which is directly equal to the measured field strength in milfigauss. Range is 1 milligauss to 10 gauss with the 4288. The bandwidth is de to 80 Hz , and accuracy is $\pm 3 \%$ of full scale when the probe is calibrated wish the instrument.
Price: HP 3529A, 595.


## 3529A Option C11 Magnetometer Probe

The 3529A Option C11 is a special magnetometer probe used to convert the Hewlett-Packard Model 428B DC Milliammeter into a direct reading magnetomecer ( $1 G=1 \mathrm{~mA}$ indication on the merer). The 3529A Option C11 Nagnetometer Probe is specifically designed to reeasure the relative magnetic field strength of individual bar magnets on twistor memory cards used in the Western Electric Electronic Switching System (NO. 1ESS). Refer to data sheet for further information.
Price: HP 3529A, Option CI1, \$270.

## Description

The Hewletr-Packard Model 427A is a portable, versatile, low cost multi-function meter which is valuable in any laboratory, production line, service department, or in the field. It is capable of measuring dc voltages from 100 mV to 1 kV full scale; ac voltage from 10 mV to 300 V full scale at frequencies up to 1 MHz ( $>500 \mathrm{MHz}$ wirt the 11096 A High Frequency Probe): and resistance from $10 \Omega$ to 10 Ma center scale.

The 427 A will operate continuously for more than 300 hours on its internal 22.5 V dry cell battery. AC line and battery operation is available as an option.

## Specifications

## DC voltmeter

Ranges: $\pm 100 \mathrm{mV}$ to $\pm 1000 \mathrm{~V}$ in 9 ranges in 10 dB steps.
Accuracy: $\pm 2 \%$ of range,
Input resistance: 10 M .
AC normal-mode rejection (ACNMR): ACNMR is the ratio of the normal-mode signal to the resultant error in readout. 50 Hz and above: $>80 \mathrm{~dB}$.
Overload protection: 1200 V dc .

## AC voltmeter

Ranges: 10 mV to 300 V in 10 ranges in 10 dB steps.
Frequency range: 10 Hz to 1 MHz .
Response: responds to average value, calibrated in rms.
Accuracy

Frequenoy	Range	
	0.01 V to 30 V	100 V to 300 V
10 Hz to 100 kHz	$2 \%$ of range	$2 \%$ of range

Input impedance: 10 mV to 1 V sange, $10 \mathrm{M} \Omega$ shunted by $<40 \mathrm{pF}$; 3 V to 300 V range, $10 \mathrm{M} \Omega$ shunted by $<20 \mathrm{pF}$.
Overload protection: 300 V ims momentarily, 1 V range and below; 425 V rms max. above 1 V range.
Ohmmeter
Ranges: $10 \Omega$ to $10 \mathrm{M} \Omega$ center scale in 7 decade ranges.
Accuracy (from 0.3 to 3 on scale): $\pm 5 \%$ of reading.
Source current (ohms terminal positive). Short circuit current: from 10 mA on the X10 range to $0.1 \mu \mathrm{~A}$ on the Xlo M range.
Open circuit voltage: from 0.1 V on the X 10 range to 1 V on the X 10 M range.

## General

Input: may be floated up to $\pm 500 \mathrm{~V}$ dc above chassis ground. Ohms inpur open in any function excepr ohms. Volts input open when instrument is off.
Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power: $>300-\mathrm{hr}$ operation per battery.
HP 427A: 22.5 V dry cell battery, Eveready No. 763 or RCA VS102. HP 427A Option 001: battery operation or ac line operation, selectable on rear panel. 115 V or $230 \mathrm{~V} \pm 20 \%$ 48 Hz to $440 \mathrm{~Hz}, 2$ VA max.
Dimensions (standard $1 / 3$ module); $51 / 3^{\prime \prime}$ wide, $63 / 4^{\prime \prime}$ high (without removable feet), $8^{\prime \prime}$ deep ( $130 \times 159 \times 203 \mathrm{~mm}$ ).
Weight: net, $5.3 \mathrm{lb}(2,4 \mathrm{~kg})$; shipping, $8 \mathrm{lb}(3,6 \mathrm{~kg})$.
Price (Includes battery): HP 427A, $\$ 295$.
HP 427A Option 001, add $\$ 25$.


## Accessorles available

HP 11096A High Frequency AC Probe extends range to $>500 \mathrm{MHz}$. With the 11096 A you can measure 0.25 to 30 V rms signals out to 500 MHz with better than $\pm 1$ dB accuracy. Usable relative measurements can be made up to 1 GHz ( 3 dB point at 700 MHz ). The 11096 A is a peak-responding detector calibrated to produce a dc outpur proportional to the rms value of a sine wave input. Input impedance is $4 \mathrm{M} \Omega$ shunted by 2 pF . Pilce: HP 11096A, $\$ 75$.
HP 11075 A High Impact Case. A rugged case for carrying. storing and operating the $427 \mathrm{~A}, \$ 60$.
HP 11001 A $45^{\prime \prime}$ test lead, dual banana plug to male BNC, $\$ 13$.
HP $11002 \mathrm{~A} 60^{\prime \prime}$ rest lead, dual banana plug to alligatoc clips, $\$ 10$.
HP $11003 \mathrm{~A} 60^{\prime \prime}$ test lead, dual banana plug to pencil probe and alligator clip, $\$ 10$.
HP 11039A 1000: 1 capacitive voltage divider, 25 kV max, $\$ 250$.
HP 10111 A BNC female to dual banana adapter, $\$ 10$

## MULTIFUNCTION VOLTMETER <br> All-purpose instrument measures to 700 MHz Model 410C



## Description

The HP Model 410 C is a versatile general purpose instrument for use anywhere electrical measurements are made. This one instrument measures dc voltages from is mV to 1500 V . direct current from $1.5 \mu \mathrm{~A}$ to 150 mA full scale, and resistance from $0.2 \Omega$ to $500 \mathrm{M} \Omega$. With a standard plug-in probe, ac roltages ar 20 Hz to 700 MHz from 50 mV to 300 V and comparative indications to 3 GHz are attainable.

## 410C Specifications

## DC voltmeter

Vottage ranges: $\pm 15 \mathrm{mV}$ to $\pm 1500 \mathrm{~V}$ full scale in 15 , 50 sequence ( 11 ranges).
Accuracy: $\pm 2 \%$ of full scale on any range.
Input resistance: $100 \mathrm{M} \Omega \pm 1 \%$ on 500 mV range and above. $10 \mathrm{M} \Omega \pm 3 \%$ on 150 mV range and below.

## AC voltmeter

Voltage ranges: 0.5 V to 300 V full scale in $0.5,1.5,5$ sequence ( 7 ranges).
Frequency range: 20 Hz to 700 MHz .
Accuracy: $\pm 3 \%$ of full scale at 400 Hz for sinusoidal voleages from 0.5 V to 300 V rms. The ac probe responds to the positive peak-above-average value of the applied signal. The meter is calibrated in sms.
Frequency response: $\pm 2 \%$ from 100 Hz to 50 MHz ( 400 Hz ref.) ; 0 to $-4 \%$ from 50 MHz to $100 \mathrm{MHz}: \pm 10 \%$ from 20 Hz to 100 Hz and from 100 MHz to 900 MHz .
input impedance: inpur capacitance 1.5 pF , input resistance $>10 \mathrm{M} \Omega$ at low frequencies. At high frequencies impedance drops off due to dielectric loss.

Safety; the probe body is grounded to chassis at all times for safery. All ac measurements are referenced to chassis.

## DC ammete:

Current ranges: $\pm 1.5 \mu \mathrm{~A}$ to $\pm 150 \mathrm{~mA}$ full scale in $1.5,5$ sequence (II ranges).
Accuracy: $\pm 3 \%$ of full scale on any range.
Input resistance: decreasing from $9 \mathrm{k} \Omega$ on $1.5 \mu \mathrm{~A}$ :ange to approximately $0.3 \Omega$ on the 150 mA range.
Speclal current ranges: $\pm 1.5, \pm 5$ and $\pm 15 n A$ may be measured on the 15,50 and 150 mV ranges using the dc voltmeter probe, with $\pm 5 \%$ accuracy and $10 \mathrm{M} \Omega$ input resistance.

## Ohmmeter

Resistance yange: resistance from $10 \Omega$ to $10 \mathrm{M} \Omega$ center scale ( 7 ranges).
Accuracy: Zero to midscale: $\pm 5 \%$ of reading or $\pm 2 \%$ of midscale, which ever is greater.
$\pm 7 \%$ from midscale to scale value of 2 .
$\pm 8 \%$ from scale value of 2 to 3 .
$\pm 9 \%$ from seale value of 310 s . $\pm 10 \%$ from scalc value of 5 to 10

## Ampiffier

Voltage gain: 100 maximum.
$A C$ rejection: 3 dB at 0.5 Hz ; approximately 66 dB at 50 Hz and higher frequeocies for signals $<1600 \mathrm{~V}$ p or 30 times full scale, whichever is smaller.
Isolation: impedance between common and chassis is $>10$ $\mathrm{M} \Omega$ in parallel with $0.1 \mu \mathrm{~F}$. Common may be floated up to 400 V de above chassis for dc and resistance measure. ments.
Output: proportional to meter indication; 1.5 V de at full scale, maximum current, 1 mA .
Output impedance: $<3 \Omega$ at dc.
Nolse: $<0.5 \%$ of fuil scale on any range ( $\mathrm{P} \cdot \mathrm{p}$ ).
DC drift: $<0.5 \%$ of full scale/yr at constant remperature; $<0.02 \%$ of full scale $/{ }^{\circ} \mathrm{C}$.
Overload recovery: recovers from 100:1 overload in <3 s.

## General

Maximum input: (see overload recovery) de: 100 V on 15,50 and 150 mV ranges, 500 V on 0.5 to 15 V ranges, 1600 V on higher ranges. ac: 100 times full scale or 450 Vp whichever is less.
Power: 115 V os $230 \mathrm{~V}=10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 26 \mathrm{VA}$ max. Dlmenslons: $S 1 / 3^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (withour removable feer), $11^{\prime \prime}$ deep ( $130 \times 159 \times 279 \mathrm{~mm}$ ) behind panei.
Weight: nee $8 \mathrm{lb}(4 \mathrm{~kg})$ : shipping $12 \mathrm{lb}(5,44 \mathrm{~kg})$.
Accessories furnished: detachable power cord, NEMA plug.
Accessorles available: see page 57.
Price: HP 410 C with HP 11036A. Derachable AC Probe, $\$ 585$. 410 C Option 002 (less ac probe).
$\$ 50$.

# RF VOLTMETER $20 \mu \mathrm{~V}$ sensitivity; 10 kHz to 1.2 GHz Model 3406A 

## Description

High frequency voltages can be measured easily with HP's 3406A Sampling Voltmeter. Employing incoherent sampling techniques, the HP 3406A has extremely wide bandwith ( 10 kHz to 1.2 GHz ) with high input impedance. Signals as small as $50 \mu \mathrm{~V}$ can be resolved on the sampling voltmeter's linear scale. Full scale sensitivity from I mV to 3 V is selected in eight 10 dB steps and may be read directly from -62 dBm to +23 dBm for power measurements. Accessory probe tips make the HP 3406A suitable for voltage measurements in many applications such as receivers, amplifiers and coaxial transmission lines.

Measurement indications can be retained on the 3406A meter by depressing a push-button located on the pen-type probe. This feature is useful when measurements are made in awkward positions where the operator cannot observe the meter indication and probe placements at the same time. Other features include a de recorder output and sample hold output for connection to oscilloscopes, and peak or true rms voltmeters if other than absolute average measurements are requised.

## Specifications

Voltage range: 1 mV to 3 V full scale in 8 ranges; decibels from -50 to $+20 \mathrm{dBm}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into 50 n$)$; average-responding instrument calibrated to rms value of sine wave.
Frequency range: 10 kHz to 1.2 GHz ; useful sensitivity from 1 kHz to beyond 2 GHz .
Full-scale accuracy (\%) with appropriate accessory (after probe is properly calibrated)

| 10 | 20 | 25 | 100 | 100 | 700 | 1 | 1.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| kHz | kHz | kHz | kHz | MHz | MHz | GHz | GHz |


$\pm 13$	$\pm 8$	$\pm 5$	$\pm 3$	$\pm 5$	$\pm 8$	$\pm 13$

Input impedance: input capacity and resistance will depend upon accessory tip used. 100,000 ! shunted by $<2.1 \mathrm{pF}$ at 100 kHz with bare probe: $<10 \mathrm{pF}$ with 11072 A isolator tip supplied.

## Sample hold output

Provides ac signal whose unclamped portion has stacistics that are narrowly distributed about the statistics of the input, inverted in sign (operating into $>200 \mathrm{k} \Omega$ load with $<1000$ pF ). Output is 0.316 V at f .5 . on any range.
Noise: $<175 \mu \mathrm{~V}$ rms referted to input.
Accuracy (after probe is properly callorated): 0.01 V range and above: same as full scale accuracy of instrument.
0.001 V to 0.003 V range: value of input signal can be computed by taking into account the residual noise of the instrument.
Jitter: meter indicates within $\pm 2 \% \mathrm{p}$ of reading $95 \%$ of time (as measured with HP 3400A True RMS Voltmeter).


RMS crest factor: 0.001 V to $0.3 \mathrm{~V}, 20 \mathrm{~dB} ; 1 \mathrm{~V}, 13 \mathrm{~dB}$; $3 \mathrm{~V}, 3 \mathrm{~dB}$.

## Meter

Meter scales: linear voltage, 0 to 1 and 0 to 3 ; decibel, -12 to +3 . Individually calibrated taut-band meter.
Response time: indicates within specified accuracy in $<3$ s.

Jitter: $\pm 1 \%$ peak (of reading).

## General

DC recorder output: adjustable from 0 to 1.2 mA into 1000 ohms at full scale, proportional to meter deflection.
Overload recovery time: meter indicates within specified ac. curacy in $<5 \mathrm{~s}$ ( 30 V p-p max.).
Maximum input: $\pm 100 \mathrm{~V} \mathrm{dc}, 30 \mathrm{~V}$ p-p.
RFI: conducted and radiated leakage limits are below those specified in MIL-6181D and MIL-1-16910C except for pulses emitted from probe. Spectral intensity of these pulses are nominally $50 \mathrm{nV} / \sqrt{\mathrm{Fz}}$; spectrum extends beyond 2 GHz .
Temperature range: instrument, $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$; probe, $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \% .48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 25 \mathrm{VA}$ $\max$.
Dimensions: $73 / 4^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (without removable feet), $11^{\prime \prime}$ deep ( $197 \times 159 \times 279 \mathrm{~mm}$ ); $1 / 2$ module.
Weight: net $12 \mathrm{lbs}(5,4 \mathrm{~kg}$ ): shipping $15 \mathrm{lbs}(6,8 \mathrm{~kg})$.
Accessaries: refer to data sheet.
Price: HP 3406A, $\$ 850$.


Specifications

HP Model	403A	403 B	4088 Optlon 001
Range	0.001 to 300 V rms full scale, 12 ranges, in a $1,3,10$ sequence. - 80 dB to +50 dB in 12 ranges with 10 dB steps.		
Meter	responds to average vaiue of input waveform, calibrated in the rms value of a sine wave.		
Frequency range	1 Hz to 1 MHz	5 Hz to 2 MHz	5 Hz to 2 MHz
Accuracy	within $=3 \%$ of lull scale, 5 Hz to 500 kHz ;   within $\pm 5 \%$ of ruill scale, 1 to 5 Hz and   500 kHz to I MHz	within $\pm 2 \%$ ol full scale from 10 Hz (0) 1 MHz ; within $=5 \%$ of full scale from 5 to 10  	within $=0.2 \mathrm{~dB}$ of full scale from 10 Hz to 1 MHz : within $\pm 0.4 \mathrm{~d} 8$ of full scale from 5 1010 Hz and 1 to 2 MHz , except $\pm 0.8 \mathrm{~dB}$ 102 MHz on he $300 \vee$ range $\left(01050^{\circ} \mathrm{C}\right)^{*}$
Input impedance	2 MS shunted by $<60 \mathrm{pF}, 0.001$ to 0.1 V canges; 2 Ma shunted by $<25 \mathrm{pF}$ on 0.3 to 300 V ranges	$2 \mathrm{M} \Omega$; shunted by $<60 \mathrm{pF}: 0.001100 .03 \mathrm{~V}$ ranges; <30 pF, 0.1 10 300 V ranges	same as 4038
Maximum input	$600 \mathrm{Vp}, 0.3 \mathrm{~V}$ and higher ranges; 25 V rms or 600 V p on 0.1 V and lower ranges (fused).	$\begin{aligned} & \text { Fuse protected (signal ground can be } \pm 500 \\ & \forall d e \text { from chassis). } \end{aligned}$	same as 4038
Power	5 standard radio-type mercury cells. Battery life approx, 400 hours	4 rechargatle batteries, 40 hr operstion per recharge, up to 500 recharging cycles; self-contained recharging circuit functions during operation from ac line	same as 4038
Dimensions	$81 / /^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $63 / \mathbf{a}^{\prime \prime}$ deधp ( $210 \times 140 \times$ 162 mm )	$51 / 8^{\prime \prime}$ wide, $62 /{ }^{\prime \prime}$ "high (without removable leet), $8^{\prime \prime}$ deep ( $130 \times 159 \times 203 \mathrm{~mm}$ )	same as 403B
Weight	net 43/4 lbs (2,1 kg); shipping 8 lbs ( $3,6 \mathrm{~kg}$ )	net $61 / 2 \mathrm{lbs}(2,9 \mathrm{~kg})$; shipping $8 \mathrm{lbs}(3,6 \mathrm{~kg})$	s8me as 4038
Price	\$380	\$350	\$375

${ }^{*}$ Use 10001A $10: 1$ olvider and 101110 Adapter to retain $=5 \%(=0,4$ d8) accuracy whle measuring up to 425 V ms at 1 to 2 MHz .


4000

## Description

Model 400 D is a precision voltmeter offering wide voltage range, $2 \%$ accuracy, and the broad frequency coverage of 10 Hz to $\& \mathrm{MHz}$.

Model 400 H is similar to Model 400 D , having individual meter-face calibration and $1 \%$ on an extra large $5 "$ mirror. scale meter.

Other features common to these two voltmeters include $10 \mathrm{M} \Omega$ input impedance, overload protection to 600 V , and

output circuitry permitting the voltmeters to be used as broadband, high gain amplifiers throughout their frequency range.

## Special dB-measuring options

As normally supplied, Models 400 D and 400 H read direct in volts and dB , with the voltage scale uppermost. For greater resolution in dB measuring, these instruments are available as Models 400D Option 001, and 400H Option 001 with the $d B$ meter scale uppermost.

Specifications

	400D,DR	400H,HR
Voltage range:	1.0 mV to 300 V full scale, 12 ranges	1.0 mV to 300 V full scale, 12 ranges
Frequency range:	10 Hz to 4 MHz	
Accuracy:	$\begin{aligned} & 10 \mathrm{~Hz} \text { lo } 20 \mathrm{Hz:}=10 \% \text { 4.s. } \\ & 20 \mathrm{~Hz} \text { to } 1 \mathrm{MHz:}=2 \% \mathrm{f.s.} \\ & 1 \mathrm{MHz} 2 \mathrm{MHz}: \pm 30 \% \mathrm{i} . \mathrm{s} . \\ & 2 \mathrm{MHz} \text { to } 4 \mathrm{MHz}: \pm 30 \% \text { i.s. } \end{aligned}$	10 Hz to $20 \mathrm{~Hz}:=10 \%$ f.s. 20 Hz to $50 \mathrm{~Hz}:=2 \% \mathrm{f} . \mathrm{s}$. 50 Hz to $500 \mathrm{kHz}:=1 \% \mathrm{l}$ I.s. 500 KHz to $1 \mathrm{MHz}: \pm 2 \%$ f.s. 1 MHz to $2 \mathrm{MHz}:=3 \% \mathrm{I} .5$. 2 MHz to $4 \mathrm{MHz}:=10 \% \mathrm{f} . \mathrm{s}$.
Calibration:	reads rms value to sine wave; voltage indication proportional to average value of applied wave; linear voltage scale 0 to 3 and 0 to 1; dB scale $-12 \mathrm{ta}+2 \mathrm{~dB}(0 \mathrm{~dB}=1 \mathrm{~mW}$ in 600 n$)$; 10 dB interval between ranges	
Input impedance:	10 Ma 2 shunted by $<20 \mathrm{pf}$ on ranges 1 to $300 \mathrm{~V} ;<35 \mathrm{pF}$ on ranges 0.001 to 0.3 V	
Amplifier:	output 0.15 V max.; output impedance 50ヶ\%; max. gain 150 on 0.001 range	
Power:	115 or (230 V must be specified) $=10 \%, 48$ to $440 \mathrm{~Hz} ; 80$ VA max.	
Dimensions:	cabinet mount: $71 / 2^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high, $12^{\prime \prime}$ deep ( $191 \times 292 \times 305 \mathrm{~mm}$ ). rack mount: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $10 \% / \mathrm{s}^{\prime \prime}$ deep behind panel ( $483 \times 389 \times 276 \mathrm{~mm}$ )	
Weight:	net $18 \mathrm{lbs}(8.1 \mathrm{~kg})$, shipping $20 \mathrm{los}(9,0 \mathrm{~kg})$ (cabinet mount); net $21 \mathrm{lbs}(9,45 \mathrm{~kg}$, shipping $32 \mathrm{lbs}(14.4 \mathrm{~kg})$ (rack mount)	
Price:	HP 4000, cabinet, $\$ 385$ HP 4000R, rack mount, $\$ 390$ Option O01, dB scale uppermos, add $\$ 25$.	HP 400 H, cabinet, $\$ 395$ HP 400 HR , cack mount, $\$ 400$ Option 00 dB , $\$ \mathrm{dcale}$ uppermosl, add $\$ 25$.

## AC VOLTMETERS

10 Hz to $10 \mathrm{MHz}, 100 \mu \mathrm{~V}$ to 1 kV
Models 400E,EL,F,FL,GL


400E


400FL


400GL

Specifications

	400E	403F	400al
Vollage Range	1 mV 10300 V F.S. 12 ranges	$100 \mu \vee$ to 300 V F.S. 14 ranges	$100 \mu \mathrm{~V}$ to 1 kV F.S. 8 rangss
Frequency Range	10 Hz to 10 MHz	$20 \mathrm{~Hz}-4 \mathrm{MHz}$	$20 \mathrm{~Hz}-4 \mathrm{MHz}$
Input impedance	10 Mr on all ranges   $<25 \mathrm{pf}$ to $<12 \mathrm{pF}$ depending on ranges	10 Mn on all ranges   $<25 \mathrm{pF}$ to $<10 \mathrm{pF}$ depending on ranges	10 Mn on all ranges   $<30 \mathrm{pF}$ to $<15 \mathrm{pF}$ depending on ranges
Recovery	$<25$ for 80 dB overload		
Overload	$300 \vee$ max, input		$1200 \vee$ max. mput
Calibration	Scale -10 to $+2 \mathrm{~dB}, 10 \mathrm{~dB}$ between ranges, 100 divisions on 0 to L scale		linear dB scala, 100 divisions from - 20 to 0 dB . Log voltage scale $0 \mathrm{~dB}=1 \mathrm{~V}$
Weight	Nel 6 lbs ( $2,7 \mathrm{~kg}$ ) ; Shipping 9 lbs ( $4,1 \mathrm{~kg}$ )		
Dimensions	51/e" wide, 6\%/" high (without removable feet), 11" deep ( $130 \times 159 \times 279 \mathrm{~mm}$ )		
Power	AC: 115 or $230 \mathrm{~V}=10 \%$, 48 to $440 \mathrm{~Hz}, 6 \mathrm{VA}$ max.   DC: External Batteries: + and - voltages between 35 V and 55 V		
Prica	\$345 (400EL; \$355)	\$330 (400FL: \$340)	\$350

NOTE: 400EL same as $400 E$ and 400 FL same as 400f, except for callbration. Lineap of scale -10 dB to +2 ob. 10 d8 between ranges. Log voltage scales 0.3 to 1 and 0,8 to 3,120 oivisions from -10 to +2 d8.


## Description

The Hewlett-Packard Model 3400 A is a true root-mean. square ( (ms) voltmeter, providing a meter indication proportional to the dc heating power of the input waveform. In addition to its meter indication, the Model 3400A provides a dc output proportional to meter deflection making it a useful true roms detector for graphic recording and digitizing with a de digital voltmeter, such as the HP Model 3440A.

## Versatility

Versatility of the Model 3400A is enhanced by its wide $10-\mathrm{Hz}$ to $10 \cdot \mathrm{MHz}$ frequency response, high crest factor, $1-\mathrm{mV}$ to 300 . Volt full-scale sensitivity and $10 . \mathrm{M}$ ก input impedance. Six-decade frequency coverage makes the 3400 A extremely flexible foc all audio and most of measurements and permits the measurement of broadband noise and fastrise pulse. A wide range of sensitivity ( 12 ranges) allows measurement of anything from "down in the grass" signal and noise, to transmitter and amplifier outputs (with $30 \cdot \mathrm{~dB}$ overload protection). Pulses or other non-sinusoids with crest factors (ratio of peak to rms) up to 10:1 can be measured full scale. Crest factor is inversely proportional to meter dellection, permitring up to 100:1 crest factor at $10 \%$ of full scale. The ability of the 3400 A to accept waveforms with such large crest factors insures accurate noise and pulse measurements without the need for correction factors. Permanent plots of measured data and higher resolution measurements can be obtained by connecting an X.Y plotter, strip chart recorder or digital voltmeter to the convenient rear-panel de output. The de output provides a linear 0 to 1 -volt drive proportional to meter defection.

## RMS current

True-rms current measurements can be made conveniently by using the HP Model 456A Current Probe with the Model 3400A. See page 57.

## Specifications

Voltage range: 1 mV to 300 V full scale, 12 ranges.
DE range: -72 to $+52 \mathrm{dBm}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $600 \Omega$ ). Frequency range: 10 Hz to 10 MHz .
Response: responds to rms value (heating value) of the input signal for all waveforms.
Meter accuracy: $\%$ of full scale ( $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ )*

10 Hz	50 Hz	1 MHz	2 MHz	10
=5\%	$\pm 1 \%$	=2\%	= $3 \%$	= $5 \%$

Ac.to-de converter securacy: \% of full scale ( $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ )*

Crest factor: (ratio of peak to ims amplitude of input signal): 10 to 1 at full scale (except where limited by maxi-

[^5]
mum input) inversely proportional to meter deflection, (e.g., 20 to 1 at half-scale, 100 to 1 at tenth scale).

Maximum contlinuous input voltage: 500 V ac peak at 1 kHz on all ranges; 600 V dc on all ranges.
Ingut impedance: from 0.001 V to 0.3 V sange: $10 \mathrm{M} \Omega$ shunted by $<50 \mathrm{pF}$. From 1.0 V to 300 V range: $10 \mathrm{M} \Omega$ shunted by $<20 \mathrm{pF}$, ac-coupled input.
Response time: for a step function, $<5$ s to final value.
AC overload: 30 dB above full scale or 800 V P , whichever is less, on each range.
Output: negative 1 V de into open circuit at full-seale deflection, proportional to meter deflection from $10-100 \%$ of full scale. 1 mA maximum; nominal source impedance is $1000 \Omega$. Output noise $<1 \mathrm{mV}$ rms.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 48$ to $440 \mathrm{~Hz}, 12$ VA max.
Dimenslons: $51 / 8^{\prime \prime}$ wide, $61 / 4^{\prime \prime}$ high (without removable feet $), 11^{\prime \prime}$ deep ( $1 / 3$ module). ( $130 \times 159 \times 279 \mathrm{~mm}$ ).
Weight: net: $71 / 4 \mathrm{lbs}(3,3 \mathrm{~kg})$; shipping: $10 \mathrm{lbs}(4,5 \mathrm{~kg})$.
Accessories furnished: 10110A Adapter, BNC to dual banana jack.
Accessorles available: 11001 A Cable, 45 in . Jong, male BNC to dual banana plug, $\$ 13.0010503 \mathrm{~A}$ Cable, 4 ft . long, male BNC connectors, $\$ 13.00 .11002 \mathrm{~A}$ Test Lead, dual banana plug to alligator clips, $\$ 10.00 .11003$ A Test Leads, dual banana plug to probe and alligator clip, $\$ 10.11076 \mathrm{~A}$ Carrying Case, $\$ 60$. HP Model 456A AC Current Probe, $1 \mathrm{mV} / 1 \mathrm{~mA}, \$ 300$.
Price: HP $3400 \mathrm{~A}, \$ 600$.
HP Model 3400 A option 001 spreads out the $d B$ scale by making it the top scale of the meter, add $\$ 25$.
Rear terminals in parallel with front panel terminals and linear $\log$ seale uppermost on the meter face are avail. able on special order.

## LOGARITHMIC VOLTMETERS <br> Convert ac or de signals to logarithmic scaling Models 7562A and 7563A



The Model 7562 A is a wide range ( 80 dB ), single channel logarithmic voltmeter/converter designed to produce de output volt. ages in a logarithmic relationship to dc input voltages or the true RMS value of an ac input voltage. The 7562 A contains a true RMS detector which, inherently, is not dependent on pure sinusoidal sig. nals to achieve measurement accuracy. A self.coneained meter calibrated in rolts and $d B$ makes the 7562 A an accurace volemerer. A constant amplitude oscilloscope output makes the converter compatible with a variety of oscilloscope readous and phase meter ap. plications.

## Pertormance specificatlons

## Ac and de modes

Input:
Dynamíc range: 80 dB .
Voltage range: i mV to 10 V or 10 mV to 100 V selecrable by fron: panel switch. Accepts either ac or positive signals.
Output:
Voltage: 0 to 800 mV de corresponding to $10 \mathrm{mV} / \mathrm{dB}$.
Output impedance: 100 ohms.
De mode
Accuracy: $\pm 0.25 \mathrm{~dB}$ at $25^{\circ} \mathrm{C}$.
Input impedance: 100 kR , shunred by less tban 100 pF : single ended.
Temperature coetficient: $\pm 0.02 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ maximum.
Zero stablity: $\pm 0.25 \mathrm{~dB}$.
Ac mode
Ingut impedance: I $\mathrm{M} \Omega$, shunted by less than 100 pF ; single ended.
Accuracy and frequency response: (ac $25^{\circ} \mathrm{C}$ ).


Temperature coefficient: $\pm 0.04 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ maximum. Slewing speed:

Range setring	Minimum slewing speed
0.5 Hz	$1 \mathrm{~dB} / \mathrm{s}$
5 Hz	$10 \mathrm{~dB} / \mathrm{s}$
so Hz	$60 \mathrm{~dB} / \mathrm{s}$

Oscllioscope output: approx. 0.5 V rms regardless of inpus.
Crast factor: 3:1 unless limited by max. input voltage.

## General specifications

Maximum peak Input voltage: $\pm 25 \mathrm{~V}$ on 1 mV to 10 V range; $\pm 250 \mathrm{~V}$ on 10 mV to 100 V range.
Operating temperature: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Warm-up time: 20 minutes nominal.
Connectors: front and rear-inpur and oupput-BNC connectors.
Power requlrements: $115 / 230 \mathrm{Vac}, 50$ to $400 \mathrm{~Hz}, 40 \mathrm{VA}$.
Dimenslons; $3.7 / 16^{\prime \prime}$ high, $73 / 4^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ deep ( $88 \times 197$ $\times 292 \mathrm{~mm}$ ).
Weight: net, $8 \mathrm{lb}(3,6 \mathrm{~kg})$; shipping, $12 \mathrm{ib}(5,4 \mathrm{~kg})$,
Price: Model 7562A $\$ 1095$.

Log Voltmeter/Amplifier Model 7563A


The Model 7563A Logarithmic Volmeter/Amplifer is a low cost, single channel, do logarithmic amplifier with a very high dynamic range ( 110 dB ) designed to produce a logarithmic-related dc output voltage for a very wide range of dc input voltages. A single input range of $316 \mu \mathrm{~V}$ to 100 V is coupled with an input polarity stritch for ease and versatility of operation. A high ( 100 K 2 ) input impedance and low (less than $5 \Omega$ ) output impedance allows the 7563 A to be used in systems or on the bench. A front panel meter calibrated in dB and mV provides instantaneous visual indication of operating levels, Applications include: log scaling of recorder axes, pulse height analyzers, scope displays. and almost any circurostance where $\log$ compression of de voltage ranges is required. The 7563A is an accurace volmeter. Dual or single rack mounting capability is afforded by a field installable rack mounting adaper, utilizing a minimum of rack space.

## Specifications

Performance specifications
input
Dynamic range: 110 dB .
Voltage range: $316 \mu \mathrm{~V}$ to 100 V . Accepts either posirive or negative signals, selecrable by Front panel switch.
Output
Voltage: 0 to 1.1 V de corresponding to $10 \mathrm{mV} / \mathrm{db}$. Rear Terminals; adjusiable 1 to $10 \mathrm{mv} / \mathrm{dB}$.
Output Impedance: less than $5 \Omega$ froat panel, $300 \Omega$ rear.
Meter accuracy; reading accurate to $\pm 1.5 \mathrm{~dB}$, referred to output.
input impedance: $100 \mathrm{k} \Omega$, shunked by less than 100 pF ; single ended.
Accuracy: (at $25^{3} \mathrm{C}$ ).

$316 \mu \mathrm{~V}$		1 mV	10 V	
	$\pm 0.5 \mathrm{~dB}$	$\pm 0.23 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$

Temperature coefficient: $\pm 0.02 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ maximum and $\pm 3$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ referred to input.
Zero stability: $\pm 0.25 \mathrm{~dB}$ ac constant temperature.
Rise time:

Maxpmurt Rhe Tlme	
8 Imnal Levol	I mV -10 V Ranpe
$316 \mu \mathrm{~V}-1 \mathrm{mV}$	$2000 \mu \mathrm{~s}$
$1 \mathrm{mV}-10 \mathrm{mV}$	$400 \mu \mathrm{~s}$
$10 \mathrm{mV}-100 \mathrm{mV}$	$40 \mu \mathrm{~s}$
$100 \mathrm{mV}-1 \mathrm{~V}$	$4 \mu \mathrm{~s}$
$\mathrm{VV}-100 \mathrm{~V}$	$2 \mu \mathrm{~s}$

General speciflcations
Operating tamperatura: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Warm-up time: 20 minutes nominal.
Connectors: front and rear-input and output-BNC connectors.
Power requirements: $115 / 230 \mathrm{~V} \mathrm{ac}$, 50 to 400 Hz .40 VA .
Dimenstons: $3.7 / 16^{\prime \prime}$ high, $73 / 4^{\prime \prime}$ wide, $1112^{\prime \prime}$ deep ( $88 \times 197$ $x 292 \mathrm{~mm}$ ).
Weight: net, $8 \mathrm{lb}(3,6 \mathrm{~kg})$; shipping, $12 \mathrm{lb}(5.4 \mathrm{~kg})$.
Price: Madel 7563A $\$ 795$.


## 456A AC Current Probe

The conventional voltmeter or oscilloscope can measure current quickly and dependably-without direct connection to the circuit under test or any appreciable loading to the test circuit. The HP 456A AC Cursent Probe clamps around the cursent-carrying wire and provides a voltage outpur you can read on a voltmeter or scope. Model 456A's 1 mA to 1 mV conversion permits direct reading up to one ampere rms.

## Specifications, 456A

Sensitivity: $1 \mathrm{mV} / \mathrm{mA} \pm 1 \%$ at 1 kHz .
Frequency response: $\pm 2 \%, 100 \mathrm{~Hz}$ to $3 \mathrm{MHz}: \pm 5 \%, 60 \mathrm{~Hz}$ to $4 \mathrm{MHz} ;-3 \mathrm{~dB}$ at $<25 \mathrm{~Hz}$ and $>20 \mathrm{MHz}$.
Pulse response: sise time is $<20 \mathrm{~ns}$, sag $<16 \% / \mathrm{ms}$.
Maximum input: 1 A mms, 1.5 A p; 100 mA above 5 MHz .
Effect of de current: no appreciable effect on sensitivity and distortion from de current up to 0.5 A .
Input impedance: (impedance added in series with measured wire by probe) $<50 \mathrm{~m} \Omega$ in series with $0.05 \mu \mathrm{H}$ (this is approximately the inductance of $11 / 2^{\prime \prime}$ of hookup wire).
Probe shunt capacity: approx. 4 pF added from wire to ground.
Distortion at 1 kHz : for 0.5 A inpur ar least 50 dB down; for 10 mA inpur at least 70 dB down.
Equivalent input noise: $<50 \mu \mathrm{~A}$ rms ( $100 \mu \mathrm{~A}$ when ac powered).
Output Impedance: $220 \Omega$ at 1 kHz ; approximately +1 V dc component; should work into load of not less than $100,000 \Omega$ shunted by approximately 25 pF .
Power: two Mallory TR 233 R and one TR 234 batteries ( 1420 . 0005 and 1420-0006): battery life approximately 400 hrs ; ac power supply optional, 115 or ( 230 V must be specified) $\pm 10 \%$, 50 to $400 \mathrm{~Hz}, 1 \mathrm{~W}$.
Dimensions: 5" wide, $11 / 2^{\prime \prime}$ high, $6^{\prime \prime}$ deep ( $127 \times 38 \times 152$ mm ) : probe cable is $5^{\prime}$ iong; $2^{\prime}$ outpur cable rerminated with dual banana plug. Probe aperture: $5 / 32^{\prime \prime}$ ( 4 mm ) diamerer.
Weight: net, $2 \mathrm{lbs} 4 \mathrm{oz}(1 \mathrm{~kg})$; shipping, $3 \mathrm{lbs} 1002(1,6 \mathrm{~kg})$.
Accessory available: 456A-11A AC Supply for feld instalia. tion; 11028A 100:1 Current Divider, $\$ 60$.
Price: HP 456A with batteries, $\$ 300$.
Option 001: ac supply instalied in lieu of batteries, add $\$ 20$.


## 11096A High Frequency Probe

Converts de voltmeter with $10 \mathrm{M} \Omega$ input resistance to high frequency ac volmeter. Compatible voltmeters: HP 427 A , HP $3469 \mathrm{~B}, \mathrm{HP} 3470 \mathrm{~A}$, and HP 3440 A . Voltage range, 0.25 to 30 V rms: transfer accuracy $\left(20.30^{\circ} \mathrm{C}\right)=5 \%, 100 \mathrm{kHz}$ to 100 MHz . U'sable for relative measurements from 1 kHz to 1 GHz ; peak responding, calibrated to read rms value of a sine wave; input impedance, 4 M ? shunted by 2 pF ; max. input, 30 V rms ac, 200 V dc; accessories provided include a straight tip, a hook rip, a ground clip, and a high frequency adapter thar fits available HP adapters for BNC (HP 10218A) ; GR Type 874 (HP 10219A), Microdor connectors (HP 10220A) and chat also fits a s0n tee (HP 11536A). Price: HP 11096A, $\$ 75$.

## 11074A Voltage Divider Probe

For 400 series voltmeters. Provides low-input capacitance and high-input resistance at the point of measurement. Division ratio $10: 1 \pm 2 \%$ ( 400 Hz reference), $10: 1 \pm 2 \%$ ( 100 kHz reference depends on adjustment of compensaring capacitor). Bandwidth, de to 10 MHz . Maximum input voltage 1 kV rms.

Input impedance: $10 \mathrm{M} \Omega$ shunted by 10 pF (when connected to an input impedance of $10 \mathrm{M} \Omega$ shunted by not more than $25 \mathrm{pF})$. Price: HP 11074A, $\$ 75$.

## 11043A Probe Coaxial "N" Connector

For 410 series voltmeters. Measures at open end of 508 transmission line (no terminating resistor). Has male Type N fittings. Price: HP I1043A, \$45.

## 11045A DC Voltage Divider

For 410 C Volometer. Gives maximum safety and convenience for measuring high voltages as in television receivers, etc. Accuracy, $\pm 5 \%$; division ratio, 100:1. Input impedance, 10 $\mathrm{G} \Omega$. Maximum voltage, 30 kV . Max current drain, $2.5 \mu \mathrm{~A}$. HP 11045A, \$60.

## 11042A Probe Coaxial "T" Connector

For 410 series voltmeters. Measures voltages between center conductor and sheath of $50 \Omega$ transmission line. Maximum SWR, 1.1 at $500 \mathrm{MHz}, 1.2$ at 1 GHz . Male and female Type N fitings. Price: HP 11042A, $\$ 60$.

## LOW AND MEDIUM FREQUENCIES

## Impedance/Z/ $\Theta, C, R, L, D \& Q$

Hewlert-Packard's family of imped. ance measurement instruments combine the familiar aull measurement techniques with digital logic and feedback circuits, to achieve simple and rapid operation without a sacrifce in precision. The basic specifications for HewlettPackard's impedance family is summarized in table 1. Frequency, Q, capacitance, inductance, resistance and basic accuracy can be traded off to select the most suitable instrument. For some instruments, capacitance and inductance are not the principal paramerers but are secondary to the primary readout.

## Impedance considerations

There are two basic types of imped. ance measuring instruments: bridge instruments and meters. In general, bridge rype instruments have the best accuracy specifications. This type of instrument has found wide application and is the basis for the HP 4260A/4265A Univer. sal Bridge, 4270 A Automatic Capacitance Bridge, and 250B RX Meter.

In the past, bridge instruments have required considerable operator skill to obtain consistent results. However, the Liniversal Bridge was specifically designed to achieve rapid and consistent audio frequency measurements.

The evolution of bridge measurements has created the need for completely auto. matic instruments to rapidly characterize multi-conductor cables, variable capacitor diodes, and discrete capacitors. To satisfy these customer requirements, the 4270 A Auromatic Capacitance Bridge was developed. This instrument is com. pletely programmable and displays ca. pacitance and dissipation/conductance in digital form. BCD oulputs are available for remote processing.

Impedance meters, in general, utilize constance current/voltage sources to excite the unknown impedance. Amplitude and phase sensitive voltmeters detect the real and reactive voltage/current components of the uaknown. The display for most impedance meters is an analog meter. Although impedance meters do not have the accuracy of bridge instruments, they are less expensive and very easy to use. The 4350A High Capaci. tance Meter, 4800A Vector Impedance Meter, and the 4332A LCR Meter utilize this principal. Impedance meters have analog outpurs proportional to the displayed function. This signal may be used with the 4050A Analog Comparator to select components on a High/Go/Low basis.

The new 4271A LCR Meter utilizes a combination of bridge and digital voltmeter techniques, to enable it to measure micro-circuit parameters.

## Summary

To help you select an impedance meter suitable to your needs, the follow. ing guidelines may be used:
(1) For a desired accuracy and cost range, select the instrument with the broadest capability in C, L, R \& Q. (2) Bridge instruments will provide the best accuracies ( $1 \%$ to $1 \%$ ). However, only the higher priced bridges offer the speed and convenience in measurement available in meter type instruments, (3) The best value, where parts selection is desixed, is a meter instrument where an analog signal is available for use with an analog comparator. (4) To obcain meaningful results, a parts user should make measurements at the same frequency specified by the manufacturer. (5) Hewlett-Packard's impedance instruments have been used in numerous diverse applications, from the measurement of the dielectric constant of liquids, to the wing to fuselage continuity on aircraft. If you have an unusual application or need assistance, contact your nearest Hewlett-Packard sales office for application information.

TABLE 1. HP IMPEDANCE METERS


## MILLIOHMMETER Convenient two probe measurements Model 4328A



## Description

The HP 4328 A Milliohmmerer is a portable instrument for measurement of low resistances. It uses a Kelvin Bridge method to obtain its high sensitivity but has incocporated both the current and voltage drives into one probe, so that only two probes are needed in the actual measurement.

The range of the 4328 A extends from 100 ohms to one milliohm full scale. Maximum sensitivity is 20 microhms, making it ideal for measuring the contact resistance of switches, relays, and connectors.

A unique phase discriminator in the meter circuit permits accurate resistive measurements on samples with a series reactance up to twice full scale resistance.

The milliohmmeter is internally driven by a one kilohertz signal. With an ac drive signal, do bias up to 150 volts can be superimposed without affecting the accuracy of the measurement. Hence, the 4328 A can make dynamic resistance measurements in back-biased diodes.

Maximum voltage across any sample with the proper range selection is less than 200 microvolts peak. In case of incorrect range setting, a maximum voltage of 20 millivolts peak will never be exceeded, so that explosive devices such as fuses and squibs can be safely checked.

The basic 4328A is line operated. With Option 001, it can be operated from four rechargeable batteries for 15 continuous hours. A recorder output provides an output proportional to the meter deflection.

## Specifications

Range: 0.001 to 100 obms full scale in a $1,3,10$ sequence. Accuracy: $\pm 2 \%$ of full scale. No additional error is caused by series reactance of samples up to two times full scale.

Measuring trequency: $1000 \mathrm{~Hz} \pm 100 \mathrm{~Hz}$.
Voltage across sample: $200 \mu \mathrm{~V}$ peak at full scale.
Maxlmum voltage across sample: 20 mV peak in any case.
Superimposed dc: 150 V do maximum may be superimposed on samples from an external source.

Recorder output: 0.1 V de output at full scale meter deflection.

Range (ohms)	Appliad Current (mA)	Maximum Dissipatlon [is Samples ( $\mu \mathbf{W}$ )
0.091	150	23
0.003	50	8
0.01	15	2.3
0.03	5	0.8
0.1	1.5	0.23
0.3	0.5	0.08
1	0.15	0.023
3	0.05	0.008
10	0.015	0.0023
30	0.005	0.0008
100	0.0015	0,00023

## General

Power requirements: $115 / 230 \mathrm{~V}$ switch $\pm 10 \%$, 50 to 60 $\mathrm{Hz}, 1.5 \mathrm{~W}$.

Weight: $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Dimensions: $51 / 8^{\prime \prime}$ wide, $6.3 / 32^{\prime \prime}$ high, $11^{\prime \prime}$ deep.
Accessories furnished: Model 16005A Probe, 16006A Probe and 16007A Test Leads. Detachable Power Cord.

Price: HP 4328A, \$620.
Option 001: rechargeable battery operation, add \$33.

## RESISTANCE METER

Wide range for high resistance, low current Model 4329A


The HP 4329A is a solid-5tate insulation resistance meter designed for easy, accurate and direct readings of the very high resistance
values cypically found in synthetic resins, porcelain, insulating oils and similar materials. It is also useful for measurements in electrical componens like capacitors, tansformers, switches and cables. Seven fully regulated de test voltages (between 10 and 1000 V ) are provided as test sources.

Seiected scales are identified by illuminated indicators on the meter face. Selected resistance or curcene multiplying factors are also illuminated for rapid, error-free measurement. Three resistance scales and one current scale are provided. The HP 4329A is instantly convertible from ungrounded. to grounded-sample operation via a simple reloca. tion of the frome panel ground strap from "guard" to "'" position. The instrument cabinet itself is aln'ays at ground potential. Test voltage shorts or sample breakdown currents will nor damage instrument circuitry.

The HP 4329A also has a current mersurement capability. Minute currents as low as 0.05 pA can be readily measured. The standard instrument package includes HP 16117A Low Noise Test Leads: these are used in most types of measurement. An HP 16008 A resis. tivity cell is also available for use with the high resistance meter, for those customers engaged in measurement of volume and surface resistivity of sheet samples.

## Specifications

Resistance measurement:
Range: $500 \mathrm{k} \Omega$ to $2 \times 10^{20} \Omega$.

Test voltape	10 V	25 V	50 V	100 V	250 V	500 V	1000 V
Avaliable resistance readings	$\begin{gathered} 5 \times 10^{5} \Omega \\ 102 \times 10^{4} \Omega \end{gathered}$	$\begin{aligned} & 1.25 \times 10^{6} \Omega \\ & 105 \times 10^{14} \Omega \end{aligned}$	$\begin{aligned} & 2.5 \times 10^{6} \Omega \\ & \text { to } 1 \times 10^{15} \Omega \end{aligned}$	$\begin{array}{r} 5 \times 10^{8} \Omega \\ \text { to } 2 \times 10^{15} \Omega \end{array}$	$\begin{aligned} & 1.25 \times 10^{7} \Omega \\ & \text { to } 5 \times 10^{15} \Omega \end{aligned}$	$\begin{aligned} & 2.5 \times 10^{7} \Omega \\ & \text { to } 1 \times 10^{18} \Omega \end{aligned}$	$\begin{aligned} & 5 \times 10^{19} \\ & 102 \times 10^{159} \end{aligned}$
Metor saale	. 5 to 20	.13105	. 25 to 10	. 51020	.13105	. 25 to 10	. 5 to 20
Upper Imall	5	1.25	2.5	5	1.25	2.5	5

Accuracy: total accuracy is determined by test voltage and range used. At low resistance end of each scale accuracy is $43 \%$; near center scale $\pm 5 \%$, and near the specified upper limit on the meter seale (see rable above) accuracy is $\pm 10 \%$. Above these limits accuracy is not specified. On all voltage ranges, if multiplier is set to Rmax, an additional $\pm 3 \%$ is included.

## Current measurement

Range: $0.5 \times 10^{-13}$ to $2 \times 10^{-85} \mathrm{~A}$ in 8 ranges.
Meter scale: 0 to 20 in 40 linear divisions.
Input resistance: $10^{\circ}$ to $10^{4} \Omega \pm 1 \%$, depending on range.

Accuracy: $\pm 5 \%$ of foll scale deflection (there an be an additional $\pm 3 \%$ error at the lop decade).

## General

Recorder output: 0 to 100 mV dc, proportional to meter deflection; $1 \mathrm{k} \Omega$ outpur resistance.
Power: $114 / 230 \mathrm{~V} \pm 10 \%, 50.60 \mathrm{~Hz}, 3 \mathrm{~W}$.
Dimensions: $61 / 2^{\prime \prime}$ high ( 166 mm ), $7.25 / 32^{\prime \prime}$ wide $(198 \mathrm{~mm}$ ), 8.25/32" deep ( 223 mm ).

Weight: 8 lbs ( $3,5 \mathrm{~kg}$ ).
Accessory furnished: HP 16117A Lov Noise Test Leads.
Price: HP 4329A, \$8.40.

## Model 16008A Resistivity Cell



The HP 16008 A an safely, rapidly and conveniently measure the volume and surface resistivity of sheet insulation materials. Conver. sion from volume to surface resistivity measurement requires opera. tion of one switch only; no lead interchange or disconnection is necessary. Designed for use with the HP 4329A Resistance Meter (other voltage supplies and picoammeters may be used), the com-
plete system allon's direct measurement of volume resistivity up to approximately $4 \times 10^{19} \Omega$ (on samples 0.1 cm thick) -and surface resistivity up to approximately $4 \times 10^{11} \Omega$. Test voltages up to 1000 V may be used. Excellent sample-ro-electrode contac: is maintained through use of a conducting plastic layer bonded to the inner electrode's outer surface. An interlock switch automatically disconnecrs the cest voltage when the cover is raised. Convenient low noise test leads are supplied for direct connection to the HP 4329A.

## Specifications

Inner electrode: 50 mmo .
Guard electrode: 70 mm .
Auxiliary electrode: $100 \times 120 \mathrm{~mm}$.
Maximum sample size: $125 \times 125 \times 7 \mathrm{~mm}$.
Maximum test voltage: 1000 V dc .
Dlmensions: $2^{\prime \prime}$ high ( 49 mm ), $7.13 / 16^{\prime \prime}$ wide ( 198 mm ). 61/8" deep ( 156 mm ).
Weight: 3 ibs ( $1,4 \mathrm{~kg}$ ).
Price: HP $16008 \mathrm{~A}, \$ 280$.

## UNIVERSAL BRIDGE <br> Simplified, easy to read impedance measurement <br> Model 4260A

IMPEDANCE METERS

## Advantages:

Electronic AUTOBALANCE - single control null Digital Readout for C, R, $工$
Direction Indicators for fast range selection and balance

Measurements of C, R, L, D (dissipation factoc of capacitors), and $Q$ are easily made with the new Model 4260A Universal Impedance Bridge.

The readout for $C, R$ and $L$ is digital with the decimal point automatically positioned. Units of measurement and the equivalent circuit automaticaliy appear with a twist of the function switch. There are no multipliers or confusing non-linear dials which need interpolation.

Operation is simple. Set the function knob for the parameter to be measured, adjust the range switch for ao on-scale indication, and obtain a null with the CRL control. There are no interacting cootrols to adjust and readjust. Therc are no false nulls. A unique electronic AUTOBALANCE circuit solves al! these problems. Components with low Q or high Q are as easy to measure as those without loss.
For $D$ or $Q$ measurements, switch out of AUTO and turn the DQ control until another null is obtained. Only one ad. justment is needed for each measurement.
Five bridge circuits are incorporated in the 4260 A ; each is composed of stable, high-quality components for good accuracy and linearity. An internal 1 kHz drives the bridge.

Nulling is easy. Illuminated pointers ( $\langle$ CRL $\rangle$ ) auro. matically tell whether a null is up or downscale. Both range and CRI controls can be set watching these pointers.
Components may be biased by connecting a battery to the rear termigals. An external oscillator and detector can be used for measurements in the $20 \mathrm{~Hz}, 20 \mathrm{kHz}$ range.

The compact modular cabinet is ideal for bench use; and it may be rack mounted using accessory hardware. A tilt stand is provided to raise the viewing angle; it also serves as a convenient carrying handle.

## Speciflcations

## Capacitance measurement

Capacitance
Range: 1000 pF to $1000 \mu \mathrm{~F}$, in 7 full scale ranges.
Accuracy:

$$
\pm(1 \%+1 \text { digit }), \text { from } 1 \mathrm{nE} \text { to } 100 \mu \mathrm{~F} \text {. }
$$

$\pm(2 \%+1$ digit), from 1 pF to I nF and $100 \mu \mathrm{~F}$. to $1000 \mu \mathrm{~F}$.
Dissipation factor
Range:
LOW D-(or series C): 0.001 to 0.12 . HIGH D-(of parallel C): 0.05 to 50 .
Accuracy: for $C>100 \mathrm{pF}$.
 HIGH D $\ldots \ldots \ldots \ldots . .+(10 \mathrm{D}$ of Reading +4 ) $\%$.

$$
-(10 \sqrt{D \text { of Readiag }}+2) \% .
$$ Add $\pm 1$ dial division for frequencies other than 1 kHz .

## Inductance measurement

Inductance
Range: $1000 \mu \mathrm{H}$ to 1000 H , in 7 full scale ranges,
Accuracy: $\pm(1 \%+1 \mathrm{Digit})$, from 1 mH to 100 H .
$\pm(2 \%+1$ Digit $)$, from $1 \mu \mathrm{H}$ to 1 mH and 100 H to 1000 H .


Quality factor
Range:
LOW Q-(of series L) : 0.021020.
HIGH Q-(of parallel L): 8 to 1000.
Accuracy: for $\mathrm{L}>100 \mu \mathrm{H}$.

$$
\begin{aligned}
& \text { LOW } Q \ldots \ldots \ldots \ldots \div\left(\frac{10}{Q \text { of Reading }}+4\right) \% \text {. } \\
& -\left(\frac{10}{Q \text { of Reading }}+2\right) \% \text {. } \\
& \text { HIGH } Q \ldots \ldots \ldots \ldots \pm .2 \sqrt{Q \text { of Reading }} \% \text {. }
\end{aligned}
$$

Add $\pm 1$ dial division for frequencies other than 1 kHz .

## Auto-balance

Eliminates need for $D Q$ adjustments in parallel $C$ and series $I$ measurements at 1 kHz .
Accuracy: for $D<1$ and $Q>1$ add $\pm 0.5 \%$ to $C$ and $I$ accuracy specifications.

## Resistance measurement

Range: $10 \Omega$ to $10 \mathrm{M} \Omega$, in 7 full scale ranges.

## Accuracy:

$10 \mathrm{~m} \Omega$ to $10 \Omega \pm(2 \%+1$ digit $)$.
$10 \Omega$ to $1 \mathrm{M} \Omega \pm(1 \%+1$ digit $)$.
$1 \mathrm{M} \Omega$ to $10 \mathrm{M} \Omega \neq(2 \%+1$ digit $)$.
To obtain better sensitivity use HP 4304B below $100 \Omega$ and above $100 \mathrm{k} \Omega$.

## Oscillator and detector .

Internal oscllator: $1 \mathrm{kHz} \pm 2 \%, 100 \mathrm{mV}$ rms $\pm 20 \%$.
Internal detector: runed amplifer at 1 kHz ; functions as a broad. band amplifer for measurements with external oscillator.

## General

Power: 115 or 230 volts $\pm 10 \%, 50.60 \mathrm{~Hz}$, approx. 7 wats.
Dimenslons: $7.25 / 32^{\prime \prime}$ wide, $6-17 / 32^{\prime \prime}$ high, $11^{\prime \prime}$ deep ( $190 \times 166$ $\times 279 \mathrm{~mm}$ ).
Weight: net, 11 lbs ( 5 kg ) : shipping, $15 \mathrm{lbs}(6,8 \mathrm{~kg})$.
Optional accessarles:
HP 4304 B for R measurements $<100 \Omega$ and $>100 \mathrm{k} \Omega$.
HP 204 C Opt. 001 for measurements $20 \mathrm{~Hz}-20 \mathrm{kHz}$.
HP 140A/1400A or external tuned null detector with 90 dB gain and $Z_{\text {in }}>10 \mathrm{k} \Omega$ for measurements $20 \mathrm{~Hz}_{2} \cdot 20 \mathrm{kHz}$.
Price: Model 4260 A Unjversal Bridge, $\$ 680$.


## Description

The new Hewletr-Packard Model 4265A Universal Bridge provides an economical way to make high precision measurements of $\mathrm{L}, \mathrm{C}$, or R and D or Q . Components can be mea. sured in the ranges of $0.1 \mu \mathrm{H}$ to 1111 H in inductance, 0.1 pF to $1111 \mu \mathrm{~F}$ in capacitance and $0.1 \mathrm{~m} \Omega$ to $1.111 \mathrm{M} \Omega$ in re. sistance with full four digit in-line display. The $L$ and $C$ measurements are performed over a wide range of loss with either series or parallel equivalent circuits selected by the FUNC. TION switch. The basic measurement accuracy is $0.2 \%$ of reading for $\mathrm{L}, \mathrm{C}$ and R .
The measurement frequency range is 50 Hz to 10 kHz with an external oscillator, and 1 kHz with internal oscillator. A dc measurement for resistance is also available with external de power supply and null detector.

The front panel design provides appropriare space and convenient positioning of knobs for easy balancing. The rugged handle is used as the till stand, and a front panel angles of 40 or 60 degrees may be chosen.

## Specifications

## Resistance measurement

Full scale rangs: $1111.0 \mathrm{~m} \Omega$ to $1.1110 \mathrm{M} \Omega, 7$ ranges.
Minimum resolution: 0.01 ms by minor division of the lowest digit.
Accuracy: at 1 kHz .
$=(0.2 \%$ of reading $+0.01 \%$ of F.S. $+0.2 \%$ of reading on lowest range).
Resldual resistance: $\approx 3 \mathrm{~ms}$.
inductance measurement
Full scale range: $1111.0 \mu \mathrm{H}$ to $11110 \mathrm{H}, 7$ ranges.
Minimum resolution: $0.01 \mu \mathrm{H}$ by minor division of the lowest digit.
Accuracy: at 1 kHz .
$\pm(0.2 \%$ of reading $+0.01 \%$ of F.S. $+0.2 \%$ of reading on lowest range).
Residual inductance: $\approx 0.2 \mu \mathrm{H}$.

Loss factor range: (at 1 kHz ).
$Q$ of series $L$ : 0 to 10 , accuracy $\pm(5 \%$ of reading +0.001 ).
D of parallel L: 0.001 to 1. accuracy $\pm$ ( $5 \%$ of reading +0.001 )

## Capacitance measurement

Full scale range: 1111.0 pF to $1111.0 \mu \mathrm{~F}, 9$ ranges.
Minimum resolution: 0.01 pF by minor division of the !owest digit.
Accuracy: at 1 kHz .
$\pm(0.2 \%$ of reading $+0.01 \%$ of F.S. $+0.2 \%$ of reading on lowest range).
Residual capacitance: $\approx 0.4 \mathrm{pF}$.
Loss factor range: (at IkHz ).
$D$ of series $C$ : 0.001 to 1 , accuracy $=(5 \%$ of reading +0.001 ).
$Q$ of parallel $C$ : 0 to 10 , accuracy $\pm(5 \%$ of reading +0.001 ).

## Oscillator

Internal osciflator
Frequency: $1 \mathrm{kHz} \pm 15 \mathrm{~Hz}$.
Output: concinuously variable with front panel control. Maximum voltage is approximately 0.3 V rms.
External oscillator
Frequency ranga: 50 Hz to 10 kHz or de for resistance measurement.
DC blas: 250 V max in Cs mode from external source.

## internal detector

Tuned amplifier at 1 kHz .
Minimum sensitivity $10 \mu \mathrm{~V}$, selectivity more than 26 dB down at 2nd harmonics. May also be used as a broadband amplificr from 50 Hz to 10 kHz for measurement with external oscillator.

## General

Power: $100 / 120 / 200 / 240 \mathrm{~V} \pm 10 \%$; 48 to $440 \mathrm{~Hz}, \mathrm{~S}$ W. Aecessorles avallable

Model 16029 A Test Fixture.
Model 4403A Tuned Null Detector.
Prlees: Available Spring 1973.


## Description

A unique instrument from Hewlett-Packard, the 4270A Automatic Capacitance Bridge provides a wide variety of high speed measurements of both active and passive capacity values. Five-digit readout of capacitance from full.scale ranges of 18.000 pF to $1.2000 \mu \mathrm{~F}$ is complemented by 001 pF resolution and measurement speed of 0.5 seconds. In addition, a second in-line 4 -digit Nixie© display of capacitor loss is given simultaneously in terms of parallel conductance (G) or dissipation factor (D). In the laboratory, the 4270A will be extremely useful for examination of semiconductor junction capacities, input capacitances of amplifiers and other active devices, as well as the analysis of stray capacity values, cables and simple capacitors. DC biasing, four frequencies from 1 kHz to 1 MHz and a fully guarded measurement will add to laboratory dexibility.

## Specifications

## Measuring circult

Float: guarded terminals of enknown are fioated from ground.
L-ground: one side of known terminals is grounded, guard is retained.
Parameters measured: capacitance, equivalent parallel con. ductance and dissipation factor.
Measuring frequency: $1 \mathrm{kHz}, 10 \mathrm{kHz}, 100 \mathrm{kHz}$ and 1 MHz . Range modes
Auto: range selection and balance performed automatically. Hold: range is held on fxed position, balance begins with most significant digit. Range determined by previous AUTO or TRACK range selected or by manually stepping RANGE STEP.
Track! range held on fixed position, balance begins with last digit.
Balaneing time: typically 0.5 s .
Measuring rate: measuremenr cycle equals balance time plus display time. Balance time typically 0.5 s ; display times selected by MEAS RATE are $70 \mathrm{~ms}, 2$ secs, 5 secs and MANUAL.

## Test voltage across unknown

Normal: 1 V cms constant, at capacitance units displayed in PF or $\mathrm{nF}: 100 \mathrm{mV}$ ims constant at $\mu \mathrm{F}$.

Low: 200 mV rms constant at pF or nF .20 mV rms constant at $\mu \mathrm{F}$.
Repeatability: $\pm 2$ digits at NORMAL TEST VOLTAGE, $\pm 10$ digits at LOW TEST VOLTAGE.
DC bias: INTERNAL or EXTERNAL to $\pm 200 \mathrm{~V}$, in HOLD and TRACK mode.
internal bias at float measurement
Voltage: 0 to $20 \mathrm{~V} \mathrm{dc} ; 0$ to 200 V dc ; continuously variable on front panel, monitored on rear panel.
Dial accuracy: $\pm 5 \%$ of full scale.
Source resistance: $100 \mathrm{k} \Omega$.
Polarity: LOW unknown terminal (-). HIGH unknown terminal $(+)$ in FLOAT position of MEAS CKT control.
Remote: programmable by resistor with $250 \Omega / \mathrm{V}$ rate at 20 V range, $258 / \mathrm{V}$ rate at 200 V range.
Remote accuracy: $\pm 2 \%$ of full scale.
Internal bias at L-ground: an additional connection using a blocking capacitor and a coaxial cable is necessary for INTERNAL source.
Basic accuracy

	Frequency	$1 \mathrm{kHz}{ }^{\text {a }} 10 \mathrm{kHz}$	100 kHz	1 MHz
C	$\begin{array}{ll} \hline \text { Basic } & 0<1 \\ \text { Accuracy } & .1<0<1 \end{array}$	$\begin{aligned} & \pm .10 \mathrm{pzo} \mathrm{dg} \mathrm{glt} \\ & \pm .01 \mathrm{pF} \\ & \pm .20 \mathrm{p}=1 \mathrm{digit} \\ & \pm .01 \mathrm{pf} \end{aligned}$	$\begin{aligned} & =.3 \%=1 \mathrm{~d} \mathrm{git} \\ & =01 \mathrm{pF}=1 \mathrm{l} 1 \mathrm{git} \\ & =.50 \% \mathrm{oF} \end{aligned}$	$\begin{aligned} & =10 \%=1 \mathrm{dg} \mathrm{~g} \\ & \pm .0 \mathrm{pF} \\ & =2 \% \mathrm{~F}=1 \mathrm{digit} \\ & =.01 \rho \mathrm{pF} \end{aligned}$
G	gasic accufacy	$\pm 1 \%=10 \mathrm{~d}$ gits		$\pm 3 \% \times 10$ digits
D	Gasic aceuracy	$\pm 1 \%$ ¢ (10 +Cs/Cx) digits		$\pm 3 \% \pm$ (10 $+\mathrm{Cs} / \mathrm{Cx}) \mathrm{dig} 115$

Outputs: 4 line BCD.

## Inputs

Trigger hold off level: level must be between 10 V and 15 V .
Remote programming: eight front-panel functions can be remotely controlled by external contact closure to ground with impedance less than $400 \Omega$. Programmable functions are RESET, FREQUENCY, RANGE MODE, TEST VOLTAGE, LOSS MEAS, RANGE STEP, DC BIAS, BIAS VERNIER.
Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power requirements: 115 or 230 V ac $\pm 10 \%$, 50 to 60 Hz .
Weight: net, $34 \mathrm{lb}(15,5 \mathrm{~kg})$ : shipping, $48 \mathrm{lb}(21,6 \mathrm{~kg})$.
Price: HP 4270A, \$4640.
interface kit
Interface kits 16150A Control Card and 16151A Data Card are available for interface with Hewlett-Packard computers. Each kit includes mating cable, BCS HP 4270 A driver and diagnostic tape.
Price: HP 16150A. \$1110;1615LA, \$145S.

Accessories for the 4270A Auromatic Capacitance Bridge
The following adapters convert the BNC Connectors on the 4270A to allow direct insertion of components.


Converts from BNC to Binding posts.
Price: 16011A. $\$ 43$.


Converts from BNC to test axial lead devices. It has a centrally located guard plane to reduce errors due to stray capacitance.
Price: 16012A, \$48.


Converts from BNC to test vertical lead devices. It has a guard plane similar to 16012A.

Price: 16013A, $\$ 48$.


This cable converts from BNC to clip leads. $44^{\prime \prime}$ overall length with chird lead to preserve guard terminal.

Approximate stray capacitance: 11 pF berpeen measurement leads, 100 pF between either measurement lead and guard (shield).
Price: 11143A, $\$ 25$.

## RX METER

Self-contained rf bridge, 500 kHz to 250 MHz

## Model 250 B



The Hewlett-Packard 250B RX Meter is a self-contained instrument for measuring the equivalent parallel resistance and capacitance or inductance of two-terminal networks. The instrument contains a continuously tuned oscillator, high-frequency bridge and ampliffer-detector,

The oscillator is mounted inside a rigid casting to obtain a high degree of accuracy, stability and low leakage.

Specifications, 250B
Frequency range: 500 kHz to 250 MHz ; 8 bands. RF accuracy: $\pm 2 \%$.

Resistance measurement characterístics
Resistance range: is to 100,000 .
Resistance accuracy: $\pm\left[2+\frac{\mathrm{F}}{200}+\frac{\mathrm{R}}{5000}+\frac{\mathrm{Q}}{20}\right] \% \pm 0.2 \Omega$; $\boldsymbol{P}=$ frequency ( MHz ), $\mathrm{R}=\mathrm{RX}$ Meter $\mathrm{R}_{\mathrm{p}}$ reading (ohms), $Q={ }_{0} C R \times 10^{-12}$, where $C=R X$ Meter $C_{p}$ reading ( pF ).

Capacitance measurement
Capacitance range: 0 to 20 pF (extended by auxiliary coils).
Capacitance accuracy: $\pm\left(0.5 \div 0.5 \mathrm{~F}^{2} \mathrm{C} \times 10^{-5}\right) \% \pm 0.15$ $\mathrm{pF} ; \mathrm{F}=$ frequency $(\mathrm{MHz}), \mathrm{C}=\mathrm{RX}$ Meter $C_{p}$ reading $(\mathrm{pF})$. Inductance measurement
Inductance range: $0.001 \mu \mathrm{H}$ to 100 mH .
inductance accuracy: same as capacitance accuracy.

## Measurement voltage level

RF: 0.05 to 0.75 V . depending on frequency. RF level adjust. able to 20 mV .
DC: $0 \mathrm{~V}:(50 \mathrm{~mA}$, external dc , max. may be passed through RX meter terminals).
Accessorles avallable: 00515A Coax Adaprer Kit. (Type ' $N$ ' male connector), $\$ 75$; 13510A Transistor Iest Jig, $\$ 250$.
Dimensions: $20^{\prime \prime}$ wide, $103 / 8^{\prime \prime}$ high, $131 / 2^{\prime \prime}$ deep (508 x. 264 x 343 mm ).
Weight: ner, 40 lbs ( 18 kg ) : snipping, $50 \mathrm{lbs}(22,5 \mathrm{~kg}$ ).
Power: 105 to 125 V or 210 to $250 \mathrm{~V}, 48$ to $440 \mathrm{~Hz}, 66 \mathrm{VA}$. Price: HP 250B, $\$ 2600$.


## Description

A new instrument from Hewlett-Packard. the 4271 A features automatic high-speed measurements of lorr value components. The four-pair measurement cechnique has the advantage of reducing errors due to residual inductance and stray capacitance. User benefits are derived from high accuracy measurements with as many as ren readings per second. Opcions are available to allow interfacing to Hewlett-Packard's calculators, computers and other data processing equipment.

## Specifications*

Capacitance measurement
Function: C.G (Capacitance and Parallel Conductance) or C-D (Capacitance and Dissipation Factor).
Measuring circult parallel equivalent circuit with four-pair test terminal.
Ranges

	Range	Capsoilanto	Condurtaiceo	DLesipation F netor
$\begin{gathered} \text { full range } \\ \text { display } \end{gathered}$	$\begin{aligned} & 6 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 10.000 \mathrm{pF} \\ & 100.00 \mathrm{of} \\ & 1000.0 \mathrm{pF} \\ & 10.000 \mathrm{oF} \end{aligned}$		1.0000
Overranging	$\begin{gathered} \text { All } \\ \text { ranges } \end{gathered}$	90\%	90\%	60\%

Ranges

	Range	Inductance	Residance	Disaspation Factor
full range display	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000.0 \mathrm{nH} \\ & 10.000 \mu \mathrm{H} \\ & 100.00 \mu \mathrm{H} \\ & 1000.0 \mu \mathrm{H} \end{aligned}$	$\begin{aligned} & 10.000 \Omega \\ & 100.00 \Omega \\ & 10000 \Omega \\ & 10.000 \mathrm{k} \Omega \end{aligned}$	1.0000
Overranging	$\begin{gathered} \text { All } \\ \text { ranges } \end{gathered}$	90\%	90\%	60\%

Offset adjust: for cancelling residual inductance and resistance.
Offset range: inductance: 100 nH ; resistance $100 \mathrm{~m} \Omega$.
Basic accuracy ( $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ): (Except lowest range).

Tett signal loval	Indubtance	Reshtanoe	$\begin{gathered} \text { Dlasipation } \\ \text { factor } \end{gathered}$
High	$\begin{aligned} & 0.2 \% \text { of rdg. } \\ & +3 \text { counts } \\ & \hline \end{aligned}$	$\begin{array}{r} 0.2 \% \text { of rdg. } \\ +3 \text { counts } \\ \hline \end{array}$	$\begin{aligned} & 1 \% \text { of rdg. } \\ & +0.0015 \\ & \hline \end{aligned}$
Low	$0.3 \%$ of rdg. $+4 \text { counts }$	$\begin{gathered} 0.3 \% \text { of rdg. } \\ +4 \text { counts } \\ \hline \end{gathered}$	$\begin{array}{r} 1 \% \text { of rdg. } \\ +0.0020 \end{array}$


Ranye	1	2	3	4
	1000.0 nH	$10.000 \mu \mathrm{H}$	$100.00 \mu \mathrm{H}$	$1000 \mu \mathrm{H}$
High	2 mA	5 mA	$500 \mu \mathrm{~A}$	$50 \mu \mathrm{~A}$
Low		$200 \mu \mathrm{~A}$	$20 \mu \mathrm{~A}$	$2 \mu \mathrm{~A}$


Testeifral level	Capaeltanee	Conduotance	$\begin{gathered} \text { Dissipaiton } \\ \text { Ifotor } \end{gathered}$
High	$\begin{array}{r} 0.1 \% \text { of rds. } \\ +2 \text { counls } \end{array}$	$0,2 \%$ of rdg. +3 counts	$\begin{gathered} 1 \% \text { of rdg. } \\ +0.0010 \\ \hline \end{gathered}$
	$0.2 \%$ of rog. +3 counts	$0.3 \%$ of rds. +4 counts	$\begin{aligned} & 1 \% \% \text { of } \mathrm{dg} g . \\ & -0.0015 \end{aligned}$

## Test signal

Frequency: $1 \mathrm{MHz}=0.01 \%$. 500 mV RMS at high in $\mathrm{C} . \mathrm{D}$ (all ranges except 10.000 nF range); 20 mV RMS in $\mathrm{C} \cdot \mathrm{G}$ (all ranges).
Accuracy of level: $\pm 10 \%$ for 10 pF to 1000 pF ranges and $\pm 20 \%$ for 10 nF range.

## Inductance measurement

Function: L-R (Inductance and Series Resistance) or L-D (Inductance and Dissipation Pactor).
Maasuring circuit: series equivalent circuit with four-pair test terminal.


## Description

The Hewlett-Packard Models 4350A/B High Capacitance Meters measure high capacitances from $0.02 \mu \mathrm{~F}$ to 300 mF and simultaneously measure dissipation factor. Leakage current can be measured with the 4350A. The 4350A/B provides analog outputs proportional to meter deflection. Combining the $4350 \mathrm{~A} / \mathrm{B}$ with the 4050 A Analog Comparator increases the speed in sorting applications.

Specifications, $4350 \mathrm{~A} / \mathrm{B}^{\mathrm{at}}$
capacitance measurement
Capacitance
Range: $1 \mu \mathrm{~F}$ to 300 mF full scaie in 12 ranges.
Accuracy (\% of full scail):

Accuracy (\% of full scaie):		
	Capacitence Range Full Scale	
Tan 8 range	$1 \mu \mathrm{~F}$ to 100 mF	300 mF
0101	$\pm 3 \%$	$\pm 4 \%$
$1 \mathrm{to5}$	$\pm 4 \%$	$\pm 5 \%$

Tan 8
Range: 0.5 or 5 full scale in 2 ranges.
Absolute accuracy

$$
\begin{array}{ll}
0.5 \text { full scale: } & \pm 0.025 \\
\text { S full scale: } & +0.06+\frac{(\text { reading })^{2}}{20} \\
& -0.06+\frac{(\text { reading })^{2}}{25}
\end{array}
$$

Internal test signai
Frequency: $120 \mathrm{~Hz} \pm 5 \mathrm{~Hz}$.
Internal de bias
Voltage range: 0 to 6 V dc, continuousiy adjustable.
Response time (C and tan $\delta$ ): typically 1 s .
Tanó uncal
Indicates the reading of $\tan \delta$ is uncalibrated when the deflection of the capacitance meter is below $10 \%$ ot above $130 \%$ of full scale.
Leakage current measurement ( 4350 A only)
Current
Range: $1 \mu \mathrm{~A}$ to 10 mA full scale in 9 zanges.
Accuracy: $\pm 3 \%$ of full scale.
DC blas voltage
Internal: up to 100 V dc in 2 ranges.
External: 600 V de max.
Warning lamp
Indicates "DANGER" when de voltage accoss an unknown is higher than $1.5 \mathrm{~V} d c$.
Analog outputs
Capacltance
$1 \mathrm{~V} d e$ all ranges: for use with analog comparator.
1 Vdc or 0.3 V de full scala: for use with DVM.
Overrange: $25 \%$ of full scale.

Accuracy:		
	Capacitance Range Full Scole	
Tan 8	$1 \mu F$ to 100 mF	300 mF
0 to 1	$\pm 11.5 \%$ of reading   $+0.5 \%$ of full scale)	$\pm 3 \%$ of full scale
1 to 5	$\pm(1.5 \%$ of reading   $+1.5 \%$ of full scale	$\pm 4 \%$ of full scala

Loss angle ( $\delta$ )
Tan 8 vs, analog output voltage: $0.1 \mathrm{~V} /$ degree.

Tan 8	8	Output voltage
0 to 0.5	$0^{\circ}$ to $26.6^{\circ}$	$(0$ to $2.66 \vee \mathrm{dc}) \pm 0.13 \mathrm{Vdc}$
0.5 to 5	$26.6^{\circ}$ to $78.7^{\circ}$	$\{2.66 \mathrm{to} 7.87 \mathrm{Vdc}) \pm 0.3 \mathrm{~V} \mathrm{dc}$

Residual noise: 40 mV p-p max.

## General

Temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 38.5 \mathrm{VA}$ max.
Dimensions: $7-25 / 32^{\prime \prime}$ wide, $6-17 / 32^{\prime \prime}$ high, $12^{\prime \prime}$ deep ( $198 \times$ $166 \times 305 \mathrm{~mm}$ ).
Weight: net it lbs ( $4,8 \mathrm{~kg}$ ): shipping $15 \mathrm{lbs}(6.8 \mathrm{~kg}$ ).
Accessories furnished: 16035A Test Cable with four alligator clips: 16036A Test Cable with two alligator clips.
Price: HP 4350A, \$95s.
HP $4350 \mathrm{~B}, 58.45$.


## Description

The Hewlett-Packard Model 4050A Analog Comparator compares the unknown voltage to preset high and low limits. Contact closures with the corresponding (HI-GO-LO) lights will operate external devices. The 4050A increases the speed at. which the $4350 \mathrm{~A} / \mathrm{B} \mathrm{Hi}-\mathrm{C}$ Meter or 4332 A . LCR Meter will operate in sorting applications.

## Specifications, 4050A*

Input
Analog voltage: $0.1,1,10 \mathrm{~V}$ full scale.
Resistance: $0.1,1 \mathrm{~V}$ range, $1 \mathrm{M} \mathrm{m} ; 10 \mathrm{~V}$ range, 100 ks .
Output
Limit indications: $\mathrm{HI}, \mathrm{GO}$, and LO lighrs.
Relay contact: 3 SPST contacts, $50 \mathrm{~V} \mathrm{dc}, 0.5$ A max.
Connector: binding post.
LImit controls: 000 to 125 are set on digital dials.
Accuracy: $\pm 0.6 \%$ of full scale (at $25^{\circ} \mathrm{C}$ ).
Response time: rypically 0.1 s .
Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power: $115 / 230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 3.85 \mathrm{VA} \max$.
Dlmenslons; standard $1 / 3$ module, $63 / 32^{\prime \prime}$ high, $51 / 8^{\prime \prime}$ wide. $8^{\prime \prime}$ deep ( $155 \times 130.1 \times 203.2 \mathrm{~mm}$ ).
Welght: ner, $6 \mathrm{lbs}, 402(2,8 \mathrm{~kg})$; shipping $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Price: $\$ 510$.

* Rafer io data sheet for complate specifleations.


## LCR METER Measures LC and $\mathbf{R}$ directly Model 4332A

IMPEDANCE METERS

## Description

Hewlett-Packard Model 4332A LCR Meter measures in. ductance, capacitance, and resistance. The instrument provides direct readings of $L, C$ and $R$ with linear meter scales. The 4332A is extremely useful for measurements of both linear and nonlinear components. For a rapid GO/No Go test system, combine 4332A with 4050A.

## Specifications (at $25^{\circ} \mathrm{C}$ )

Inductance measurement
Range: $3 \mu \mathrm{H}$ ro 1 H full scale, 12 ranges.
Measuring frequency
3 to $1000 \mu \mathrm{H}, 100 \mathrm{kHz} ; 3$ to $1000 \mathrm{mH}, 1 \mathrm{kHz}( \pm 5 \%$
 Capacitance measursment
Range: 3 pF to $1 \mu \mathrm{~F}$ fall scale, 12 ranges.
Measuring frequency 3 pF to $1000 \mathrm{pF}: 100 \mathrm{kHz}=5 \%$ 3 nF to $1000 \mathrm{nF}: 1 \mathrm{kHz} \pm 5 \%$
Accuracy: $\pm\left[1 \%\right.$ reading $+\left(1.5 \%+\frac{3}{Q}\right)$ of $\mathrm{FS}+0.03$ pF.]
Resistance measurement
Range: $3 \Omega$ to $1 \mathrm{M} \Omega$ full scale, 12 ranges.
Measuring frequency: $1 \mathrm{kHz} \pm 5 \%$.
Accuracy
Thru $30 \mathrm{k} \Omega$ ranges: $\pm(0.5 \%$ reading $+2 \% \mathrm{FS}+$ $0.03 \Omega$ ).
$100 \mathrm{k} \Omega$ to $1000 \mathrm{k} \Omega$ ranges: $\pm(1 \%$ reading $+2 \% \mathrm{FS})$.


## VECTOR IMPEDANCE METER <br> Quickly measures Z \& $\theta, 5 \mathrm{~Hz}$ to 500 kHz Madel 4800A

## Description

The Hewlett-Packard 4800 A Vector Impedance Meter will make fast measurements of impedance to 10 megohms and phase to $\pm 90^{\circ}$ of unknown two-terminal networks. Measurement can be made at a particular frequency or over a continuous range from 5 Hz to 500 kHz . The instrument may be mechanically swept to produce continuous measurements over its full frequency range. Analog outputs are available for $X \cdot Y$ recording.

## Specifications

## Frequency

Range: 5 Hz to 500 kHz in five bands.
Accuracy: $\pm 2 \%$ from 50 Hz to $500 \mathrm{kHz}, \pm 4 \%$ from $s$ to $50 \mathrm{~Hz}, \pm 1 \%$ at 19.92 on frequency dial from 159.2 Hz to $159.2 \mathrm{kHz}, \pm 2 \%$ at 15.92 Hz .
Impedance measurement
Range: $1 \Omega$ to $10 \mathrm{M} \Omega$ in 7 ranges.
Accuracy: $\pm 5 \%$ of reading.
Phase angle measurement
Range: $0^{\circ} \pm 90^{\circ}$; accuracy: $\pm 6^{\circ}$.
Direct inductance measurement range: $1 \mu \mathrm{H}$ to $100,000 \mathrm{H}$.
Accuracy: $\pm 7 \%$ of reading for $Q>10$ from 159.2 Hz to 159.2 kHz ; $\ddagger 8 \%$ of reading for $Q>10$ at 15.92 Hz .

Dírect capacitance measurement range: 0.1 pF to $10,000 \mu \mathrm{~F}$. Accuracy: $\pm 7 \%$ of reading from $\mathrm{D}<0.1$ from 150.2 Hz to $159.2 \mathrm{kHz}, \pm 8 \%$ of reading for $\mathrm{D}<0.1$ at 15.92 Hz .


Measuring terminal characteristics
Conffguration: terminals above ground.
Waveshape: sinusoidal.
Recorder outputs
Frequency: level, 0 to 1 V nominal.
Impedance: level, 0 to 1 V nominal.
Phase angle: level, $0 \pm .9 \mathrm{~V}$ nominal.
Accessories furnished: 13525A Calibration Resistor, 00610A.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ( $426 \times 133 \times$ 467 mm ).
Welght: net, $24 \mathrm{lbs}(10.8 \mathrm{~kg})$; shipping, $30 \mathrm{lbs}(13,5 \mathrm{~kg})$.
Power: 105 to 125 V or 210 to $250 \mathrm{~V}, 48$ to 440 Hz .29 .7 VA .
Price: HP 4800A. \$1800.

## Measures $\mathbb{Q}, \mathrm{L}, \mathrm{C}$, \& resonant frequency

 Model 4342A

The direct-reading expanded scale of the 43.12A permits measurement of $Q$ from $s$ to 1000 and readings of very small changes in Q resulting from variation in test paramerers. The 4342 A is solid state with the elimination of specially matched, fragile thermocouple components.
The Q meter consists of a stable, continuously variable oscillator, with automatic level-control. The output is applied in series with an external unknown and an internal variable capacitor. A $Q$ voltmeter with high input $Z$ is connected across the internal variable capacitor portion of the tuned circuit to measure the reactive voltage in terms of circuit $Q$

## Usefulness

The 4342A will measure dissipation factor and dielectric constant of insulating materials. The $Q$ merer can measure coef. ficient of coupling, mutual inductance, and frequency response of transformers. RF resistance, reactance, and $Q$ of resistors and capacitors can also be derermined.

## Internal ascillator

The internal oscillator covers a frequency range from 22 kHz to 70 MHz ( 10 kHz to 32 MHz in Option 001) in seven bands. This source is automatically leveled to provide a constant injection voltage. This ALC feature eliminates the $Q$ multiplier con. trol found on other $Q$ meters.

## Q voltmeter

High stability of the $Q$ Voltmeter eliminates $Q$-zero adjustment for routine measurements. Accurate information on changes in $Q$ is obrainable on all $Q$-ranges through the greater resolution ( $x$ 10) of delta- $Q$ measurement.

## Constant voltage injection system

The 4342A utilizes a constant voltage injection system eliminating the fragile thermocouple sysrem found in other $Q$ meters. The low impedance of this injection system increases $Q$ accuracy.

## Rapid inductance measurement

A single " 1 " point on the frequency dial eliminates the necessity to readjust frequency during inductance measurements.

## GO/NO-GO Q selector

The Q-Limit selector will be especially useful for rapid Go/ No-Go testing. The high response speed of the Go/No-Go indicator compared to the meter movement is an added feature. External devices may be remotely controlled by the Go/No-Go over limit signal.

## Simple, Easter operation

Push-button operation of frequency range and $Q / \Delta Q$ range selection provides straightforward measurement. Automatic indictaion of meter scales, frequency dials and frequency multipliess are featured, adding to simplicity and reading speed.

## Specifications

## RF characterlstles

RF range: 22 kHz to 70 MHz in 7 bands: 22 to $70 \mathrm{kHz}, 70$ to $220 \mathrm{kHz}, 220$ to $700 \mathrm{kHz}, 700$ to $2200 \mathrm{kHz}, 2,2$ to $7 \mathrm{MHz}, 7$ to 22 MHz .22 to 70 MHz .
RF accuracy: $\pm 1.5 \%$ fron 22 kHz to $22 \mathrm{MHz}: \pm 2 \%$ from 22 MHz to $70 \mathrm{MHz} ; \pm 1 \%$ at "L" point on irequency dial. RF increments: approximately $1 \%$ sesolution.

## Q measurement characteristics

Q range: 5 to 1000 in $\frac{1}{}$ ranges: $S$ to 30,20 to 100.50 to 300 , 200 to 1000.
Q accuracy: $\mathscr{\% _ { c }}$ of indicated value. (at $25^{\circ} \mathrm{C}$ ).

Fres.	$22 \mathbf{x H z} \cdot 30 \mathrm{MHz}$	$30 \mathrm{MHz} \cdot 70 \mathrm{MHz}$
5.300	$\pm 7$	$\pm 10$
$300-600$	$\pm 10$	$\pm 15$
$600 \cdot 1000$	$\pm 15$	$\pm 20$

Q increments: upper sca!e: 1 from 20 to 100 , lower scale: 0.5 from 5 to 30 .
$\Delta Q$ range: 0 to 100 in 4 ranges: 0 to 3,0 to 10.0 to 30 , 0 to 100.
$\Delta Q$ accuracy: $\pm 10 \%$ of full scale.
$\Delta Q$ increments: upper scale: 0.1 from 0 to 10 , lower scale: 0.05 from 0 to 3.

## Inductance measurement characteristics

L range: $0.09 \mu \mathrm{H}$ to 1.2 H . direct reading as 7 specific frequen. cies.
L accuracy: $\pm 3 \%$ after substitution of residuals (approx. 10 nH).

## Resonating capacitor characteristics

Capacitor range: main dial: 25 to 770 pF ; vernies dial -5 to +5 pF .
Capacltor accuracy: main dial: $\pm 1 \%$ or 1 PF . Whichever is greater; vernier dial $\pm 0.1 \mathrm{pF}$.
Capacltor increments: main dial: 1 pF from 25 to $30 \mathrm{pF}, 2 \mathrm{pF}$ from 30 to 200 pF , S pF from 200 to - 470 pF ; vernier dial: 0.1 pF .

## Genera)

## Rear panel outputs

Frequency monitor: 170 mV rms min. inro $50 \Omega$.
$Q$ analog output: 0 to $1 \mathrm{~V} \pm 50 \mathrm{mV}$ de after 15 minutes warm-up. proportional to meter defection. Output imFedance approximarely $1 \mathrm{k} \Omega$
Over limit signal output: contact closure at the rear panel. Relay contact capacity $0.5 \mathrm{~A} / 15 \mathrm{VA}$.
Over timit display time: selectable, is or continuously on, after limit exceeded.
Temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, $48.4 .10 \mathrm{~Hz}, 27.5 \mathrm{VA}$ max.
Dimensions: $163 / 4^{\prime \prime}$ wide, $5.1 / 16^{\prime \prime}$ high, $16.5 / 16^{\prime \prime}$ decp ( $-425 \times$ $138 \mathrm{x} 414 \mathrm{~mm})$.
Weight: net, $31 \mathrm{lbs}(14 \mathrm{~kg}$ ) : shipping, $41 \mathrm{lbs}(18,45 \mathrm{~kg})$.
Price: Model 4342A. $\$ 1665$.

Usable frequency range: 10 kHz to 10 MHz
Price: HP 16014A, $\$ 38$.


Auxlliary capacitor
The 16462A Auxiliary Capacitor is designed to extend the $a$ and $L$ measurement capability of the 4342A Q Meter. It is especially useful for measuring small inductors at low frequencies. Price: HP 16462A, $\$ 165$.

## Reference inductors*



A range of 20 inductors, any of which can be supplied separately. is available for use with the 4342A Q Meter for measuring the RF characteristics of capacitors, resistors, and insulating materials. These in. ductors have three terminais. One terminal is connected to the case to stabilize measurements.

Price: HP 16.77A through HP 16490A, and HP 16465A, 828


## Q standards*

The 00513A and 00518A Q standards are hermetically sealed reference inductors having accurately measured, highly stable inductance and Q characteristics. These Q standards are particularly useful for checking the overall operation and "ac. curacy" of $Q$-meters.

Prices: HP 00513A, HP 00518A, $\$ 125$ each (set of one HP 00513 A and five HP 00518A, order HP 00538A, 5675).
*Refer to data sheet for complete specifleations.

## Q METER <br> Direct Q measurement 20 to 260 MHz <br> Model 190A



## Description

The Hewlett-Packard 190A Q Meter finds applications in the VHF range of frequencies. This instrument employs a special coupling impedance to introduce voltage across the resonant circuit. This voltage, as well as the voltage across the internal $Q$ capacitor, is measured by two vacuum tube voltmeters and indicated on a single meter.

## Specifications, 190A

Frequency range: 20 to 260 MHz : 4 bands.
RF accuracy: $\pm 1 \%$.

## $Q$ measurement

Q range: total range: $S$ to 1200 ; low range; 10 to 100 .
$\triangle$ range: 0 to 100.
Q accuracy: $\pm 7 \%$ 20 to $100 \mathrm{MHz}: \pm 15 \% 100$ to 260 MHz (for circuit $Q$ of 400 read directly).
Resonating capacitor characteristics
Capacitor range: 7.5 to 100 pF .
Capacitor accuracy: $\pm 0.2 \mathrm{pF}, 7.5$ to $20 \mathrm{pF} ; \pm 0.3 \mathrm{pF}, 20$ to $50 \mathrm{pF} ; \pm 0.5 \mathrm{pF}, 50$ to 100 pF .
Capacitor calibration: 0.1 pF increments.
Accessories available: 00590A Reference Inductors.

## Physical characteristics

Dimensions: $14^{1 / 4}{ }^{\prime \prime}$ wide, $101 / 8^{\prime \prime}$ high, $101 / 2^{\prime \prime}$ deep ( $362 \times 257$ $\times 267 \mathrm{~mm}$ ).
Weight: net. $25 \mathrm{lbs}(11,3 \mathrm{~kg}$ ) ; shipping. $32 \mathrm{lbs}(14,4 \mathrm{~kg}$ ).
Power: 190A: 95 to $130 \mathrm{~V}, 60 \mathrm{~Hz}, 60.5 \mathrm{VA}$ max; 190 AP : $115 / 230 \mathrm{~V}, 50 \mathrm{~Hz}, 60.5$ VA max.
Price: HP 190A, AP, $\$ 1600$.

## IMPEDANCE METERS

ATTENUATORS \& CAPACITOR
Variable with increments of 0.1 dB or 2 pF
Models 4440B, 4436A, 4437A, 350D

## Decade Capacitor, Model 4440B



The Hewlett-Packard 4440B Decade Capacitor is a high accuracy instrument providing usable capacitances from -6 pF to $1.2 \mu \mathrm{~F}$. Its $0.25 \%$ accuracy makes it an ideal aid for circuit de. sign or as a working standare.

Use of silvered-mica capacitors in four decades of 100 pF provides higher accuracy. low dissipation factors and good temperature coefficient. An air capacitor vernier provides 100 pF (from 40 pF 10140 pF ) with resolution of 1 pF . Capacitors are housed in a double shield in such a way that increased
capacirance from two terminals to three terminals is held to 1 pF .

## Specifications, 4440B

Capacitance: 40 pF to $1.2 \mu \mathrm{~F}$ in steps of 100 pF with a 40 pF to 140 pF variable air capacitor providing continuous adjustment to better than 2 pF between steps.
Direct reading accuracy: $\pm(0.25 \%+3 \mathrm{pF})$ at l kHz for chree-terminal connection.
Resonant frequency: typical values of the resonant frequency are 450 kHz at $1 \mu \mathrm{~F}, \& \mathrm{MHz}$ at $0.01 \mu \mathrm{~F}$ and 40 MHz at 100 p F.
Disslpation factor: 0.001 maximum at 1 kHz .
Temperature coefficient: $+70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Insulation resistance: $s \mathrm{G}$ ! minimum, after S minutes at 500 V dc.
Maximum voltage: 500 V peak.
Weight: net, s $1 / 2 \mathrm{lbs}(2,5 \mathrm{~kg}$ ) ; shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Dimenslons: $11^{\prime \prime}$ wide ( 264 mm ). $6^{\prime \prime}$ deep ( 152 mm ), $3^{\prime \prime}$ high ( 76 mm ).
Price: HP 4408, $\$ 340$.

Attenuators, Models 4436A/4437A


The Hewlett-Packard Models 4436A/4437A Attenuators provide accurare steps of attenuation with 0.1 dB resolution for power-level measurements, communication system tests, and gain or loss measurements on filters and amplifiers, and similar equipment.

Specifications, 4436A
Maximum attenuation: 119.9 dB .
Attenuation increments: 0.1 dB .

Input/output Impedance: $600 \Omega$, balanced.
Frequency range: $d e$ to 1.3 MHz ( 0 to 110 dB ) dc to I MHz (0 to 119.9 dB ).
Accuracy

Attenuation	100 kHz	1 MHz	1.5 MHz
$0 \sim 60 \mathrm{~dB}$	$\pm 0.1 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$
$60 \sim 90 \mathrm{~dB}$	$\pm 0.1 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$
$90 \sim 110 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$
$110 \sim 1199 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$	$\pm 0.1 \mathrm{~dB}$	

Maximum input power: +30 dBm .
DC isolation: signal ground may be $\pm 300 \mathrm{~V}$ de from external chassis.
Dimensions: $35 / 4$ pide, $3^{\prime \prime}$ high, $65 / 8^{\prime \prime}$ deep ( $198 \times 77 \times 167$ mm ).
Welght: net, $3.3 \mathrm{lbs}(1.5 \mathrm{~kg})$ : shipping, $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Price: Model $4436 \mathrm{~A}, 5500$.
Specifications, 4437A
The Model 4437 A is a 600 ohms unbaianced eype, and its specifications are identical to the 4436 A .
Price: Model 4437A. $\$ 345$.

## Attenuator, Model 350D

Two attenuator sections make up the Hewlett-Packard 3500 Attenuator. One section is a 100 dB attenuator, adjustable in 10 dB stepr. The other is a 10 dB attenuator, adjustable in 1 dB steps.

## Specifications, 350D

Attenuation: 0 to $110 \mathrm{~dB}, 1 \mathrm{~dB}$ and 10 dB steps.
Power capacity: $600 \Omega$ unbalanced; 5 W ( 55 V dc or ms) max, continuous duty.
$D C$ isolation: signal ground may be $\pm 500 \mathrm{~V}$ dc from chassis.


Dimensions: standard Hewlett-Packard $1 / 3$ module $51 / 8^{\prime \prime}$ wide, $61 / 4^{\prime \prime} \mathrm{high}, 8^{\prime \prime}$ deep ( $130 \times 159 \times 203 \mathrm{~mm}$ ).
Weight: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping, $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Price: HP 350D. \$165.

## Digital voltmeters

Digital volumeters (DVM's) offer many advantages over other types of volmeters. Among the advantages of DVM's are greater speed, greater accuracy and resolution, reduction of operator errors, and the ability to be remotely controlied or to remorely control another device, such as a printer.

Digital voltmeters display measure. ments as discrete numerals, rather than as a pointer deflection on a continuous scale, which is commonly used in ana$\log$ devices. Direct numerical readout in DVM's reduces human error and redium. Auronatic polarity and range-changing features reduced operator training, and possible instrument damage through overload.

Digital volumeters are available to measure ac and do voltages, current, resistance and ratio. Suitable transducers may be used to measure other param. eters such as strain or temperature. One of the most important features of a DVM is its ability to be used in an automatic system. Many DVM's have a digital output to make permaneot records of measurements with princers, tape punches, etc. Digital output allow's the data to be entered into a computer or calculator for automatic data reduction. Remote control is also available on many DVM's to allow a sysrem to make range and function changes.

## Converters

The A.to.D converter in a digital volt. merer measures dc. Other quantities to be measured must be presented to the A.ro-D converter in the form of a dc voltage. This necessitates the use of ac converters, etc.

AC converters can be classified accord. ing to their response to the inpur signal. The average responding converter is relatively inexpensive and was designed primarily for measurement of sime waves having little or no distortion. This type of converted measures the average value of the rectified waveform, which is then multiplied by a scale factor to provide the rms value.
The true rms converter responds to the effective heating value of the waveform. A thermocouple or thermopile (a thin fim series of thermocouples) is used to convert the input signal, first to heating effect on a resistor, then to its equivalent de voltage. The measurement is free from errars due to distortion. True rms
converters may also be used to measure non-sinusoids. Some Hewlett-Packard true ims converters measure the heating value of a de signal mixed with an ac signal. The composite equals
$\sqrt{(\mathrm{dc})^{2}+(\mathrm{ac} \mathrm{mms})^{2}}$.
These de coupled converters have wider bandwidth. For example, HP's 3403 C can measure dc, plus 2 Hz to 100 MHz . In most cases, true rms convecters are more expensive than average responding types. However, true rms converters offer many advantages. Besides wider bandwidths, it assures measurement confidence because true rms converters eliminate large errors due to small amounts of sinusoidal distoction.

Ohms convecters fall into three categories: two-wire, three-wire, and fourwire. The two-wire converter is the most common and the most economical, but it is sensitive to lead resistance. For example, if low resistance values are being measured at a remote location, lead resistance will cause an error in the measurement. A three-wire converter may have four terminals on the front panel, and may even be called a four-wire converter. It is also sensitive to lead resis. tance, especially on the low side of the inpet, but it may be possible to null out the error caused by the lead resistance with an internal adjustment. The true four-wise converter has a fully isolated current source and is insensitive to lead resistance. It makes low ohms ranges useful for remote measurements. This scheme offers the ultimate in perfor. mance for ohms measurements.

## Resolution and sensitivity

DVM's are generally classified accord. ing to the number of digits. The number of digits is often confused with the overrange digit. For example, a five-digit display of " 19999 " really only has four full digits; i.e., four " 9 's." The extra " 1 " is an overrange digit which allow's the user to read beyond full scale. Overranging greatly extends a DVM's usefulness by increasing resolution. For example, if a signal changes from 9.999 V to 10.012 V . a four-digit DVM without overranging could measure the first voltage as "9.999 V." but would require a range change to make the second measurement with a resulting reading of " 10.01 V ." The 0.002 V change would not be seen. But with overranging, the second measurement could be made as " 10.012 V " with no loss of resolution.

Overranging is given as a percentage. A four digit DVM with $100 \%$ overranging would have a maximum display of "19999."
Resolution is usually shown as a full scale display plus X\% overranging. A five-digit DVM with $20 \%$ overranging has resolution of one-part in 119,999 . Sensitivity is usually given as the lowest full scale range or the smallest visible increment in voltage. A four-digit DVM with a 100 mV lowest range could be said to have a sensitivity of $10 \mu \mathrm{~V}$ ( 100.00 mV . last digit equals $10 \mu \mathrm{~V}$ ).

## Accuracy

Accuracy is the exactness to which voltage can be determined, relative to the Legal Volt maintained by the Na. tional Bureau of Standards. A manufac. turer must maintain calibration standards which can be traced back to the Legal Volt before an accuracy specification can be given to a DVM. The accuracy specification equals the errors involved in rraceability as well as the errors made by the instrument.

To be meaningful, accuracy must be stated along with the conditions under which it will hold. These conditions include time. temperature, line variations and humidity. Accuracy should hold over a meaningful remperature range, such as $\pm 5^{\circ} \mathrm{C}$, unless the DVM is to be operated in a tightly controlled environment.

The period of time over which ac. curacy holds is especially important since it indicates the DVM's stability and how often it will have to be calibrated.

Accuracy is usually stated in two parts: a percent of reading and a percent of range (or full scale). The percent of reading is often related to analog error and the percent of full scale is scale often related to digital error, Accuracy is always betrer at or above full scale.

Specification difference between accuracy and short term stability for a rypical four-digit DVM is shown in fig. ure one.

Figure two shows how the accuracy of a typical four-digit DVM improves as percent of full-scale increases to 100 . The least error is in the overrange region.

A DVM user needs to know three things about the speed of a DVM he is about to purchase: 1) the time required


Figure 1. Accuracy and short term stability of a typical four-digit DVM.


Figure 2. Typical four-digit OVM accuracy.


Figure 3. OVM speed depends upon response time and reading period.
to respond with an accurate reading after application of an input signal, 2) the effect on speed of any input filtering, and 3) the reading rate when the DVM is used in a system.

Most DVM's have their own internal trigger source which may be adjustable from the front panel or fixed. Quite often, the trigger source is independent of response time. For example, a DVM may have a fixed sample rate of five readings per second, which is fine for
dc measurements, but the ac converter may take two seconds to respond. This mears that only the 19 th reading after application of the ac signal will be corsect. This works fine for bench measuremeats where the user waits for a steady reading. Figure three shows that DVM speed is determined by the settling time of its input amplifier, plus the time requised to digitize the signal.
For system use, the DVM's internal rrigger is not used. External triggers are
issued by the system incorporating the appropriate delay to allow for settling. Some DVM's, especially those designed for systems, have a built-in delay to produce the correct reading on the first measurement.
The time required to reject noise may involve filtering which becomes part of the response time, or it may involve integration which is part of the time required to digitize the input voltage. Whichever technique is used, one rule applies: the better the noise rejection, the longer the response time.
The time to digitize the input signal is called, "the reading period." Typically, it varies from 950 microseconds up to 9.1 seconds depending upon the DVM. If autoranging is used, it will add to this time.

## Noise rejection

The source and type of noise are im. portant in determining the type of noise rejection needed.
Normal-mode noise enters with the signal and must be eliminated by the DVM's measuring rechnique. Filtering is the simplest way to cut down on noise but it slows the measurement speed. Integration "calculates" the noise out of the measurement by looking at the input signal over a time period equal to the period of the expected noise. Filtering is advantageous for rejecting broadband noise with the added benefit of being flexible: speed may be rraded for noise rejection. Integration is better for reject. ing line related noise and achieves close to perfect rejection at line frequencies and multiples of line frequency.

Common-mode noise appears between the DVM's input terminals and ground. It is usually caused by grounding differences between the device being mea. sured and the instrument. A foating de measurement has a de conmon-mode signal.
Errors caused by common-mode noise may be reduced by a passive technique called "guarding." Guarding shunts the noise to ground and away from the input terminals. Physically, a guard is a box surrounding the measurement circuit but insulated from it. The guard shield is brought out to the front panel as a terminal. By proper connection of the guard, a remarkable improvement can be seen in a DVM's ability to reject com. mon-mode noise.
"Effective" common-mode rejection is usually what appears on a data sheet. Effective means, the effect on the final reading. The effective CMR is the combined result of "pure" CMR due to guarding or good shielding, plus the nor-mal-mode rejection of the instrument.

Table 1．HP DVM Selectlon Guide

Madel		E E E 震	亮		$\begin{aligned} & \frac{2}{3} \\ & \frac{3}{8} \\ & 8 \end{aligned}$	$\begin{aligned} & \frac{4}{\circ} \\ & \frac{1}{8} \\ & 4 \end{aligned}$	$\begin{gathered} \text { M } \\ \text { 空 } \end{gathered}$	$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { B } \end{aligned}$	$\frac{8}{2}$					
34698	3	100\％	$\pm 0.2 \%$	15／5	$x$	X	X	X						
3403 C	3	90\％	＋0．4\％	2／s	X	X				X	X	X		
$\begin{aligned} & 3440 A \\ & + \\ & \text { Plug-ins } \end{aligned}$	4	5\％	$\pm 0.06 \%$	5／s	X	X	$x$	$\times$		$x$	$x$	$x$		
$\begin{aligned} & 3470 \\ & \text { Series } \end{aligned}$	$40 r$	100\％	$\pm 0.04 \%$	5／s	X	x	X	X		X	X			
$\begin{aligned} & 3480 \mathrm{~A} / 8 \\ & + \\ & \text { Plug.ons } \end{aligned}$	4	50\％	＝0．02\％	1000／s	X	X	X			X	X	X	X	X
2402A	5	30\％	$\pm 0.013 \%$	43／5	$x$	X	$x$			X	$x$	X		
3450 B	5	20\％	$=0.01 \%$	15／s	X	X	X		X	X	X	$\lambda$		
34508	5	20\％	$\pm 0.006 \%$	15／s	X					X	X	X		
3490A	5	20\％	$\pm 0.012 \%$	5／s	X	X	X		X	X	X	X		$x$
3452A	6	20\％	$\pm 0.0042 \%$	1／s	X					X	X	X		

Table 2．HP DVM＇s with AC Converters

Model	Ranges Sensiflyty	Frequenay Range	Response	$\begin{gathered} \text { Input } \\ \text { Impedance } \end{gathered}$
34698	$\begin{gathered} 1 \pi V \text { to } 1000 V \\ 1 \mu V \end{gathered}$	20 Hz 1010 MHz	Average	$10 \mathrm{Mr} /$／ 25 pf
$3403 C$	$\begin{gathered} 10 \mathrm{mV}_{10} 10 \mu \mathrm{~V}, 00 \mathrm{~V} \\ 10 \mu \end{gathered}$	2 Hz to 100 MHz	True RMS	$10 \mathrm{Mis} / / 19 \mathrm{pF}$
$\begin{aligned} & 3440 \mathrm{~A} \\ & (3445 \mathrm{~A}) \end{aligned}$	$\begin{gathered} 10 \mathrm{~V} 01000 \mathrm{~V} \\ 1 \mathrm{mV} \end{gathered}$	50 Hz 10100 MHz	Average	$10 \mathrm{M} \Omega /$／ 20 pF
3470 Series （34702A）	$\begin{gathered} 1 V \text { to } 1000 \mathrm{~V} \\ 100 \mu \mathrm{~V} \end{gathered}$	45 Hz to 100 kHz	Average	$10 \mathrm{Ms} / / 65 \mathrm{pF}$
$\begin{aligned} & 3480 \mathrm{~A} / \mathrm{B} \\ & (3484 \mathrm{~A}) \end{aligned}$	$\begin{gathered} 100 \mathrm{mV} 101000 \mathrm{~V} \\ 10 \mu \mathrm{~V} \end{gathered}$	1 Hz to 10 mHz	True RMS	$2 \mathrm{Ma} / \mathrm{/} 45 \mathrm{pF}$
$\begin{aligned} & \text { 2402A } \\ & (0 \operatorname{Opt} 002) \end{aligned}$	$\begin{gathered} \text { IV } 101000 \mathrm{~V} \\ 10 \mu \mathrm{~V} \end{gathered}$	50 Hz to 100 kHz	Average	$0.9 \mathrm{M} \Omega / / 200 \mathrm{pF}$
$\begin{aligned} & 3450 \mathrm{~B} \\ & (0 \mathrm{DL} 001) \end{aligned}$	$\begin{aligned} & 1 \bar{V} 10 \overline{1000} \mathrm{~V} \\ & 10 \mu \mathrm{~V} \end{aligned}$	45 Hz 10 1 MH2	True RMS	$2 \mathrm{Mn} / \mathrm{/} 90 \mathrm{pF}$
3490A	$\begin{aligned} & \mathrm{J} V 101000 \mathrm{~V} \\ & 10 \mu \mathrm{~V} \end{aligned}$	20 Hz 10250 kHz	Average	$2 \mathrm{Mal/} 65 \mathrm{pF}$

Table 3．HP DVM＇s with ohms Converters

Modal	Ranges	Serritivity	2－Wire	4．W｜ra	Gurrent Thraugh $1 \mathrm{k} \Omega$ Reststor
3469B	1 n to 10 Ms	$1 \mathrm{~m} \Omega$	X		1 mA
$\begin{aligned} & 3440 \mathrm{~A} \\ & (3444 \mathrm{~A}) \end{aligned}$	$1 \mathrm{k} \Omega$ to $10 \mathrm{~m} \Omega$	$100 \mathrm{~m} \Omega$	X		1 mA
$\begin{aligned} & \text { 3470 Series } \\ & (34702 A) \\ & (34703 A) \end{aligned}$	100 n to $10 \mathrm{~m} \Omega$ 15 to 10 Ms	$\begin{gathered} 10 \mathrm{~m} \Omega \\ 0.1 \mathrm{mg} \end{gathered}$	$x$	X	$\begin{aligned} & 1 \mathrm{~mA} \\ & 1 \mathrm{~mA} \end{aligned}$
$\begin{aligned} & 3480 \mathrm{~A} / 8 \\ & (3484 \mathrm{~A}) \end{aligned}$	$100 \Omega$ to $10 \mathrm{M} \Omega$	$10 \mathrm{~m} \Omega$	X		1 mA
2402A   （Opl 003）	$1 \mathrm{k} \Omega 1010 \mathrm{M} \Omega$	$10 \mathrm{~m} \Omega$		X	1 mA
$\begin{aligned} & 34508 \\ & \text { (Opt 002) } \end{aligned}$	10081010 ma	$1 \mathrm{~m} \Omega$		X	1 mA
3490A	$100 \Omega$ to $10 \mathrm{M} \Omega$	1 mR		X	1 mA

## DIGITAL VOLTMETERS

DIGITAL MULTIMETER
High sensitivity, high performance multimeter Model 3469B


Description
Twenty-six different range and function combinations allow a wide variety of measurements of ac volts, de volts, ohms, and dc current.

High sensikivily, wide bandwidth ac voltmeter
High sensitivity ( 2 mV to 500 V full scale) wide bandwidth ( 20 Hz to 10 MHz ), and high accuracy (土. $6 \%$ to $5 \%$ ).

High sensitlvity milliohmmeter
Resistance sensitivity ( $1 \Omega$ to $10 \mathrm{M} \Omega$ full scale) allows fast and accurate measurements of contact resistances, components, and plated-through circuit board hole resistances.

## Digital oc ammeter

High current sensitivity ( $2 \mu \mathrm{~A}$ to 200 mA full scale) allows current measurement capability approaching electrometer type performance at a modest price.

## DC voltmeter

Fast de measurements (15 samples per second), good sensitivity ( 200 mV to 1000 V full scale), and good accuracy ( $\pm 0.2 \%$ to $\pm 0.3 \%$ ).

## Specifications <br> AC voltmeter

Ranges: $1 \mathrm{mV}, 10 \mathrm{mV}, 100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$ ( 500 V max input).
Accuracy above $1 \%$ of range $\pm(\%$ reading $+\%$ range $)$, $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.
1 mV range ( 0.3 mV and above):

20 Hz	
$1+0.75$	100 kHz

4 MHz

10 mV to 1 V ranges:
$20 \mathrm{~Hz} \quad 100 \mathrm{~Hz} \quad 100 \mathrm{kHz} \quad 1 \mathrm{MHz} \quad 10 \mathrm{MHz}$

$$
\begin{array}{|c|c|c|c|}
\hline 0.5+0.5 & 0.3+0.3 & 1+1 & 2.5+2.5 \\
\hline
\end{array}
$$

$10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$ ranges:

$20 \mathrm{~Hz} \quad 100 \mathrm{~Hz} \quad 100 \mathrm{kHz} \quad 1 \mathrm{MHz} \quad 4 \mathrm{MHz}$ | $1+0.5$ | $0.4+0.3$ | $1+1$ | $2.5+2.5$ |
| :--- | :--- | :--- | :--- |

Input impedance: 10 Mr shunted by $<25 \mathrm{pF}$. Input common connected to chassis.
Overload protection: 500 V at frequencies $\leq 60 \mathrm{~Hz}$.
Residual noise: $<75 \mu \mathrm{~V}$.

## DC voltmeter

Ranges: $100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$. Accuracy ( $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ )

100 mV range: $\pm(0.2 \%$ reading $+0.1 \%$ range $)$.
$1 \vee$ to 1000 V ranges: $\pm(0.1 \%$ reading $+0.1 \%$ range $)$.
Input impedance: 10 Ms
Response time: 70 ms .
Overioad protection: 1000 V .
Norstal mode rejection
$60 \mathrm{~Hz}: 40 \mathrm{~dB}$.
Common mode rejection
DC: 60 dB .
Floating voltage: $\pm 500 \mathrm{~V}$ max.
Ohmmeter
Ranges: $1 \Omega^{*}, 10 \Omega, 100 \Omega, 1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 10 \mathrm{M} \Omega$. Accuracy ( $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ )
$1 \Omega$ range: $\pm(0.25 \%$ reading $+0.5 \%$ range $)$.
10 s range: $\pm(0.3 \%$ reading $+0.2 \%$ range $)$.
$100 \Omega$ to $10 \mathrm{M} \Omega$ range: $\pm(0.2 \%$ reading $+0.2 \%$ range $)$.
Source characteristics

Fuil saale range	Shart ojroult ourrent
$1 \Omega * *$	10 mA
$10 \Omega$	10 mA
100S	10 mA
1kn	1 mA
$104 \Omega$	0.1 mA
100 ks	$10 \mu \mathrm{~A}$
1 Ma	$1 \mu \mathrm{~A}$
10 Ms	$0.1 \mu \mathrm{~A}$
**Cable resistance oftset adjust on rear panel.	

Open circult voltage: 10 V negative with respect to common (common connected to chassis).

## Response time

$10 \Omega$ to 10 Ms ranges: 70 ms .
DC input protection: $\pm 100 \mathrm{~V}$ max.
AC input protection: 130 V ims max.

## DC ammeter

Ranges: $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 100 \mu \mathrm{~A}$.
Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right): \pm(0.2 \%$ reading $+0.2 \%$ range )
Full scale voltage drop: 100 mV .
Response time: 70 ms .
Overload protection: 5 times full scale.
FloatIng voltage: $\pm 500 \mathrm{~V}$ max.

## General

Sample rate: $1 \mathrm{~s} / \mathrm{s}$.
Overrange: 100\%.
Display: GaAsP light emitting diodes.
Out of range and lilegal range Indication: 3 least significant digits blank.
Polarity: automatic.
Operating temperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Warmup: 10 min .
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 10 \mathrm{VA}$.
Dimensions: $51 / 8^{\prime \prime}$ wide, $161 / 4{ }^{\prime \prime}$ high (withour removable feet). $11^{\prime \prime}$ deep ( $130 \times 159 \times 279 \mathrm{~mm}$ ).
Weight: net, $7 \mathrm{lbs}(3,15 \mathrm{~kg})$; shipping, $9 \mathrm{lbs}(4 \mathrm{~kg})$.
Price: HP 3469B, $\$ 640$.
*Allowable reactance $<100 \mu \mathrm{H}$ serles, $<2 \mu \mathrm{~F}$ prallel.
dIGITAL VOLTMETERS


## Description

A nex true rms voltmeter that covers nearly the whole spectrum of ac measurements is announced by HewlettPackard. A truly general-purpose device, this new Model 3403C RMS Digital Voltmeter measures dc plus ac from 2 Hz to 100 MHz . Using a three digit LED display with a fourth digit for overrange, the DVM reads both in volts, and with an option, decibels. AC voltage is measured from 10 millivolts 101000 volts fuil scale. The instrument reads dBV from -60 $10+60$.

All this capability is in a small $41 / 2$ by $73 / 4$ by $91 / 2$ inch package. The Model 3403 C is usable for dc. low frequency, audio, RF and IF measurements. True rns is especially valuable for measurements of noise, multiplexed signals, modulated waves and other complex signals with high harmonic content. Previously, a user had to purchase an expensive DVM with an ac option with limited upper bandwidth, or an RF voltmerer with limited low frequency ability. Now', wide bandwidth and wide voltage range are available in one instrument.

New design technology in the Model 3403 C includes a thinfilm hybrid do to 100 MHz amplifier, a log converter on a temperature-controlled chip, a thin-film thermopile, a panel meter using the Hewlett-Packard solid-state display, and MOS, LSI circuitry. The solid-stare display section is a one-volt digital panel meter that is sold by Hewlett-Packard as a separate product.

A full range of options is available including autorange, BCD output and remore programmability for systems applications. Analog outputs proportional to volts and decibels are available for use with analog recording devices.

## Wide voltage range

The 3403 C has six ac voltage ranges from 10 mV full scale to 1000 V full scale, enough to satisfy an extremely wide range of applications. In addition, the 3403 C provides five de ranges and five $\mathrm{dc}+\mathrm{ac}$ ranges for dc and low frequency measure ment capability. This wide measuring span covers virtually any ac requirement and makes the instrument a truly general purpose device.

## Wide bandwidth

The dc and 2 Hz to 100 MHz bandaridth of the 3403 C allows usage throughour the erequency spectrum. The 3403 C
is not only a general purpose meter for audio and low RF use, but it also can be used in the upper RF and IF bands. The 3403 C , in addition, is a low frequency measurement instrument and a five range dc meter.

True rms
The 3403 C is a true rms responding instrument utilizing the Hewlett-Packard thermopile as the rms sensing element. Its rms capability enables the 3403 C to make meaningful measurements of noise, multiplexed signals or other complex or distorted waveforms, as well as providing the assurance that any general purpose measurement will be made accurately

## dB Display

The dB display option provides readings directly in dB , a major convenience to ac users. The dB reference to which the measurement is made is conveniently adjustable from the front panel both; to provide referenced dB measurements, or to provide a convenient means to offset the reading by as much as 13 dB for unreferenced measurements.

## Systems

A full complement of systems options is available, both isolated and nonisolated, to insure systems compatibility.

The 3403C may be used with Hewletr-Packard printers and may easily be integrated into more complex systems remore control.

## Solid state display

The 3403C uses the Hewlett-Packard digital panel meter with its light emitring diode display as a readout device. This display provides a pleasing appeasance, ruggedness and high reliability.
Ranges

## Specifications

Full range display: 10.00 mV (ac only); $100.0 \mathrm{mV}, 1.000$ V, $10.00 \mathrm{~V}, 100.0 \mathrm{~V}, 1000 \mathrm{~V}$.
Overrenge: $>90 \%$ on all ranges except as limited by max input voltage.
Ranging information: front panel annunciators indicate overrange (approximately $190 \%$ of full range), or underrange (approximately $17 \%$ of full range) conditions.

## Periormance

AC frequency range
Slow response: 2 Hz to 100 MHz .
Fast response: 25 Hz to 100 MHz .
Response time
Fast response: 1 s .
Slow response: 10 s .
Instrument reads fina! reading $\pm 0.1 \%$ of input change in stated response time.
Display rate
Fast response; 4 readings per s .
Slow response: 2 readings per s.
Functions
$D C$ : responds to $\mathrm{d} c$ component of input signal.
AC: responds to true rms value of ac coupled input signal.
$\mathbf{A C}+\mathrm{dc}$ : responds to true ims value of dc and as input signal; reading is $\sqrt{(\mathrm{d} c)^{2}+(\mathrm{ac} \mathrm{rms})^{2}}$.
Temperature coefficient: $\pm 0.1 \mathrm{x}$ reading accuracy* $/{ }^{\circ} \mathrm{C}$ outside the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ temperature range.
*data from accuracy charts.
Accuracy: 90 days $\left(25^{\circ} \mathrm{C}+5^{\circ} \mathrm{C},<95 \% \mathrm{RH}, 17 \%\right.$ of range to $190 \%$ of range).


Y CAUTION: frequencies and ranges in this area may result in invalid reatings without ranging indication,

* $D C+A C$ function and slow response time only.
** \% of reading specification is representative of typical fiatness


## Input characteristics

Input impedance: $<10 \mathrm{MHz}$.
1 V to $1000 \vee$ range: $10 \mathrm{M} \Omega \pm 10 \%$ shunted by 19 pF $\pm 10 \%$.
10 mV and 100 mV range: 20 M ? $\pm 10 \%$ shunted by 16 $\mathrm{pF} \pm 10 \%$.
10 MHz to 100 MHz : the following table gives maximum loading due to input shunt impedance across a terminated source.

System impedance	Frequency	
(source and lozd)	10 MHz	100 MHz
$50 \Omega$	$1 \%$	$10 \%$
$75 \Omega$	$2 \%$	$20 \%$


2 Hz to 25 Hz	$2: 1$ at full range input.
$>25 \mathrm{~Hz}$	10:1 at full ranae indut.

## Maximum input voltage

Hi to Lo:
1000 V rms, 1500 peak or $10^{8} \mathrm{~V} \cdot \mathrm{~Hz}$ on any range. Maximum dc voltage in ac mode: $500 \mathrm{~V} d c$.
Lo to chassis:
$\pm 500 \mathrm{~V} \mathrm{dc}$, when floated with special banana to BNC adapter.

Options
Autoranging (3403C Option 001)
Automatic ranging: uprange at approximately $190 \%$ of full range; downranges at approximately $17 \%$ of full range.
Autorange time: fast response: 1 s per range change. Slow response: 10 s per range change.
Digital output (3403C Option 002)
The digital outpur option provides data outpurs in digital form for printer and system applications. In addition, inpur lines are included for external triggering of the instrument.
Isolated remote control + digital output + autoranging (3403C Option 005).
In addition to the features of Option 003, Option 005 provides the same isolation characteristics as isolated digital out. put (Option 004).
dB display (3403C Option 006)
Measurgment range: 108 dB ( -48 dB V to +60 dB V). Accuracy: 90 days ( $25^{\circ} \mathrm{C}+5^{\circ} \mathrm{C},<95 \% \mathrm{RH}$ ).

© CAUTION: Irequencies and ranges in this area may result in invalid readings without ranging indication.

- $D C+A C$ function and slow response time only
* specification is representative of typical Itatness

Calibrated $d B$ reference: $0 \mathrm{~dB}=1.000 \mathrm{~V}$; reference level may be set for $0 \mathrm{dBm}(600 \Omega$ ) by adjusting front panel dB calibration adjustment.
Variable dB reference: reference level may be shifted downward from calibrated position by $>13 \mathrm{~dB}$.
dB recorder output: output voltage: 200 mV for 20 dB . Output resistance: $1 \mathrm{k} \Omega \pm 500 \Omega$.

## General

## Operating conditions

Temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Humidity: <95\% RH.

## Recorder output

Output voltage: 1 V de open circuit for full range input. Output resistance: $1 \mathrm{k} \Omega \pm 10 \%$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 35$ VA max. (including all options).
Input terminals: BNC front panel connector standard for Lo to Hiterminals: rear panel connector available by internally reversing position of ac converter module.
Weight: including all options: net, 11 lbs ( 5 kg ) ; shipping, including all options: net, $16 \mathrm{lbs}(7,2 \mathrm{~kg})$.
Dimensions: $91 / 4$ " wide, 5 " high, $73 / 4$ " deep ( $234.9 \times 127 \times$ 196.8).

Accessories furnished: floating adapter-banana to BNC.
Price: IIP ;103C S150n: Option 001 autoranging, add $\$$ :? ; Oprion 002 digital output, whi sizi- *Option 005 isolated
 "Option 006 d8 display, wict seir:
"Options 005 and 006 are available only as factory installed options.

# MEASUREMENT SYSTEM Four-digit DVM with interchangeable modules Model 3470 Series 



## Description

The Hewlett-Packard 3470 Series is a low-cost line of DVM's using a flexible snap-together package. Two display sections are available, a four-digit display and a five-digit display, both with $100 \%$ overranging and a clear easy-to-read LED readour. These display sections lock onto any of three voltmeter modules which include a de voltmeter, an $A C / D C$ / Ohm multimeter and a $\mathrm{DC} / \mathrm{DCI} / \mathrm{Ohm}$ high sensitivity voltmeter. In addition, three center sections are arailable, including a battery pack and a BCD module. The third section (center) provides greater sensitivity and ac/dc current capability when used with the $A C / D C / \Omega$ multimeter.

The front panel of the 3470 Series is designed ro save time and confusion. Functions and ranges are clearly labeled. All maximum voltages are indicated at the input cerminals. Voltage protection extends to 1200 V on ac or dc and 350 V peak on ohms.

The capability of this DVM may be changed or expanded as measurement needs change. For example. a four digit DVM may be converted to a five-digir DVM by changing display sections. Most important, this system fights obsolescence.

## Service

Snap-out PC boards make servicing easy. Once the display PC board and voltmeter board have been removed from the case, they may be recombined. Components and test points may be reached without extender boards or special connectors. A self-test jumper in the display forces a fuli scale reading to act as a quick check. Accessories include the 11456A Read Out Test Card which performs a variety of tests on the display sections.



34740A Display
This four-digit display locks onto any center section or voltmeter module to form a complete DVM. It has four full digits plus $100 \%$ overranging. Price: $\$ 325$.


## 34750A Display

This five-digit display locks onto any center section or voltmeter module to form a complete DVM. It has five full digits plus $100 \%$ overranging. Price: see data sheet.


34721A BCD Module
This center section provides nonisolated BCD output for operation with printers and other devices. Price: $\$ 175$.


34720A Battery Module
This center section makes the 3470 into a portable DVM with six hours of continuous operation. Batteries are rechargeable. Module has side handles and front panel battery charge indicator. Price: $\$ 200$.


34722A Preamp/Ammeter Module
This center section provides added sensitivity ( 100 mV E.S. ac and dc), and ac/dc current measurement capability ( $100 \mu \mathrm{~A}$ to 1 A F.S.) when used with the 34702A Multimeter plug-on. Extended dc voltage and current capability can be obtained when using the 34701A DC Volmeter plug-on. Price: available. Spring ' 73.


## 34702A Multimeter

This plug.on provides four ranges of dc and ac ( 1 V to 1 kV F.S.) plus six ranges of ohms ( 100 ohms to 10 meg . ohms). The ac function covers 45 Hz to 100 kHz . Price, $\$ 275$.


## 34701A DC Voltmeter Plug-on

This plug-on provides four ranges of de from 1 V to 1 kV FS. at an economical price. Price, $\$ 150$.


## 34703A DC/DCI/Ohmmeter Plug-on

This autoranging plug.on provides six eanges of de volts ( 10 mV to 1 kV F.S.), six ranges of dc current ( $\pm 1 \mu \mathrm{~A}$ to $\pm 100 \mathrm{~mA}$ F.S.), and eight resistance ranges (one ohm to 10 megohms).
Price: see data sheet.

HP 34701 A DC Voltmeter Plug-on Tentative Specifications


For operation with either the HP 34740A, $41 / 2$ digit display, or with the HP $34750 \mathrm{~A}, 51 / 2$ digit display.


HP 34702A Multimeter
Tentative Specifications



## HP 34703A DC/DCI/Ohmmeter

 Tentative Specifications

For operation with either the HP 34740A, $41 / 2$ digit display, or with HP $34750 \mathrm{~A}, 51 / 2$ digit display.

Tentative Speo\|fications	$\infty$   HP 34740A	$H P 34750 A$
	DC Voltage	
Ranges (full sczie)	Auta or manual: $=10 \mathrm{mV},=100 \mathrm{mV},=1 \mathrm{~V},=10 \mathrm{~V},=100 \mathrm{~V}, \pm 1 \mathrm{kV}$	
Overranging	1000 V range: 20\%. All others: $100 \%$	
Maximum display	19999	199999 (except as noted)
Accuracy ( 30 days, $23{ }^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$ )	10 mV range:   $\pm$ ( $0.03 \%$ of reading, $=0.03 \%$ of range) 100 mV and 1 V range:   $=(0.03 \%$ of reading, $\pm 0.01 \%$ of range)   10 V through 1000 V range:   $\pm(0.04 \%$ of reading, $=0.01 \%$ of range)	10 mV range:   ( $41 / 2$ digits displayed) $=(0.025 \%$ of range)   100 mV range and 1 V range:   (51/2 digits displayed)   $=$ ( $0.025 \%$ of reading, $=0.005 \%$ of range)   10 V through 1000 V renge ( $51 / 2$ digits displayed)   $=(0.035 \%$ of reading, $\pm 0.005 \%$ of range)
Input resistance	$10 \mathrm{M} 2=0.1 \%$	
Common mode rejection	$>120 \mathrm{~dB}$	
Normal mode rejection	$>60 \mathrm{~dB}$	


	DC Current	
Ranges (full scale)	Auto or manual selection of: $=1 \mu \mathrm{~A}, \pm 10 \mu \mathrm{~A},=100 \mu \mathrm{~A}, \pm 1 \mathrm{~mA},=10 \mathrm{~mA},=100 \mathrm{~mA}$	
Overranging		
Maximum display	19999	19999 (5th digit blanked)
Input resistance		
Accuracy ( 30 days, $23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$ ) 1	$1 \mu \mathrm{~A}$ and $10 \mu \mathrm{~A}$ range:   $\pm(0.04 \%$ of reading, $0.03 \%$ of range)   $100 \mu \mathrm{~A}$ and 1 mA range:   $\pm(0.06 \%$ of reading, $\pm 0.03 \%$ of range)   10 mA and 100 mA range:   $\pm(0.25 \%$ of reading, $\pm 0.03 \%$ of range)	$1 \mu \mathrm{~A}$ and $10 \mu \mathrm{~A}$ range:   $=(0.035 \%$ of reading, $=0.025 \%$ of range)   $100 \mu \mathrm{~A}$ and 1 mA rânge:   $\pm$ ( $0.055 \%$ of reading, $\pm 0.065 \%$ of range)   10 mA and 100 mA range:   $=(0.25 \%$ of reading, $=0.025 \%$ of range $)$

## Ohms

Ranges (full scale)	Auto or manual selection of: $1 \Omega, 10 \Omega, 100 \Omega, 1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega, 10 \mathrm{M} \Omega$	
Overrange	100\% on all ranges	
Maximum display	19999	199999 (except on 18 range)
Conversion method	4-wire measurement	
Accuracy ( 30 days, $23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$ )	IR range:   $\pm$ ( $0.04 \%$ of reading, $\pm 0.03 \%$ of range) $10 \Omega$ through $1 \mathrm{~m} \Omega$ ranges:   $\pm(0.04 \%$ of reading, $\pm 0.01 \%$ of range) 10 ma range:   $\pm$ ( $0.12 \%$ of reading, $=0.01 \%$ of range)	Is range: (4 digits only)   $\pm(0.035 \%$ of reading, $\pm 0.025 \%$ of range $)$ $10 \Omega$ through $1 \mathrm{~m} \Omega$ ranges:   $\pm(0.035 \%$ of reading, $\pm 0.005 \%$ of range) 10 Mn range:   $=(0.12 \%$ of reading, $=0.005 \%$ ol range $)$

Snap together expandability


## 34720A Battery Module

Description
This center section provides six hours of continuous battery operation. The batteries used in the 34720A are a resealable vented nickel cadmium type with a 40 watt-hour capacity. A front panel pushbutton and associated meter indicate the charge condition.


34721A BCD Module

## Description

This center section adds nonisolated BCD output to the 3470 Measurement System. This section couples the 3470 to other devices such as a printer. A variable sample rate control from zero to four readings per second is provided on the front panel. In the HOLD position, internal samples are stopped so that external triggers may be used. A manual pushbutton trigger is also provided for single samples.
Ourpur levels are TTL compatible. Information is coded in an 8-4-2.1 sequence. Up to six columns are used for the reading. Additional columns are used for functions, range and polarity. This center section may be used with either the four. digit 34740 A display or the five-digit 34750 A display.


34722A Preamp/Ammeter (available, Spring '73)*
Used with 34701A DC Voltmerer or 34702A Multimeter and 34740A or 34750A Display.
Preamplifier: X10 Gain for ac and dc. (e.g., 100 mV F.S. sensitivity.)
Current mode: ac and dc from $100 \mu$ A to 1 A F.S., $100 \%$ over. ranging. Full scale insertion loss: 100 mV .
*Refer to data sheat tor specificstlons.

## General

Power: $110 / 120 / 220 / 240 \mathrm{~V}-10 \%$, + S\% switchable: 48 Hz to 440 Hz ; $\leq 8.7 \mathrm{VA}$.
Dlmensions: (with two snap-on modules: $31 \frac{1}{2}$ " high; with thres: $51 / 4^{\prime \prime}$ high), $61 / 4^{\prime \prime}$ wide, $93 / 4^{\prime \prime}$ deep, ( 89 or 133.35 $\mathrm{mm} \times 160 \mathrm{~mm} \times 248 \mathrm{~mm}$ ).
Welghts

	Nat	Shipping
34740A Display	3 lbs ( $1,36 \mathrm{~kg}$ )	4 lbs 4 or ( $1,99 \mathrm{~kg}$ )
34750A Display	$3 \mathrm{lbs}(1,36 \mathrm{~kg})$	4 lbs 4 oz ( $1,99 \mathrm{~kg}$ )
34701A DC Volmeter	$2 \mathrm{lbs}(0,9 \mathrm{~kg}$ )	$3 \mathrm{lbs} 402(1.53 \mathrm{~kg})$
34702A Multimeter	$2 \mathrm{lbs}(0,9 \mathrm{~kg})$	$3 \mathrm{lbs} 402(1,53 \mathrm{~kg}$ )
34703A DC/DCI/ Ohmmeter	$2 \mathrm{lbs}(0,9 \mathrm{~kg})$	3 lbs 4 foz ( 1.53 kg )
34720A Battery Module	$5 \mathrm{lbs}(2,26 \mathrm{~kg})$	6 lbs 4 oz ( $2,89 \mathrm{~kg}$ )
3472 A BCD Module	$1 \mathrm{lb} 8 \mathrm{oz}(0,82 \mathrm{~kg})$	$2 \mathrm{lbs} 12 \mathrm{oz}(0,95 \mathrm{~kg})$
34722A Preamp/ Ammeter		

Operating temperature: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

## Accessories avallable

11456A Readout Test Card for testing and troubleshooting the 34740 A Display, $\$ 50$.
18019A Carrying Case accommodates the 34740A Display, a center section and a bottom section plus power cord and input cables, $\$ 25$.
11457A Rack Mount Kit for 34740A Display, 34721A BCD Module and one bottom section, \$35.
562A.16C Printer Cable for operation with s0ss A Digital Recorders, $\$ 60$.

Prices: see page 78.

## DATA LOGGER <br> Portable data acquisition system <br> Model 2070A



## Description

The 2070A Data Logger is a complete data acquisition system able to scan up to 50 two-wire inputs with the 3485 A Scanning Unit. With the sample-and-hold option, it is able to digitize low frequency wave shapes. With the data storage option, up to 1000 readings/s can be taken.

The 2070A Data Logger combines a 3480 A one-half module DVM with a 5055A one-half module line printer. Both units are combined in a portable fan cooled case. When the 2070A is equipped with Data Storage (Option 005), a special rear panel includes controls to select the number of channels stored and the mode of operation.

## 3480A Digital Voltmeter

One-half module 3480A equipped with Option 004, Isolated BCD. Options include Sample-and-Hold (Option 001) and Data Storage (Option 005). Any one of the three 3480 plug-ins may be ordered optionally with the 2070A. See pages 83.86

## 5055A Digital Recorder

One-half module, 10 column line printer. Printing rate up to 10 lines $/ \mathrm{s}$. Accepts ink roller or pressure sensitive paper. Paper used is " $Z$ " fold. Front panel light controls include a power switch, a standby/operate switch, a paper advance button and a manual print burton. See page 242.

## Specifications, 2070A Rear Panel Controls

## Standard

Line switch; for both 3480 A and 5055 A .
External trigger: BNC connector brings out Measure line from 3480A.

Trigger mode switch: local mode allows front panel sample rate control to be used. External mode disables front panel Sample rate control.

Option 005, Data Storage (stores up to 50 complete readings) All standard controls plus

Storage limit: five position rotary switch to select Srorage limit, ( $10.20,30,40$ or 50 readings).
Scanner enable switch: for operation with 3485A. Allows a nonmultiple of 10 channels to be seanned, stored and printed.

Storage enable swltch: turn Data Storage on. otherwise, it acts like lsolated BCD output.
14 pin connector: brings out major Dara Storage control lines.

## 2070A Data Logger

Includes 3480A Oprion 004 and 5055A Digital Recorder in fan cooled combining case
Option 001 Sample-and-Hold
Option 005 Data Storage
Option 082 3485A DC Range Unit
Option 842 3484A Multifunction Lnit with dc and ohms
Option 843 3484A Multifunction Unit with ac and dc
Option 844 3484A Multifunction Unit with $\mathrm{ac} / \mathrm{dc} / \mathrm{ohms}$
Option 851 3485A Scanning Unit with 10 channels
$\$ 2770$
add $\$ 500$ add $\$ 1000$ add s iss
add $\$ 1185$
add $\$ 1895$
add $\$ 2095$

Option 852 3485A Scanning Unit with 20 channels
add $\$ 1400$

Oprion 853 3485A Scanning Unit with 30 channels
add $\$ 1500$

Option 8543485 A Scanning Unit with 40 channels
add $\$ 1600$

Option 855 3485A Scanning Unir with 90 channels
add $\$ 1700$

Option 857 Isolated Remore Control for the 3485A
add $\$ 1800$
add $s 300$

# DIGITAL VOLTMETER Multi-function DVM for bench and system use Models 3480A and 34808 



3480A

## Description

The 3480A/B Digital Voltmerer covers a variety of systems and bench applications. The four-digit mainframe bas $50 \%$ overranging which is available in two sizes, the one-halt module 3480 A or the full rack width, 3430 B . These mainframes may accommodate any of three signal conditioning plug-ins. The 3482A plug-in has five de ranges; the 3484A has five do ranges, five true rms ac ranges and six ohms ranges: and the 3485 A has up to 50 two-wire dc input channels.

Mainframe options further enhance the Aexibility of the 3480. To digitize changing voltages at rates up to 1000 readings/s. Oprion 001 Sample-and-Hold is available. The instantaneous value of the input sigoal is held during A-to-D conversion. Two BCD output options are available: Option 003 Non-isolated BCD and Option 004 Isolated BCD. Up to $s 0$ readings may be stored at $1000 / \mathrm{s}$ for output at a lower speed (i.e., on a line printer) using Option 00S Data Storage.

The 3480 may be purchased as part of a portable data acquisition system, the 2070A Data Logger. The 2070A combines a 3480A DVM with a 5055A Digital Recorder,

## Output Options

The 3480A or 8 may be equipped with one of three output options. All of these options are designed to transmit digital information from the DVM to external devices such as printers, tape punches, couplers, computers, calculators, etc. Information transmitted consists of the reading, polarity, range, function and overload. In the case of the 3485A Scanning Unit. two. digits of Channel I.D. are also transmitted.

Non-isolated BCD (Option 003) may be factory or feld installed and has its ground line connected directly to the input Low terminal on the front panel. Floating measurements may not be made into a grounded system with this option. This oprion may not be used with the 3485A Scanning Unit.

Isolated BCD (Oprion 004) is a factory installed option which isolates the input Low terminal from the ground used on the output lines.

Data Storage (Option 005 ) is a factory installed option which includes isolated BCD output. Up to 50 complete DVM readings may be entered into Data Storage at up to $1000 / \mathrm{s}$.

The output rate of these stored readings is governed by an external device such as a printer. This allows readings to be taken at high speed, stored, then outputted at 10 to 20 lines per second.

The Sample-and-Hold (Option 001) allows the 3480 to be used to economicatly digitize low frequency wave forms. Precision four-digit measurements are possible on a changing input voltage at reading rates up to $1000 / \mathrm{s}$.
Sample-and-Hold is physically located in the 3480's mainframe. The input volzage is tracked until a trigger is given, then Sample-and-Hold freczes the inpur voltage and holds it for 1 ms , the digitizing period of the 3480 . After digitization. tracking resumes antomatically.
Sample-and-Hold may be triggered to instantly freeze the input voltage. A delay of $105 \mu \mathrm{~s}$ may be added to allow for settling time of the input amplifier. The delay is used for measuring pulse amplitude where there is a full scale step input.

## Specifications

## Performance

Acquisition time: time to respond to a plus or minus full seale step input to within $\pm 0.01 \%$ of final value.

Plug'in unit

Range	3482 A	3484 A	3485 A
$\pm 100.00 \mathrm{mV}$	$100 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$
$\pm 1000.0 \mathrm{mV}$	$70 \mu \mathrm{~s}$	$70 \mu \mathrm{~s}$	$70 \mu \mathrm{~s}$
$=10.000 \mathrm{~V}$	$70 \mu \mathrm{~s}$	$70 \mu \mathrm{~s}$	$50 \mu \mathrm{~s}$
$\pm 100.00 \mathrm{~V}$	$70 \mu \mathrm{~s}$	$70 \mu \mathrm{~s}$	-
$=1000.0 \mathrm{~V}$	$70 \mu \mathrm{~s}$	$70 \mu \mathrm{~s}$	-

Maximum dV/dT: $8 \%$ of range/ $\mu \mathrm{s}$, Sample-and-Hold enabled.
Aperture time: time from command to the Sample-andHold option to take a reading to when the signal is actually held: $110 \mathrm{~ns} \pm 20 \mathrm{~ns}$.
A delay of $105 \mu \mathrm{~s} \pm 10 \mu \mathrm{~s}$ may be added prior to aperature time by using Delay On or by triggering through Measure (normal trigger).

## General

Accessorles avaiłable: see data sheer.
Operating temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$; 40 Hz to 440 Hz .60 VA max, including any plug.ins or options.
Dimensions
3480A: $8^{\prime \prime}$ wide, $6.3 / 32^{\prime \prime}$ high, $16^{\prime \prime}$ deep (203.2 $\times 154,8 \times$ 406.4 mm ) (Hali rack width module.)

34808: $165 / 3^{\prime \prime}$ wide, $33 / 8^{\prime \prime}$ high, $18 \frac{1}{8 \prime \prime}$ deep ( $422.8 \times 85,7 \times$ - 666,7 ). (Rack ridch module.)

Weights
3480A: net, 12 lbs 8 oz ( $5,7 \mathrm{~kg}$ ) : shipping, $17 \mathrm{lbs}(7,65 \mathrm{~kg}$ ).

34808: net, 13 lbs 8 oz ( $6,15 \mathrm{~kg}$ ); shipping, $18 \mathrm{lbs}(8,2$ $\mathrm{kg})$.
Prices
3480A One half module mainframe. $\$ 895$.
3480 B Full rack width mainframe. $\$ 995$.
Mainframe Optlons
Option 001 Sample-and-Hold, $\$ 500$.
Option 003 Digital Output, 2200.
Option 004* Isolared Digital Output,\$375. Option 005* Data Storage, $\$ 1000$.
*Must be ordered for use with oplion 021, 041, or 057.

## 3482A DC Range Unit



The 3482A has five dc voltage ranges selectable manually, automatically or remotely. The 3.182 A has guarded foating inputs with switchable front and rear terminals. Triggering may be done internally at rates from $1 / \mathrm{s}$ to $25 / \mathrm{s}$ using a front panel control. Triggers may also be issucd manually or re. motely. A three-position input filter provides selectable degrees of normal-mode noise rejection. Isolared Remote Control, Option 021 adds remote control over filter and range.

## Specifications, 3482A DC Range Unit DC voltages

## Ranges

Full range display: $\pm 100.00 \mathrm{mV}, \pm 1000.0 \mathrm{mV}, \pm 10.000 \mathrm{~V}$. $\pm 100.00 \mathrm{~V}$ and $\pm 1000.0 \mathrm{~V}$.
Overrange: $50 \%$ on all but 1000 V range, $\pm 1200 \mathrm{~V}$ max inpur.
Range selection: manual, automatic or remote.
Automatic ranging: upranges at $140 \%$ of range; downranges at $10 \%$ of range.

## Performance

Accuracy: $\left(90\right.$ days, $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},<95 \% \mathrm{RH}$ ).
100 mV range: $\pm(0.01 \%$ of reading $+0.02 \%$ of range $)$.
All other ranges: $\pm(0.01 \%$ of reading +0.01 of range $)$.

## Measuring speed

Response time
Filter Out: I ms. Reads to within i count of final reading

When triggered coincident with application of step input voltage.
Fifter A: 200 ms to within I count of final reading.
Filter $B: 15$ to within 1 count of final reading.
Reading period: $950 \mu \mathrm{~s}$.
Reading rate (withour range change)
Manual: reading may be manually initiated with front panel pushbutton.
Internal: 1 to 25 per $s$ with front panel control.
External: 0 to 1000 per s with external trigger.
Input characteristics
Input resistance
$100 \mathrm{mV}, 1000 \mathrm{mV}, 10 \mathrm{~V}$ sanges: $>10^{\mathrm{tn} \Omega}$.
$100 \mathrm{~V}, 1000 \mathrm{~V}$ ranges: $10 \mathrm{M} \Omega \pm 0.1 \%$.
Common mode rejection: $>80 \mathrm{~dB}$, dc to 60 Hz ( $1 \mathrm{k} \Omega$ in either lead).
Normal Mode Rejection (NMR)

Filter Posifton	50 Hz	60 Hz and abova
Out	0 dB	0 dB
$A$	$>27 \mathrm{~dB}$	$>30 \mathrm{~dB}$
8	$>77 \mathrm{~dB}$	$>80 \mathrm{~dB}$

Filter selection: manual or remote.
Noise: < $00 \mu \mathrm{~V}$ peak to peak (unfilered). Peak to peak noise is $<40 \mu \mathrm{~V} 95 \%$ of the time since the noise amplitude approximates a Gaussian distribution where the standard deviation (which is also the rms value) $=10 \mu \mathrm{~V}$.

## Maximum input voltage

Guard to Chassis: $\pm 500 \mathrm{~V}$ peak.
Guard to Low: $=200 \mathrm{~V}$ peak.
High to Low: $\pm 1200$ V peak.

## General

Weight: get, 4 lbs 4 oz ( $1,9 \mathrm{~kg}$ ) ; shipping. ? lbs ( $3,15 \mathrm{~kg}$ ).
Price: $\mathrm{H}_{\mathrm{p}} \mathbf{3}-582 \mathrm{~A}, \mathrm{5} 755$ : Option 021, $\$ 200$.

## 3484A Multifunction Unit



The 3484 A offers the same dc capability as the 3482 A dc range unit with the addition of five true rms ac ranges and six ohms ranges. The true rms ac converter eliminates serious ercors caused by small amounrs of distortion on the input signal, and also extends measurement capability to the measurement of non-sinusoids. A do coupled mode allows the
direct measurement of both the ac and dc components of the input signal. Frequency range extends from 1 Hz to 10 MHz . The ohms converter covers from 100.00 oirms to 10.000 megolsm full sale. Remote selection of range. function and filter position is possible with Isolated Remote Control, Option 041 .

Specifications, 3484A Multifunction Unit
DC voltage
Same specifications as 3482A DC Range Unit.

## Ohms, Option 042

## Ranges

Full range display: $100.00 \Omega, 1000.0 \Omega, 10.000 \mathrm{k} \Omega, 100.00 \mathrm{k} \Omega$, 1000.0 kr , and $10.000 \mathrm{M} \Omega$.

Overrange: $50 \%$ on all ranges.
Range selection: manual, automaric or remote.

Automatic ranging: upranges at $140 \%$ of range; downranges at $10 \%$ of range.

## Performance

Accuracy: ( 90 days, $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},<95 \% \mathrm{RH}$ ).
1000 s thru $1000 \mathrm{k} \Omega$ ranges: $\pm(0.01 \%$ of reading $+0.01 \%$ of range).
$100 \Omega$ range: $\pm(0.02 \%$ of reading $+0.05 \%$ of range $)$.
10 M ! range: $\pm(0.1 \%$ of reading $+0.01 \%$ of range $)$.
Measuring speed

## Response time

100 n thru $100 \mathrm{k} \Omega$ ranges (no fitering): 1 ms . Reads to within 1 count of final reading when triggered coincident with application of input.
$1000 \mathrm{k} \Omega$ range (Fliter A): 200 ms to within 1 count of final reading.
$10 \mathrm{M} \Omega$ range (Filter A): $2 s$ to within 1 count of final reading.
Reading period: $950 \mu \mathrm{~s}$.
Reading rate (without range change)
Manual: reading may be manually initiated with front panel pushbutton.
Internal: 1 to 25 s with front panel control.
Externa): 0 to 1000/s with external trigger.
Input characteristics
Voltage across unknown: 1 V at full scale, all ranges.
Current thru unknown
100n range: 10 mA .
1000 range: 1 mA .
10 ks range: $100 \mu \mathrm{~A}$.
$100 \mathrm{k} ?$ range: $10 \mu \mathrm{~A}$.
$1000 \mathrm{k} \Omega$ range: $1 \mu \mathrm{~A}$.
$10 \mathrm{M} \Omega$ range: 100 nA .
Overload protection: $\pm 75 \mathrm{~V}$ peak maximum input. all ranges.

## True RMS AC Voltage Option 043

Ranges
Full range display: $100.00 \mathrm{mV}, 1000.0 \mathrm{mV}, 10.000 \mathrm{~V}$, 100.00 V . and 1000.0 V .

Overrange: $50 \%$ on all sanges, 1500 V peak max input.
Range selection: manual, auromatic or remote.
Automatic ranging: upranges at $140 \%$ of range; downranges at $10 \%$ of range.

## Performance

Accuracy: ( 90 days, $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, 95 \mathrm{~F} \mathrm{RH}$ ).
DC: $\pm 1.0 \%$ of reading. $60 \%$ to $150 \%$ of range. For voltages below $60 \%$ of sange, the "Accuracy Multiplier" must be used.
$A C$ : as specified by graphs.
Response
VAC (AC) function: responds to true rms value of ac coupled input signal.
VAC (DC) function: responds to true rms value of $d c$ and ac input signal. Reading is $\sqrt{(d c)^{2}+(2 c r m s)^{2}}$. An external $10 \mu \mathrm{~F}$ coupling capacitor may be used to eliminate the $\mathrm{d} c$ component and measure ac component only from 1 Hz to 10 MHz .
Function selection: manual or remote.
input impedance
Front terminals.


Rear terminals.

"For readings below $80 \%$ of range, use the "Accuracy Multiplier" graph times the basle accuracy. For example a $1 \mathrm{kHz}, 30 \mathrm{mV}$ signal would have an accuracy of $\pm 0.1 \%$ times 2 or $\pm 0.2 \%$ on the 100 mV range.

Crest factor: 7:1 at full scale, derated linearly from 35 Hz to $2.2: 1$ at 5 Hz .
Maximum input voltage
VAC (DC): 1500 V peak ac, 100 V dc, , 10 V dc max on 100 mV range) ; $\mathrm{dc}+\mathrm{ac}=1500 \mathrm{~V}$ max.
VAC (DC): 1000 V ims; $d c+a c=1500 \mathrm{~V}$ max.
Measuring speed
Response time (without range change).
VAC (AC): 1 s to within 10 counts of final reading (input change from $10 \%$ to $100 \%$ of range) or 20 counts of final reading (input change from $100 \%$ to $10 \%$ of range).
VAC (DC): 15 s to within 10 counts of final reading.

## Reading rate

Manual: reading may be manually initiated with front panel pushbutton.
Internal: 1 to 25 per $s$ with front panel control.
External: 0 to 1000/s with external trigger.
Accuracy Multiplier
VAC (AC) and VAC (DC) functions, all ranges, for reading below $60 \%$ of range.

ACCURACY MULTIPLIER
VAC IAC) AND VAC IOCI FUNCIIONS ALL RANGES.
FOR READINGS BELOW GOZ OF RANGE

**Accuracy, for frequencies $>1 \mathrm{MHz}$, is only spectified from the foont terminals.


***Instrument reading is $\sqrt{(d \mathrm{C})^{2}+(a c \mathrm{rms})^{2}}$. An external $10 \mu \mathrm{~F}$ coupting capacitor may be used to eliminate the de component and measure the ac component only from 1 Hz to 10 MHz in VAC ( DC ).


Weight: net, 6 lbs 2 oz ( $2,75 \mathrm{~kg}$ ); shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg}$ ). Price: HP 3484A, $\$ 970$.

Option 041 Isolated Remote Control, $\$ 200$.
Option 042 Ohms Converter, $\$ 200$.
Option 043 True RMS AC Converter, $\$ 900$.
3485A Scanning Unit


The 3485A is a de Scanning Unit with up to 50 two wire floating inputs and three de voltage ranges from 100.00 mV to 1000.0 V full scale. By using FET switches, scan rates up to 1000 channels/s are possible. Scan modes include step, single scan, continuous scan and random. The dwell time on each channel may be varied in six steps from one second to "none". Input resistance is $>10^{\circ} \Omega$. Autoranging is standard and the 3485A has a switchable 30 dB filter. Isolated Remote Control, Option 057 allon's remote control over ranges, filter, scanning modes and random or last channel.

## Specifications, 3485A Scanning Unit

## Channels

Number: up to so channels which may be purchased in increments of 10 channels.
input configuration: foating FET switches with separate Guard for every block of 10 channels.

## Ranges

$=100.00 \mathrm{mV}, \pm 1000.0 \mathrm{mV}$, and $\pm 10.000 \mathrm{~V}$.
Overrange: $50 \%$ on all ranges, $\pm 50 \mathrm{~V}$ max input.
Range selection: manual, automatic, or remote.

Automatic ranging: upranges $140 \%$ of range; dowaranges at $10 \%$ of range.

Time required: 1.5 ms per range change.

## Performance

Accuracy ( 90 days, $25^{\circ} \mathrm{C},<95 \% \mathrm{RH}$ )
100 mV range: $\pm(0.01 \%$ of reading $+0.04 \%$ of range $)$.
1000 mV and 10 V ranges: $\pm(0.01 \%$ of reading $+0.01 \%$ of range).
Maximum operational voltage (for rated accuracy)
High to Low: $\pm 15 \mathrm{~V} \mathrm{dc}$.
Guard to Chassis: $\pm 50 \mathrm{~V}$ peak.
Guard to Low: $\pm 10 \mathrm{~V}$ peak.
The algebraic sum of all voltages in a path between any Low to any High must not exceed $\pm 1 \mathrm{~s} \mathrm{~V}$ peak.
The maximum algebraic voltage difference between any Low to any other Low must not exceed $\pm 15 \mathrm{~V}$ peak.
Maximum input voltage
High to Low: $\pm 50 \mathrm{~V}$ peak.
Guard to Chassis: $\pm 50 \mathrm{~V}$ peak.
Guard to Low: $\pm 50 \mathrm{~V}$ peak.
Measuring speed
Response time
Filter Out: 1 ms to read within 1 count of final reading when triggered coincident with application of step input.
Filter In: 250 ms to read within 1 count of final reading.
Reading period (including response time and digitizing time): $950 \mu \mathrm{~s}$. Scanning and reading rate

Manual: readings may be manually initiated on any one channel with a front panel self-latching pushbutton (Monitor) at a fixed three reading per second.
Internal: readings may be automatically initiated in the Single Scan or Continuous Scan modes at any one of six selected Channel Delays. Speed varics from 1 channel per second to 1000 channels per second. With Filter In, a minimum delay of 250 ns is used.
External: 0 to 1000 channels per second with external rrigger.
Channel Delay: six delays; $1 \mathrm{~s}, 500 \mathrm{~ms}, 250 \mathrm{~ms}, 125 \mathrm{~ms}$, 62 ms . and "NONE". In "NONE', there is no dwell time on a given channel and the speed is limited mainly by the reading period ( 1 ms ). The reading is taken after the selected Channel Delay.
Input characteristics
Input resistance ( $25^{\circ} \mathrm{C},<95 \% \mathrm{RH}$ ): $>10^{\circ} \Omega$.
Effective Common Made Rejection (ECMR)
DC: $>80 \mathrm{~dB}$. AC ( $50-60 \mathrm{~Hz}$ )

Filter Out: $>76 \mathrm{~dB}$.
Filter In: $>105 \mathrm{~dB}$.
Normal Mode Rejection (NMR)

Filier Poistiton	60 Hz	60 Hz and abova
Out	0 dB	0 dB
In	$>27 \mathrm{~dB}$	$>30 \mathrm{~dB}$

Filter selection: manual or remote.

## General

Weight: ner, 7 lbs 3 oz ( 3.2 kg ); shipping, 8 lbs 14 oz ( 4 kg ). Prices: HP 3485A, $\$ 1400$.

Option 05110 channels, s100.
Option 05220 channels, $\$ 200$.
Option 05330 channels, $\$ 300$.
Option 054 40 channels, $\$ 400$.
Option 05550 channels, $\$ 500$.
Option 057 Isolated Remote Control, $\$ 300$.

## DATA COUPLER/DATA PUNCH Punches popular tape codes from DVM's Model 3489A



3489A

## Description

Hewlett-Packard's 3489A Data Punch is a combination coupler and paper tape punch. Features include an internal timer for unattended data logging and a data counter to add line numbers. Output format from the 3489 A is controlled by a pin-board so that any popular paper tape code may be punched, such as ASCII, EBCDIC, BCD or CCITT. Special characters may be added to construct special formats. Length of data words may be varied to 30 characters. Number of readings per line is variable.

## BCD Input

## Features

The 3489A accepts up to eight $B C D$ digits of measurement data plus one BCD digit for range, one BCD digit for function and one $B C D$ digit for polarity and overload.

## Programmable output codes

The character code for the punched tape can be programmed to be compatible with virtually all computer, telex and calculator systems.

## Programmable data formatting

Up to 10 special characters can be programmed for data formatting on the punched tape.
Internal timer
The data punch can be set to sample a measurement at intervals from one to 99 seconds or minutes.

## Data counter

Internal data counter automatically adds a four-digit I.D. to each reading. This number may be used as line numbers or simply to identify readings.
Manual punching
Front panel pushbuttons can be used to punch identifica. tion characters on the tape.

## Specifications

Punching speed: 70 characters/s.
Punched tape format: any code up to 8 bits can be programmed. Special characters can be programmed for data formatring.
Tape widths: accepts all standard widths.
Type of tape: paper, oiled paper, mylar or metallized mylar.
Tape supply: 300 meters ( 1000 ft ) standard reel.
Tape winder capacity: 80 merers ( 260 ft ) equivalent to 32,000 characters.
Punching tolerance: in accordance with the following standards. ISO/TC 97 (Secr-146)221; BS 3800:1965; DIN 66106.

## Interface lines

Data: TTL compatible, positive "true", BCD coded 8-4-2.1. $\mathrm{U}_{\mathrm{P}}$ to 8 digits of measurement data. One digit for range, one digit for function, one digit for polarisy and overload.
Punch (print) command: voltage step from high level to low level. TTL compacible.
Hold-off signat: high level or low level for hold-off-selected by jumper. Active during punch operation or, when in DATA RATE INT mode, between sample times. TIL compatible.

## General

Operating temperature: $+8^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.
Humidity: 0 to $95 \%$ RH over full remperature range.
Weight: shipping $52 \mathrm{lbs}(23 \mathrm{~kg}$ ).
Dimensions: 425 mm wide, 230 mm high and 533 mm deep $\left(163 / 4^{\prime \prime} \times 9-1 / 32^{\prime \prime} \times 21^{\prime \prime}\right)$.

## Power:

Option 050: $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$.
Option 060: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$.
1解 VA tape winder on, 1i0 VA tape winder off.

## Options

Option 001 Bypass Card: this card allow's up to 8 -bit par. allel characters from an external device (e.g., computer) to be punched directly. The data and hold-off (busy) signals can be selected by jumper to be negative "true" or positive "true." The punch (print) command is provided by the external device and can be selected, by jumper, to be a positive or negative going edge.
Option 002 Time Input Card: this card acceprs up to six BCD digits of time information. Data signals can be selected, by jumper, to be positive or negative "true". A maximum of six special characters can be programmed for data formacting purposes. The card can be disabled by a rear panel switch or by a remote signal.

## Prices

3489A Data Punch, $\$ 3000$; Oprion 050, $230 \mathrm{~V} / 50 \mathrm{~Hz}, \mathrm{N.C}$. ; Option 060, $115 \mathrm{~V} / 60 \mathrm{~Hz}, \mathrm{~N} . \mathrm{C}$; Option 001, (11460A) Bypass Input Card, $\$ 170$; Oprion 002. (11461A) Time Input Card, $\$ 220$.
11462A Cable, 3480/85A, $\$ 60$; 11463A Cable, 3480/82A/ 84A, $\$ 60$; 11464A Cable, 3480/Opt 005/85A, 560; 11465 A Cable, $5326 / 5327 \mathrm{~A} / \mathrm{B} / \mathrm{C}, \$ 60$ : 11466 A Cable, Open-ended. 845; 11467A Cable. 3490A, 560; 5060-8317 ( 02116.6178 ) Connector Kit, $\$ 10$; (one supplied with instrument): 11468A Adapter Box, \$85: 11469A Test Card, $\$ 200 ; 5060-1742$ Extender Board, \$23: 5060-8741 Rack Mount Kit, $\$ 8$.


## Description

The Hewletr. Packard 3440A and its associated plug-ins are designed for general purpose measurements of do volts, ac volts, de current and ohms. The 3440A has BCD output for use with printers and other devices. The normal output code is $2-2 \cdot 2 \cdot 4$. A $1 \cdot 2 \cdot 4 \cdot 8$ output code is available on the 3440 A Option H02. The sample rate on the 3440A is adjustable on the front panel at up to five readings per second.

The 3440 A will accept any of three plug-ins. The 3443A offers five dc voltage ranges. The 3444 A has five $d c$ voltage ranges plus do current and ohms. The 3445A has three ranges of both ac and dc volts.

The accuracy of the 3440A is dependent on a highly stable zener diode reference. Accuracy is verified, anytime during operation, by pressing a fronr panel button and adjusting the reading to equal the reference voltage. The internal caliberation source will stay within $\pm 0.05 \%$ for three months, and has a TC of $\pm 0.002 \% /{ }^{\circ} \mathrm{C}$.

The 3440 A has four full digits or a maximum display of " 9999 ". An additional five percent overranging is indicated by an overrange light. Rated accuracy is maintained in overrange.

The input terminals may be floated up to 500 V dc . The dc input tesistance is a constant 10.2 M . The ac input impedance is $10 \mathrm{M} \Omega$ shunted by 20 pF . Separate input terminals help teduce shunt capacity.

Specifications
Plug-in capability chert

DC Volts	3443A	3444 A	3445 A
100 mV and IV	$\bullet$	$\bullet$	
$10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V	$\bullet$	$\bullet$	
AC Volts   10 V .100 V and 1000 V			$\bullet$
Ohms   $1 \mathrm{k} \Omega$ through 10 min		$\bullet$	
DC Current   $100 \mu \mathrm{~A}$ through 1 A		$\bullet$	
Autorangins	$\bullet$		$\bullet$
Remote Ranging	$\bullet$		$\bullet$


-Optlon H02 offers 1-2-4-8 output code; 3.2.2.4 oufput code is standard.


## Description

The Hewlett-Packard Model 3490A Multimeter is a five digit integrating digital voltmeter. The basic instrument measures de voltages, ac voltages, and resistances. Additionai measurement capability is achieved by the addition of low cost options.

The 3490A uses a dual slope integrating technique and is fully guarded, providing excellent noise immunity at five readings per second on all de ranges. Ranging is automatic over all ranges on all functions. DC measurements can be made with $1 \mu \mathrm{~V}$ resolution on the 100 mV range. AC voltage measurements can be made from 20 Hz to 250 kHz in four ranges. The I V range provides $10 \mu \mathrm{~V}$ of ac voltage resolution. Ohms measurements can be made, utilizing the four-wire conversion technique which eliminates errors due to rest lead resistances. Six ranges of ohms, including a $100 \Omega$ range, are provided. All functions and ranges include $20 \%$ overranging except the 1000 V range.

## Display

The 3490A uses Hewlett-Packard's light emitting diodes (LED's). These display digits are of the dot matrix type to reduce the ambiguity caused by the failure of a single diode. The extremely high reliability of this LED display assures maximum life.

## Self-test

At the flip of a switch, Hewlett-Packard's 3490A Digital Multimeter sequences itself through 10 tests that checks timing signals and autoranging circuits, validates the performance of most logic-circuit IC's and checks the six-digit LED display. These tests, and six others provided by six additional frontpanel switches, cut calibrations costs and time, reduce the number of external standards required, and assure a user that his DMM is ready to make accurate measurements.

Functions


The standard 3490A inciudes five ranges of de measurement capability from 100 mV to 1000 V . Measurements are made from the front panel at a precise five reading/s: and at slower rates, using digitaliy controlled sample rate selector. High input resistance, $>10^{10} \Omega$ on $100 \mathrm{mV}, 1 \mathrm{~V}$, and 10 V range, assures accurate measurement of high impedance sources.

(IN AC)
Four ranges of ac measurements are provided. The average ac value is accurately detected, and the rms value is displayed with five digits of resolution. Full autoranging, wide frequency response, and $20 \%$ overranging are designed-in features to permit easy operation.


Six ohms ranges are standard, and all of the ranges provide true four-wire ohms measurement capability. Maximum current chrough the unknown is approximately 1 mA . Overvoltage protection for the ohms sensing terminals insure maximum protection against an inadvertent application of a high voltage to ohms terminals. Over-voltage protection is provided to 250 V and fuse protection to 1000 V .

## Serviceability

The 3490A has been "designed for serviceability". Inside, the 3490's low parts density provides easy access for servicing. Test points and jumpers are keyed to detailed diagnostics.

Several diagnostic aids are available to further minimize 3490 A repair time. A service video rape, Accessory No. 11128A, wrill demonstrate use of self-test and front panel symptoms to isolate failures. The 11126A accessory provides a set of IC reference boards with most of the 3490A logic IC's for use with the hp. 10529A Logic Comparator. Using these boards with the Logic Comparator, a faulty IC can be isolated in seconds without removing it from the circuit. Also. a spare parts set, Accessory No. 11127A, containing most critical components of the 3490 A will be available to users.

## Options

## Systems applleations

The Model 3490A offers built-in fexibiliry for systems applications. The 3490A offers both an ASCII character serial interface and a Bit parallel (BCD coded) interiace. This combination provides the necessary versatility to configure the lowest cost instrument system.

## Ratio (Opt 080)

$D C / D C$ and $A C / D C$ three-wire ratio measurements can be conveniently added to the 3490A. This capability offers both auro-polarity and a selection of two reference ranges. The 1 and 10 V ranges are specified from $10 \%$ to $120 \%$ of selected range. Ratio function is not programmable.

## 50 Hz Operation (Opt 050)

60 Hz Operation (Opt 060)
Maximum noise immunity is achieved when the power line frequency is harmonically related to the sample period of the integrating DMM. Option 050 will maxirrize normal and common mode rejection for 50 Hz power line frequency, and Option 060 will provide this rejection for 60 Hz .

## Sample/Hold (Option 040)

Sample/Hold provides the 3490A with extra and unique measurement capability.

The Sample/Hold option has two modes of operation to solve your difficult measurement problems.

Track and Hold: in this mode the input voltage is held instantly upon receiving an external command. This mode is useful in the digitization of repetitive or transient waveforms.

Acquire and Hold: in this mode a well known delay is inserted to permit the input amplifier to settle to a specified accuracy. This is useful in measuring pulse height or any similar step input.
Digital Output (Opt 021) and Remote Control (Opt 022)
These oprions provide digital control and data output in the parallel BCD code of 8-4.2-1 either negative or positive
true logic. Selection is accomplished by positioning an inter. nal switch. The remote control option provides complete control of all functions, ranges, and external trigger commands. The digital outpur option provides nine columns of information which includes function, polarity, data, and range. These options may be purchased separately to meet specific application requirements. Either of these options require Option 020, Systems Expand.

## Systems Expand (Opt 020)

This option provides the appropriate interoal and external connector to install either Digital Output, Option 021, or Remote Control, Option 022. Additionally, if Option 020, Systems Expand, is ordered with the initial purchase, then either digital output and/or remote control can be ordered separately as accessories for easy installation at any time. Option 020 includes rear terminal in parallel.

## ASCII (Character Serial Blt Parallel) Data Input/Output (Opt 030)

The seria! data control and data output option permits the Model 3490A to operate on a single data/control bus with several other instruments. This serial code is an eight bit bite using an ASCII type coding. The unique "Talker/Listener" address structure makes the systems hardware more economical, and the associated software simpler. Also, the serial control/data bus is directly compatible with the Hewlett-Packard Model 9800 series calculators. This option does not require Oprion 020 Systems Expand.

## Specifications <br> DC voltage

## Ranges

Full range display: $\pm 100000 \mathrm{~V}, \pm 1.00000 \mathrm{~V}, \pm 10.0000 \mathrm{~V}$, $\pm 100.000 \mathrm{~V}, \pm 1000.00 \mathrm{~V}$.
Overrange: $20 \%$ on all ranges except 2000 V range.
Range selection: manual, automatic, or remote (optional).

## Performance

		$0.1 \vee$ Range	IV to 1000 V Range
		\% rdg. \% \%ng.	$\% \mathrm{rdg} . \% \mathrm{rng}$.
24 hrs		$\pm(0.005+0.005)$	$=(0.004+0.001)$
30 days	(230 $3^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$ )	$\pm(0.01+0.005)$	$\pm(0.008+0.002)$
90 days		$=(0.01+0.005)$	$\pm(0.01+0.002)$
6 months	( $23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$ )	$\pm(0.013+0.005)$	$=(0.013+0.002)$
1 year	$\left(23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}\right)$	$\pm(0.015+0.005)$	$\pm(0.015+0.002)$

## Input characteristics

Fully guarded with 140 dB ECMR at dc and $60 \mathrm{~Hz} \pm 0.1 \%$ with 1 kn imbalance between Guard and Low.

## Maximum Input voltage

0.1 V to 1000 V ranges: $\pm 1500 \mathrm{~V}$ peak.

Guard to Chassis: $\pm 500 \mathrm{~V}$ peak.
Guard to Low: $\pm 200 \mathrm{~V}$ peak.
input resistance
0.1 V to 10 V ranges: $>2 \times 10^{10} \Omega$.

100 V and 1000 V ranges: $10 \mathrm{M} \Omega \pm 0.15 \%$.
Maximum reading rate: 5 readings/s.
Normal mode rejection ratio: $50 \mathrm{~Hz} \pm 0.2 \% ; 60 \mathrm{~Hz} \pm 0.1 \%$ : $>50 \mathrm{~dB}$.
Notes: 1 . On the $1000 \vee$ range, add 0.04 ppm volt to the $\%$ of reading specification.
2. Thermal EMF's generated external to the DVM may bo com. pensated to achieve the \% of range accuracy specified by utilizing the rear panel zero adjust provided in the 3490A.

## $A C$ voltage

## Ranges

Full range display: $1.00000 \mathrm{~V}, 10.0000 \mathrm{~V}, 100.000 \mathrm{~V}$, 1000.00 V .

Overrange: $20 \%$ on all ranges except 1000 V range.
Range selection: manual, automatic, or remote (optional).

## Performance

Accuracy: $\pm$ ( $\%$ of reading $+\%$ of range $):$

		$20 \mathrm{~Hz} \cdot 50 \mathrm{~Hz}$	$50 \mathrm{~Hz}-100 \mathrm{kHz}$	$300 \mathrm{kHz} \cdot 268 \mathrm{kHz}$
24 hrs	$\left(23^{\circ} \mathrm{C}=1^{\circ} \mathrm{C}\right.$ )	$=(0.24+0.05)$	$\pm(0.09+0.025)$	$=(0.7+0.06)$
30 days	( $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ )	$=(0.25+0.05)$	$\pm(0.1+0.025)$	$=(0.75+0.05)$
90 days	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$ )	$=(0.25+0.05)$	$\pm(0.1+0.025)$	$=(0.75+-0.06)$
6 months	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$ )	$=(0.3+0.06)$	$\pm(0.1+0.03)$	$=(0.75+0.07)$
1 year	( $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ )	$=(0.35+0.07)$	$=(0.12+0.035$	$\pm(0.75+0.08)$

Input impedance
Without rear terminals: $2 \mathrm{M} \Omega \pm 1 \%$ shunted by $<65 \mathrm{pF}$.
With rear terminals: $2 \mathrm{M} \Omega \pm 1 \%$ shunted by $<90 \mathrm{pF}$.
Maximum reading rate: 1 reading/s.
Response time: $<1$ s to within rated accuracy for a step input applied coincident with encode trigger.

Maximum input voltage: 1000 V rms; $\ddagger 1500 \mathrm{~V}$ peak.
Notes: 1. Guard must be connected to Low.
2. On the 1000 V range add $0.01 \mathrm{ppm} /($ volt-kHz).
3. Frequencies $>100 \mathrm{kHz}$ specified on 1 V and 10 V ranges only.
4. Specifications are for input levels above $1 / 100$ th of full scale.

## Ohms

Ranges
Full range display: . $100000 \mathrm{k} \Omega, 1.00000 \mathrm{k} \Omega, 10.0000 \mathrm{k} \Omega$, $100.000 \mathrm{k} \Omega, 1000.00 \mathrm{k} \Omega, 10000.0 \mathrm{k} \Omega$.
Overrange: $20 \%$ on all ranges.
Range selection: manual, automatic, or remore (optional).

## Performance

Accuracy: $\pm$ (\% of reading $+\%$ of range $)$.

## General

Data output (BCD), Option 021
The data outpur is $1 \cdot 2 \cdot 4-8$ TTL output which is compatible with the HP S62A, s050B, and 505sA Digital Recorders. Either high rrue or low true logic code can be selected with an internal switch.
Remote control, Option 022
The remote control option uses a low true logic (BCD rype) code. The required voltage levels for inpur signal and the output signal levels are listed below.
$B C D$ and remote terminals

	Hlgh Leval	Low Level
OVM Inputs	$+3.9 \mathrm{~V}=1.5 \mathrm{~V}, 100 \mu \mathrm{~A}$ max	$+3 \mathrm{~V}=.3 \mathrm{~V}, 2 \mathrm{~mA}$ max
DVM Outputs	$+3.9 \mathrm{~V}=1.5 \mathrm{~V}, 400 \mu \mathrm{Amax}$	$+3 \mathrm{~V}=.3 \mathrm{~V}, 15 \mathrm{~mA}$ max

Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Warm-up time: one hour warm-up required to meet all specifications on the 0.1 V range and the $0.1 \mathrm{k} \Omega$ range. Thirty minutes warm-up required to meet all other specifications.
Humidity range: $<95 \%$ R.H., $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Power: $100 / 120 / 220 / 240 \mathrm{~V}+5 \%,-10 \%, 48 \mathrm{~Hz}$ to 400 Hz line operation $\leq 60 \mathrm{VA}$ with all options.

		0.1 k 8	$1 \mathrm{k} \Omega \cdot 100 \mathrm{k} \Omega$	$1000 \mathrm{k} \Omega$	10,000 k $\Omega$
		\% ros $\quad$ \% mg	\% rog $\quad \% \mathrm{rag}$	\% rdg $\quad \% \mathrm{mg}$	$\% \mathrm{rdg}$ \% $\quad \% \mathrm{mg}$
24 hrs	$\left(23^{\circ} \mathrm{C}=1^{\circ} \mathrm{C}\right)$	$\pm(0.006+0.001)$	$=(0.005+0.001)$	$=(0.007+0.001)$	$=(0.025+0.001)$
30 days	$\left(23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}\right.$ )	$=(0.012+0.005)$	$=(0.010+0.002)$	$\pm(0.012+0.002)$	$=(0.035+0.002)$
90 days	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$ )	$\pm(0.012+0.005)$	$\pm(0.012+0.002)$	$\pm(0.015+0.002)$	$\pm(0.035+0.002)$
5 months	$\left(23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}\right.$ )	$\pm(0.015+0.005)$	$\pm(0.015+0.002)$	$=(0.020+0.002)$	$\pm(0.040+0.002)$
1 year	$\left(23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}\right)$	$=(0.018+0.005)$	$\pm(0.018+0.002)$	$=(0.025+0.002)$	$=(0.050+0.002)$

Note: Thermai EMF's generated external to the DVM may be compensated to achieve the \% of cange accuracy specifled by utilizing the rear panel zero adjust provided in the 3490A.

## Terminal characteristics

Maximum voltage generated across unknown: 20 V for overload; 13 V for valid reading.

## Current thru unknown

$0.1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ range: 1 mA .
$100 \mathrm{k} \Omega$ to $1000 \mathrm{k} ?$ range: $10 \mu \mathrm{~A}$.
$10,000 \mathrm{k}$ range: $1 \mu \mathrm{~A}$.

## Overload protection

Non-destructive: 250 V rms .
Fuse destructive: $\pm 1000 \mathrm{~V}$ peak.

## Maximum reading rate

$0.1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ range: $s$ readings $/ \mathrm{s}$.
1000 k $\Omega$ range: 4 readings/s.
$10,000 \mathrm{k} \Omega$ range: 2 reading $/ \mathrm{s}$.

## Options available

Option 020: systems expand, includes rear terminals in parailel, add $\$ 200$.
Option 021: BCD* full parallel, 1-2.4.8 code, : is s:- :

Option 040: sample-and-hold*, add \$-150.
Option 080: three-wire ratio, :1dd $\$ 200$.
Option 030: ASCII remote control and data output, sis $\$ 900$.
Option 050 or 060: 50 Hz or 60 Hz operation, ituriaris
Rack mounting kit furnished.
*These Options require System Expand Option 020. (Sample-and-Hold requires 020 or 030 .
Note: Rack mounting requires support in the rear of the instrument.
Dimensions: $163 / 4^{\prime \prime}$ wide, $3 \cdot 15 / 32^{\prime \prime}$ high, $183 / 4^{\prime \prime}$ deep ( 425 x $88 \times 425 \mathrm{~mm}$ ).
Weight: net, 20 lbs 11 oz ( $9,45 \mathrm{~kg}$ ): shipping, 26 lbs ( 11.70 kg ).
Price
Standard 3490A, (includes ac, de and ohm), ئкio
Specify Option: 050 (Noise Rejection for 50 Hz ), or Option 060 (Noise Rejection for 60 Hz ) when ordering. (ぶ) additional charge.)

## MULTI-FUNCTION METER Twelve measurement functions including ratio



## Description

The Hewlett-Packard Model 3450B Multi-Function Meter is a five-digit integrating digital voltmeter. The basic instrument measures de voluage and de voltage ratios. Added measurement capability is achieved by the addition of plug-in options, all of which can be easily installed in the feld.
The 3450 B uses a dual-slope integration technique and is fully guarded, providing excellent noise immunity at 15 readings per second on all de ranges. Ranging is automatic over all ranges on all functions. Adding the ac option allows you to make as measurements from is Hz to 1 MHz with true rms response. Six ohms ranges including a $100 \Omega$ range are provided with the ohms option.
Ratio capability is integral in the basic instrument. When the ac and ohms options are installed, ac and ohms ratios can be measured. Ratio measurements are made in a truly isolated fashion, allowing measurements never before possible.

A limit rest option allow's digital comparisons against two preselected limits. This capability is applicable to all functions with no degradation in function performance. Digital output, remote control and rear input options are also available, allowing you to tailor order a 3450 B to meet your precise measure. ment needs.

Range	Speotilcation
1 V thru 1000 V	$\begin{aligned} & =\{0.008 \% \text { of reading } \\ & +0.002 \% \text { of range) } \end{aligned}$
100 mV	$\pm(0.008 \%$ of reading   $+0.01 \%$ of (ange)

[^6]Add $0.002 \%$ of range to 30 day specifications.

Intepration   Parloc	Reading Perlod   (without range change)	Autorange Time   (per range change)
$1 / 10 \mathrm{~s}$	380 ms	380 ms
$1 / 60 \mathrm{~s}$	65 ms	65 ms


Aange	Speolfication
$\begin{gathered} 100 \mathrm{mV} \text { IV } \\ \text { and } 10 \mathrm{~V} \end{gathered}$	$>10^{28} \Omega$   ( $10 \mathrm{M} \Omega=0.1 \%$ selectable by external closure to ground)
100 V and 1000 V	$10 \mathrm{M} \Omega=0.1 \%$



Normal-Mode Rejection (NMR)

*Filter available in $\mathrm{H} 01-3450 \mathrm{~B}(60 \mathrm{~Hz})$ or $\mathrm{H} 13 \cdot 3450 \mathrm{~B}(50 \mathrm{~Hz})$.
Effective Common-Mode Rejection (ECMR)
DC: 160 dB .
1/10 s integration perlod: min of $145 \mathrm{~dB} . \mathrm{A}^{*}$
1/60 s integration period: min of $130 \mathrm{~dB} .{ }^{* *}$

- -Rejection cusps added as shown in normal-mode rejection specificallons.

AC voltage-Option 001
True RMS-Responding (is Hz to 1 MHz ).

## Renges

Full range display: $1.00000 \mathrm{~V}, 10.0000 \mathrm{~V}, 100.000 \mathrm{~V}$, and 1000.00 V .

Overranging: $20 \%$ on all ranges. ( 1500 V peak on 1 kV .)
Range selection: manual or automatic. Remote optional.

## Performance

Accuracy: 90 day $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$.


Iniegration   Peglod	Reading Porlod   (without range ohange)	Autorange Time   (per ranyi change)
$1 / 10 \mathrm{~s}$	2.7 s	27 s



Overranging: $20 \%$ on all ranges.
Range selectlon: manual or automaric for X input. Remote optional for X input. Automatic for Y input.

## Performance

## Accuracy

90 day ( $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ).
$\pm(0.01 \%$ of reading* $+0.002 \%$ of ratio range
$+\frac{Y \text { range }}{Y \text { voltage }} \times 0.003 \%$ )
-Add $0.005 \%$ of reading for $X$ input $>100 \mathrm{~V}$.

## Input characteristles

Input configuratlon: isolated four-terminal, guarded. No common ground necessary between signals.
Input resistance: same as DC VOLTAGE for both $X$ and $Y$ inputs.
Effective common-mode rejectlan (ECMR): same as DC VOLTAGE for $\mathbf{X}$ input.
Normal-mode rejection: same as DC VOLTAGE for X input.
Maximum input voltage: same as DC VOLTAGE.
AC ratio-Option 001
True rms-responding
Ranges
Ratio capabillty


Oum load condition
Ratio mudnufertiral pomble onty if V is in averrenge condilion.

Overranging: $20 \%$ on all ranges.
Range selection: manual or auromatic for X input. Remote optional for X inpur. Automatic for Y input.
Performance
Accuracy: 90 day $\left(29^{\circ} \mathrm{C} \pm 9^{\circ} \mathrm{C}\right.$ ).
$\pm(0.02 \%$ of reading $+0.01 \%$ of ratio sange + sum of accuracies of X and Y inputs determined from ac accuracy graph).
Input characterístics
Input configuration: isolated four-terminal, guarded.
Input Impedance: same as AC VOLTAGE for X and Y .
Crest factor: $7: 1(f>1 \mathrm{kHz}$, bandwidth $=1 \mathrm{MHz})$.
Maximum Input voltage: same as DC VOLTAGE, except $< \pm 1000 \mathrm{~V}$ dc offset voltage on X terminals.

Ohms-Option 002

## Ranges

Full renge display: $100.000 \Omega, 1.00000 \mathrm{k} \Omega .10 .0000 \mathrm{k} \Omega$, $100.000 \mathrm{k} \Omega, 1000.00 \mathrm{k} \Omega$, and $10000.0 \mathrm{k} \Omega$.
Overranging: $20 \%$ on all ranges.
Range selections: manual or automatic. Remote optional.

## Performance

Accuracy: $30 \mathrm{day}\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$.

Range	Spesifiostion
100 n	$\pm(0.01 \%$ of reading $+0.01 \%$ of range $)$
10 kn   $100 \mathrm{k} \Omega$	$\pm(0.01 \%$ of reading $+0.002 \%$ of range $)$
$1000 \mathrm{k} \Omega$	$=(0.02 \%$ of reading $+0.002 \%$ of range $)$
$10000 \mathrm{k} \Omega$	$\pm(0.1 \%$ of reading $+0.002 \%$ of range $)$

90 day $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$; add $0.002 \%$ of range to 30 day specifications.
Measuring speed

Integration Perlod	Reading Porlod cwithout range changes	Autorange Time (per ranje ohange)
1/10 s	380 ms	380 ms
1/60 s	$\begin{gathered} 65 \mathrm{~ms} \\ \text { (165 ms on } 10 \text { (Ms range) } \end{gathered}$	$\begin{gathered} 65 \mathrm{~ms} \\ \hline \text { (165 ms on } 10 \mathrm{M} \Omega \text { range) } \end{gathered}$

Input characterlstics
Input configuration: four-wite, guarded.
Current through resistance

Range	SIgnal Current
$100 \Omega 2$	
1 kS	
$10 \mathrm{k} \Omega$	1 mA
$100 \mathrm{k} \Omega$	
$1000 \mathrm{k} \Omega$	$10 \mu \mathrm{~A}$
$10000 \mathrm{k} \Omega$	$1 \mu \mathrm{~A}$

Effective common-mode rejection (ECMR): same as DC VOLTAGE.
Normal-mode rejection: same as DC VOLTAGE.
Overload protection: $\pm 200 \mathrm{~V}$ peak for X or Y input. Ohms ratio-Option 002

Range selection: manual or automatic for X input. Remote optional for X inpur. Automatic for Y inpur.

## Performance

Accuracy: 30 day ( $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ at terminals).
$\pm$ (\% of ratio range $+\%$ of ratio reading error)
Whare:
\% of ratio range error $=+\left(0.004 \%+\frac{Y \text { Range }}{Y \text { Resistance }}\right.$
$x 0.002 \%)$. $\times 0.002 \%$ ).
\% of ratio reading error is the greater percentage given below for either X or Y resistance.

5	0.55	0.1	0.05	$0.02^{*}$	0.05	0.2	$\%$
100	1 k	2 k	9 k	500 k	5 M	12 M	

$\gamma$ ranges: $1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k}, 1 \mathrm{M} \Omega$ and $10 \mathrm{Mn}$. .
90 day ( $25^{\circ} \mathrm{C} \pm 5^{\circ}$ at terminals)
Same as 30 day specification except \% or Ratio range error $=+\left(0.004 \%+\frac{Y \text { Range }}{Y \text { Resistance }} \times 0.003 \%\right)$
characteristics
Input characteristics
Input conflguration: isolated fourterminal, guarded. Two wires per resistor.
Current through $X$ and $Y$ resistance; same as OHMS func. tion.
Effective common-mode rejection (ECMR): same as DC VOLTAGE for X input.
Normal-mode rejection: same as DC VOLTAGE for $\mathbf{X}$ input.

Overload protectlon: $\pm 200 \mathrm{~V}$ peak for X or Y input.
Price: Oprion 002 Ohms Convecter (adds ohms and Ohms ratio), add $\$ 425$.

LImit test-Option 003
Capability
Applicable to: DC, DC RATIO, AC, AC RATIO, OHMS and OHMS RATIO.
No degradation in performance of above six functions.
Limit selection
Two 4 -digit limits (with $20 \%$ overranging). including po-
larity, are selectable in $1-2 \cdot 4-8 \mathrm{BCD}$ form with external
closure to ground through $<3 \mathrm{k} \Omega(2.8 \mathrm{~mA}$ max) or appli-
cation of -0.5 V to +2.5 V .
Output signals
Limit indications: HI. GO, LO front panel lights defined as follows: High limit $\leq \mathrm{HI}$

> Lower Limit $\leq$ GO $<$ High Limit
> LO $<$ Lower Limit

Price: Option 003 Limit Test, add $\$ 375$. Digital output-Option 004
Print command: de coupled.
Print level: o V, 12 mA max current.
No print level: 12 V or 5 V , determined by logic level selected.
Trigger or print command hold off: *-0.5 V to $+2.5 \mathrm{~V}, 9$ mA max current.
"Holdooff on internal trigger or print command may be selected by moving jumger wire.
BCD outputs: four-line BCD ( $1 \cdot 2 \cdot 4 \cdot 8$ ) " 1 " state positive, nine columns of information, as follows: 2 columns for function and polarity. 1 column for range or ratio range. 6 columns for digital data.
Prlee: Option 004 Digital Output, add $\$ 225$.

## Remote control-Option 005

All remote control lines are selected by an external closure to ground through $<3 \mathrm{k} \Omega(2.8 \mathrm{~mA} \max )$ or application of -0.5 V to +2.5 V .
Remote controls
** $1 / 60 \mathrm{~s}$ integration period. Program remote.
** 100 ms delay. Program external trigger.
**10 MS input resistance. Front-panel lockout.
**External trigger. Non-ratio remote range.
Remote function. Remote ratio range.
Remote decimal.
**These remote capabilitias are inciuded in the basic 34508 and do not require the additlon of Option 005.
Price: Option 005 Remote Conirol, add $\$ 260$.

## General

Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, unless otherwise speciGied.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to $400 \mathrm{~Hz},<75 \mathrm{~W}$ (including all options, normal environmental conditions).
Dimenslons: $163 / 4^{\prime \prime}$ wide, $3.15 / 32^{\prime \prime}$ high, $213 / 8^{\prime \prime}$ deep ( 425 x $88 \times 542 \mathrm{~mm}$ ).
Weight
Basic ínstrument: net, $31 \mathrm{lbs}(14,1 \mathrm{~kg}$ ).
Inciuding all options: net, 36 lbs ( $16,3 \mathrm{~kg}$ ).
Shipping: $50 \mathrm{lbs}(22,7 \mathrm{~kg})$.
Price: HP 3450B (includes DC and DC Ratio), 53500.
HP Hso.3450B, Optimum Noise zejection for 50 Hz line, $\$ 3560$.
HP Hol-3450B, Optimum Noise rejection for 60 Hz line with programmable filter, $\$ 3800$.
HP H13.3450B. Optimum Noise rejection for 50 Hz line with programmable filter, $\$ 3860$.
Option 006, Rear Inpur Terminals, add $\$ 70$.
(Add Front/Rear selector switch and rear terminals.)

## V-TO-F CONVERTER <br> Accurate bipolar, low-level dc V-to-F conversion Model 2212B


$2212 B$

IIIIIIIIIIII

Option 002


The HP 2212B is a compact Voltage-to-Frequency Converter, well suited to low-level signal applications. Low input drift and high common mode rejection ( 114 dB at 60 Hz ) are achieved without a chopper by differential circuits. The VFC produces an output pulse train with a rate directly proportional to the magnitude of an applied de voltage. Pulse rate rises linearly and instantaneously from 0 to 100,000 pulses per second as the dc input level is increased from zero to full scale. The 2212B provides outstanding linearity, stability and noise immunity

The output of the HP 2212B, when connected to an electronic counter provides a convenient method of making digital measurements of $d c$ voltages; the converter provides a polarity signal. This converter-counter combination can be connected directly to a digital printer or through an output coupler to other common digital recording devices.

The converter-counter combination integrates $d c$ voltages over any period of time and can therefore be used to read the average of the input over a selected sample period, or over an externally-controlled period. This provides accurate de measurements in the presence of noise superimposed on the signal. Combining the VFC with an HP s321B all-IC Counter, provides an Integrating DVM with .01, 1, 1 and 10 seconds sample periods.

The modular package with self-contained power supply allow's the 22128 to be used in borh bench and systems applications. An inexpensive combining case is a vailable to mount 10 instruments side-by-side in only $5 \frac{1}{4}$ " of $19^{\prime \prime}$ rack panel space.

## Specifications

Maximum input signal: $\pm 11 \mathrm{~V}$, signal plus common mode. Combined input up to $\pm 20 \mathrm{~V}$ will not damage instrument.
Output (de coupled); 0 to 100 kHz fs, overranging to 250 $\mathrm{kHz} ; 5 \mathrm{~mA}$ available; short circuit will nor damage instrument.
Settling time: $100 \mu \mathrm{~s}$ to within $0.01 \%$ of final pulse rate.
Overload recovery: $200 \mu s$ to $0.01 \%$ of final pulse rate for signal to 10 times fult scale. Less than 5 ms for signal plus common mode input up to 20 V .
Polarity indication: electrical and visual for $t$ and - .
Operating conditions: Ambient temperatures from $0^{\circ}$ to $59^{\circ} \mathrm{C}$; relative humidity to $95 \%$ at $40^{\circ} \mathrm{C}$.
Warmup: operates immediately after turn-on, but requires $11 / 2$ hours in free air, 30 minutes in portable case or combining Case (plus 1 hour additional warmup for each $10^{\circ} \mathrm{C}$ difference between storage temperature and operating ambjent) for specified accuracy and zero drift.
Rellability: predicted MTBF (with $90 \%$ confidence) is 10,000 hours when operated at $25^{\circ} \mathrm{C}$ ambient.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, so to $400 \mathrm{~Hz}, 10 \mathrm{VA}$ max.
Dimensions: $1^{\text {\%/ }} 15^{\prime \prime}$ wide. $47 / 8^{\prime \prime}$ high, $15^{\prime \prime}$ deep ( $39.7 \times 123.8 \times$ 381 mm ).
Weight: net $4 \mathrm{lb}(1,8 \mathrm{~kg})$, shipping $61 / 2 \mathrm{lb}(2,9 \mathrm{~kg})$.
Accessories available: mating rear connector; mating rear connector with power cord, input/output cable; combining case: holds up to 10 instruments in $51 / 4^{\prime \prime}$ of $19^{\prime \prime}$ rack space (mating connectors furnished), includes power cord and fan; portable case: holds two VFC's (mating connectors furnished) and includes power switch, pilor light, power cord and fan.
Price: HP 2212B, $\$ 1325$; option 002 (Vernier) add $\$ 100$.

## INTEGRATING DVM Precise measurements despite severe noise Model 2402A

 DIGITAL VOLTMETERSThe 2402A Integrating Digital Voltmeter combines 43 measurement per second sampling rate and the precision and measurement llexibility expected from a laboratory instrument with the programming and electrical output features necessary for data acquisition systems use both computerized and non. compurerized. It achieves high speed and high accuracy at low levels, withour preamplifiers.

Instrument design virtually eliminates ecrors caused by ex. raneous noise without imposing any restrictions on the ground. ing of the signal source, recording device, or programmer, of upon the measuring speed of the instrument. The controls and input/output features of the 2402A permit maximum versatility of application, yet the instrument is straightforward to use.

High accuracy in a DVM is of little practical value unless this accuracy can be maintained in the presence of noise and under the far from ideal conditions of everyday use. The 2402A is average-reading, which greatly reduces the effects of superimposed noise. A floated and guarded inpur circuit eliminates common mode noise error. Combined, these techniques yield effective common mode noise rejection greater than 126 dB ( 2 million to 1 ) at any frequency. including dc.

The 2402 A reads the average value of the applied voltage over a $1 / 60$ second sample period, and provides maximum rejec. tion of superimposed noise at 60 Hz ( $1 / 50$ second optional). Since no input filters are employed, it provides both noise rejec. tion capability and rapid accurate response to step input required for data acquisition system applications. Superimposed
noise rejection holds for combined signal plus noise amplitudes to $130 \%$ of full scale.

The 2402A features a guard that completely isolates the floating measuring circuit from the chassis, breaking the common mode loop. To take a practical example of the 2402A noise rejection, the combined effect of guarding and averaging at 60 Hz is such that a 100 V peak-to-peak common mode potential will not cause a discernible error in reading on any range.

AC voltages to 750 V peak can be measured on four ranges from 1 V to 1000 V when the 2402 A is equipped for optional ac voltage measurement. It is adapted for ac voltage measurement by installation of plug-in ac-to.de converter and control boards. The converter is average-reading and is calibrated in tms with respect to sinusoidal input. The dc voltage input connectors are also used for ac input. The same guard provides common mode rejection for ac and dc voltage measurements. The overioad detection circuit of the basic 2402 A protects the ac converter

Resistance measurements to 13 megohms can be made on five ranges from $\mathrm{lk} \Omega$ to $10 \mathrm{M} \Omega$ when the 2402 A is equipped with this option. It is adapted for resistance measurement by installation of plug.in ohms-to-dc converter and control boards and a 4 -wire guarded rear panel connector. The converter is installed inside the guard, assuring freedom from common mode esrors.

The 2402 A may be equipped for frequency measurements to 199.999 kHz . Frequency measurement is a plug.in option.


Cover flips up to protect controls in systems use.

2402A Integrating Digital Voltmeter

## Specifications

(For $\pm 10 \%$ line voltage variation and 6 months operation, assuming daily calibration against internal standard after 30 -minute warm-up.)

## DC voltage measurement

Nolse rejection: overall effective common mode rejection: (ratio of common mode signal to its effect upon readings) : 160 dB at dc , decreasing to 126 dB above 30 Hz (infinite rejection cusp gives 168 dB effective cmr at $60 \mathrm{~Hz} \pm .15 \%$ ). Overall rejection combines common mode rejection and superimposed noise rejection.
Input circuit: type: floated and guarded signal pair. Signal low and guard may be floated up to 500 V above chassis ground with up to 1000 V input signal (maximum low-to-guard voltage is 50 V ).

Ranges: 100 mV and 1, 10, 100, and 1000 V full scale selected by front panel swirch, external programming or autoranger.
Overranging: to $130 \%$ of full scale, except on 1000 V range. Self protected on any range against input voltage to 1000 V . Protective circuits reset automatically for each new reading.
Input impedance: greater than $1000 \mathrm{M} \Omega$ on $100 \mathrm{mV}, 1 \mathrm{~V}$ and 10 V ranges; $10 \mathrm{M} \Omega$ on 100 and 1000 V ranges.
Internal callbration standard: (independent of measuring circuit)
Derived from stabilized reference diode operating in a constant temperature oven; maintain specified accuracy for 6 months.
Measurement speed: to 43 measurements per second when trig. gered externally. Self-triggers at speeds continuously adjusrable
from 1 measurement every 10 seconds to 10 per second.
Accuracy: (source impedance $10 \mathrm{k} \Omega, 43$ measurements per sec, $\pm 10 \%$ line voltage variation after 60 -minute warmup.)

Range	$1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}$	100 mV
Short term (24 hour) Acouraoy $\text { (at } \left.26=l^{\circ} \mathrm{C}\right)$	$.003 \% \mathrm{rdg}=.003 \%$ is (. $006 \%$ róg in overrange)	$.003 \% \mathrm{rdg} \pm .005 \%$ is (. $008 \%$ rdg in overrange) Below 30 mV accuracy improves to $3 \mu V=.008 \%$ rdg.
Longierm (8 months) Acesuracy $\left\langle\mathrm{al} 25 \pm 1^{\circ} \mathrm{C}\right\rangle$	$\left\|\begin{array}{c} .01 \% \mathrm{rdg}=.003 \% \mathrm{fs} \\ (.013 \% \\ \text { rdg in overrange }) \end{array}\right\|$	$.01 \% \mathrm{rdg}=.005 \% \mathrm{fs}$ (. $015 \%$ rdg in overıange) Below 30 mV accuracy improves to $3 \mu V \pm .015 \%$ rdg.


TEMP EFFECT	Par ${ }^{\circ} \mathrm{C}$ ohange trom Callturate temperaturs	
$152040^{\circ} \mathrm{C}$ 10 to $15^{\circ} \mathrm{C}$ or 40 to $60^{\circ} \mathrm{C}$	$\begin{aligned} & .0015 \% \mathrm{rdg}=.00015 \% \text { is } \\ & .002 \% \mathrm{rdg} \pm .00015 \% \mathrm{~s} \end{aligned}$	$\begin{aligned} & .0015 \% \mathrm{rdg} \pm .0006 \% \mathrm{fs} \\ & .002 \% \mathrm{rdg}=.0006 \% \mathrm{is} \end{aligned}$

Resolution: 1 part in 130,000 on 6 digit display: 100 mV range displays readings to $1 \mu \mathrm{~V}$.

## AC volfage measurement (option 002)

Common mode rejection: 160 dB at dc , decreasing to 120 dB at 60 Hz and 6 dB per octave for noise frequencies above 60 Hz ,
 side of input.
Input circult: floated and guarded signal pair. Signal low and guand may be floated up to so0 V above chassis ground with maximum input volrage applied.
Input voltage limitations: 240 V peak on 1 V range. 750 V peak on all other ranges withour damage.
Input impedance: $1 \mathrm{M} \Omega \pm 1 \%$ shunted by 200 pF (maximum). AC only operation: frequency range: 30 Hz to 100 kHz .
Ranges: 1, 10. 100 , and 1000 V full scale, selected by front panel switch, external programming or autoranger.
Overranging: to $130 \%$ of full scale, except 330 V rins. on 1000 $\checkmark$ range.
Accuracy (with respect to standard used for calibration):

sIOMAL FREQUENCY	$\begin{array}{\|c\|} \hline 50 \mathrm{Hx} \\ \hline \% \mathrm{dd} \pm \% \mathrm{~h} \\ \hline \end{array}$				$\begin{array}{\|c\|} \hline 10 \mathrm{kHz} \\ \hline 8 \mathrm{~F} \dot{8} \mathrm{gm} \% \mathrm{Fts} \\ \hline \end{array}$				180 kHz			
			\% rad	\% F								
Aoduracy $\text { (at } \left.25 \pm 1^{\circ} \mathrm{C}\right)$	. 09	. 05			. 05	. 03	. 06	. 03	. 09	. 05	. 3	. 09
Response arrar (1)	. 1	-	. 05	-	. 02	-	. 02	-	. 02	-		
Ripple error (3)	. 03	-	. 02	-	-	-	-	-	-	-		
Tomperature e hatit ( $\mathrm{Per}{ }^{\circ} \mathrm{C}$ shange In ambient from $26^{\circ} \mathrm{C}_{1}$ aver 10 to $60^{\circ} \mathrm{C}$ range)	. 004	003	. 004	. 003	. 004	. 003	. 007	. 003	. 013	003		

Stralghiline interpolation holds for ffequonclos between points
Applicabla only to stop inpul (raceived from data system zignal scanner) or autorange aperation.
(3) Ripple earor decresses 18 di por octave above $85 \mathrm{~Hz}_{1}$ is zero al 60 Hz bacause of superimposed nolse relection of basic instument
(1) Assumes calibration of 2402 A ásinst Internal slandard al $25^{\circ} \mathrm{C}$ ambieni. Calibralion of 2402 A at operating temperature decresses $\%$ rig temperatuce effect . 0 AOg \% pef ${ }^{\circ} \mathrm{C}$.
$A C$ an DC operation: maximum dc coroponent: $\pm 200 \mathrm{~V}$ on any range.
Ranging: must start from 1000 V range, proceed to lower range as required.
Peak input: ac plus de to $100 \%$ of full scale, except 750 V peak: maximum on 1000 V range.
Measurement speed: to 1.9 externally-triggered measurements per second. Self-riggered measurement rate adjustable from 1 measurement every 10 seconds to 1.6 per second.

Resolution: 1 part in 130,000 on 6-digit display; $10 \mu \mathrm{~V}$ on 1 V range.

## Resistance measurement, (option 003)

Nolse rejection: measurement circuit enclosed in same guard as ds circuit, reducing effecr of ac common mode noise when guard is connected to low side of rest resistance. Double-shielded cable extends guard to test resistance.
Input circuit: guarded, modified four-terminal circuit; unknown resistor can be either grounded or floating.
Ranges: $1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 1 \mathrm{M} \Omega$, and $10 \mathrm{M} \Omega$ full scale, selected by front panel switch, external programming or optional autoranger.
Overranglng: to $130 \%$ of fuil scale. Self.protected on all ranges against up to 50 V across resistance input.
Absolute accuracy:

Resiotanoe range	1 kn	$10 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$	10 M 8
$\begin{aligned} & \text { Measurement } \\ & \text { curfent } \end{aligned}$	1 mA	1 mA	$100 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$1 \mu A$
Aocuracy at $25^{\circ} \mathrm{C}$	$\% \mathrm{rdg}=\%$ is	. $013 \% \mathrm{rdg}=.003 \%$ is			
	. $016 \quad .003$				
Temperature (1)	$.004 \% \mathrm{rdg} \pm$	$\overline{0039}$	per	differe $1050^{\circ}$	ce of ambient range

(1) Callibation of 2402 a against internal standard at operatimg temperature decieases \% rdg tenperature effect $.0015 \%$ per ${ }^{\circ} \mathrm{C}$. to $0025 \%$ rdg per ${ }^{\circ} \mathrm{C}$.
Measurement speed: 108 externally triggered readings per second. Self triggered measurement rate is adjustable from 1 measurement every 10 seconds to 4.5 per second.
Resolution: 1 part in ! 30,000; , 01 $\Omega$ on $1 \mathrm{k} \Omega$ range.
Frequency measurement (option 005)
Frequency range: $s \mathrm{~Hz}$ to 199.999 kHz .
Gate time: ) second; provides 1 Hz resolution.
Accuracy: ( $\pm 1$ count $\pm$ time base stability); time base aging rate: 2 ppmper week over 20 to $30^{\circ} \mathrm{C}$; time base temperature effect: 100 ppon over range 10 to $50^{\circ} \mathrm{C}$.
Input
Amplitude range: . 1 to 100 V rms.
Pulse or square wave input: negative 1 to 100 V amplitude, $2 \mu s$ minimum duration, $50 \%$ maximum dury cycle.
Impedance: 1 M shunted by 150 pF .
Maximum voltage: 150 V peak dc plus ac or pulse.

## Autorange (option 001)

Range selection: DC voltage ranges; each time autoranger is programmed, it starts on 1 V range to take adeantage of fast up-ranging. While autoranging is continuously programmed, autoranger starts at range selected for previous reading, sequences to higher or lower range as required. AC vitage ranges; autoranger starts at 1000 V range, sequences to lower range as required. Up-ranges at $136 \%$ of full scale, down ranges at $10.2 \%$.

## General

Oisplay and system interface: 6-digit display, $B C D$ output and program inputs. Polarity, decimal, measurement unies, calibration, and overload conditions indicated automatically and included in output as function and decimal digits.
Operating conditlons: specifications apply for ambient temperatures 10 to $50^{\circ} \mathrm{C}$, relative humidity to $90 \%$ at $40^{\circ} \mathrm{C}$, altitude to 15,000 feet, maximum storage semperarure $40^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $60 \mathrm{~Hz}, 150 \mathrm{~W}$.
Dimenslons: $16^{3} / 4^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $191 / 2^{\prime \prime}$ deep behind panel ( 425 $\times 133 \times 495 \mathrm{~mm}$ ) ; hardware furnished for $19^{\prime \prime}$ wide rack mount.
Weight: net $49 \mathrm{lbs}(22,2 \mathrm{~kg}$ ); shipping $56 \mathrm{lbs}(25,4 \mathrm{~kg}$ ).
Price: 2402A for DC measurements, $\$ 6500$; $A C$ adds $\$ 675$; resistance adds $\$ 775$ : frequency adds $\$ 350$; autoranging adds $\$ 265$.


3460B

## Description

The all solid-state Hewlett-Packard 3460B Digital Volt. meter is a full five-digit digital voltmeter which combines in one instrument the benefits of high accuracy, high resolution, high speed, high noise rejection and constant high-inpur im. pedance. The unique method by which the potentiomerric and integrating techniques are combined in this instrument is primarily responsible for this combination of outstanding leatures, which has sustained the 3460 B 's position as one of the most highly accurate DVM's available.

This guarded digital voltmerer permits automatic and re-mote-controlled do measurements from L V to 1000 V fuil scale. Measurements of 1 volt can be obtained with $10 \mu \mathrm{~V}$ resolurion. A high accuracy of $\pm 0.004 \%$ of reading $\pm 0.002 \%$ of full scale makes the 34608 ideal for precision measurements. The unique tro-sample system of the HP 3460 B enables 15 independent readings to be made in one second at this accuracy. Integration during the second of these two samples plus guarding, results in excellent effective common-mode rejection and ac normal-mode rejection characteristics. $20 \%$ overcanging on all ranges offers full-scale display within specified accuracy (up to 1200 V on the 1000 V range). Another feature is the choice of constant $10 \mathrm{M} \Omega$ input impedance or 10105 input impedance on the 1 V or 10 V range. In-line digital display cubes and the polarity indicator display voltage measurements from $\pm 0.00001$ to $\pm 1199.99 \mathrm{~V} \mathrm{dc}$. These measurements are made with an absolute accuracy of $\pm 0.004 \%$ of reading $\pm 0.002 \%$ of full scale over a temperature range from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ for a period of 90 days. Voltage accuracy temperature coeffcient is $\pm 0.0002 \%$ of reading $/{ }^{\circ} \mathrm{C}$ over a temperature range of $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Four input volt-
age ranger of $1.00000,10.0000,100.000,1000.00$ may be selected by front-panel pushbuttons, automatically or by remote control. A decimal point is automatically positioned so that the display alprays reads directly in volts.

## Integrating-potentiometric technlque

The 3460 B is distinctly different from all other types of digital volumeters. It combines porentiometric and integration techniques and continually measures the true average of the input voltage over a fixed sampling period. It attains $\pm 0.004 \%$ accuracy as a result of the potentiometric technique which makes use of resistance ratios and a stable reference voltage. The use of integration in this combined technique results in much of the superimposed aoise immunity of integrating DVM's. The voltmeter, in one $9^{\prime \prime}$ high, $19^{\prime \prime}$ wide convenient rack-mount unit, combines the extreme precision and measurement flexibility expected from labaratory standards with the programming and electronic output features neces. sary for automatic systems.

## Programming the 3460B

The HP 3460 B is designed for fully automatic operation within a digital data acquisition system. Measurement function, voltage range and incegration period can all be selected by external circuit closures to ground.

To simplify system cabling, signa! input connections can also be made at the rear of the instrument. All remote-control lines and electrical outpurs are referred to the chassis. Grounding the chassis does not affect the floating capabilities of the input lines and guard.

## Accessory equipment

Permanent test records of all readings including function, polarity, decimal location, and overload condition are available by using an HP Model 562A. Digital Recorder which can record up to 5 lines per second, or an HP Model 5050A Digital Recorder which records up to 20 lines per second.

## Specifications

Rarges: full scale, $\pm 1.00000 \mathrm{~V}, \pm 10.0000 \mathrm{~V}, \pm 100.000 \mathrm{~V}$ and $\pm 1000.00 \mathrm{~V}$ (up to $20 \%$ overranging indicated with 6th digit); range selection may be made automatically, remotely, of manually.

## Performance rating

Absolute voltage accuracy: $\pm(0.004 \%$ of reading $+0.002 \%$ of full scale) over a temperature range from $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ for a period of 90 days.
Voltage accuracy temperature coefflcient: $\pm 0.0002 \%$ of reading $+0.0001 \%$ of full scale) $/{ }^{\circ} \mathrm{C}$ over a temperature range of $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Short-term stability: $\pm(0.002 \%$ of reading $+0.001 \%$ of full scale) at $+23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ and relative humidity up to $50 \%$ for a period of 24 hours.
Long-term stabillty: $\pm 0.008 \%$ of reading $+0.001 \%$ of full scale at $+23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ and relative humidity up to $50 \%$ for a period of 6 months.
Response times: fixed range, reads within specined accuracy when triggered coincident with step input voltage. Reading period: $66 \mathrm{~ms} m$ in on 10,100 , and 1000 V ranges, 147 ms min on ! V range.
Polarity selection: no delay.
Automatic range selection: 33 ms per range change ( 100 ms max).
Remote range selection: 8 ms .
Input characteristics
Input Resistance

Range	Specification
1 V and 10 V	$>10^{20} \Omega$ within $\pm 5 \%$ of null, otherwise $10 \mathrm{M} \Omega=0.03 \%$
100 V and 1000 V	$10 \mathrm{M} \Omega \pm 0.03 \%$

Jmpedance: 40 pF in parailel with 10 M 2 at frone panel.
Noise rejection: overall effecrive common-mode rejection (ratio of indicated error voltage to common-mode voltage) 246 dB at all frequencies ( 0.1 s sample period); common-mode rejection 160 dB at $\mathrm{dc}, 120 \mathrm{~dB}$ at 60 Hz with $1000 \Omega$ between low side of input and the point where the guard is connected; superimposed noise rejection; $>20 \mathrm{~dB}$ at 55 Hz for 0.1 s sample period increased 20 dB per decade of frequency; infinite rejection at frequencies divisible by 10 ( 0.1 s sample period) or 60 ( $1 / 60 \mathrm{~s}$ sample period).

## Isolation parameters

Inputs: floated and guarded signal pair (binding post on front panel or connector on reaz panel is selected by front-panel switch); guard may be operated up to $\pm 500$ V dc with respect to chassis ground ( 350 V rms) : low may be operated up to $\pm 50 \mathrm{~V}$ dc with respect to guard.

## input signals

## Range selection

Automatic: pushbutton selector or a switch closure to ground with impedance $<100 \Omega$ provides auto range operation; 33 ms is required per range change ( 100 ms max).
Remote: a switch closure to ground with impedance $<100$ $\Omega$ for a period $>100 \mu$ selects range desired within 8 ms .
Manual: pushbutton selector.

External Read Commend:

Triggar	Opers Ckt Voltage	Triguer Level	Duration	Load
$\begin{aligned} & \hline \text { Positive } \\ & \text { going } \\ & \text { Direct } \\ & \text { coupled } \end{aligned}$	-10 V	o $V$ or contact closure to ground	$100 \mu \mathrm{~s}$ $1010 \mathrm{~ms}$	$\begin{aligned} & 1 \mathrm{~mA} \mathrm{mt} \\ & 0 \mathrm{~V} \\ & 6 \mathrm{~mA} \mathrm{at} \\ & +30 \mathrm{~V} \end{aligned}$
$\begin{aligned} & \text { Negative } \\ & \text { going } \\ & \text { Direct } \\ & \text { coupled } \end{aligned}$	$+10 \mathrm{~V}$	-10	$\begin{aligned} & 100 \mathrm{\mu s} \\ & \text { to } 10 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~mA} \mathrm{at} \\ & -10 \mathrm{~V}, 5 \mathrm{~mA} \\ & \text { at }-30 \mathrm{~V} \end{aligned}$
AC Coupled		$20 \mathrm{Vp-p}$ with rise $\operatorname{time}_{\leq 10}$ $\leq \mathrm{s}$	$>100 \mu s$	6 k ohms in garallel with $25 \mathrm{pF}(0.01 \mu \mathrm{~F}$ coupling capacitor used)

Short integration period; valtmeter normally integrates for $1 / 10 \mathrm{~s}$; switch closure to ground of $<100 \Omega$ selects $1 / 60 \mathrm{~s}$ integration period on 10.100 , and 1000 V ranges ( 3460 B providing $1 / 50 \mathrm{~s}$ integration period for 50 Hz line frequency is a vailable on special order).
Voltmeter reset: switch closure to ground of $<100 \Omega$ assures min reset time.
Trigger hold off: hold off level is +3 to +10 V with a max current of 6.3 mA (provided by HP 562A Digital Re. corder).

## Output signals

Print command: de coupled.
Print level: - 1.0 V with $2 \mathrm{k} \Omega$ source resistance.
Print hold off level: -17 V with $7.5 \mathrm{k} \Omega$ source resistance (min load resistance is $15 \mathrm{k} \Omega$ ).
BCD outputs: 4-line BCD ( $1.2 \cdot 4-8$ ), 9 columns consisting of function (polarity), decimal location, overload, and 6 digits of data (HP 3460B Option 001 available for 1.2 . 2.4) BCD).

State	Vollape	Source Resistanes
0	-24 V	$100 \mathrm{k!}$
1	-1 V	$100 \mathrm{k} \Omega$
Ref. Level	Voltage	Sourse Resisianoe
Positive	-4 V	$380 \Omega$
Negatuve	-21 V	900 ?

## Operational features

Yrigger selection: front-panel selection of local or remote mode.
Overload indicator: indicates when input voltage is higher than $120 \%$ of range selected.
Sampling indicator: indicates when instrument is digitizing.

## General

Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 60 Hz , approx 90 VA.
Dimensions: $163 / 4^{\prime \prime}$ wide, $5-7 / 32^{\prime \prime}$ high, $213 / 8^{\prime \prime}$ deep ( $425,5 \times$ $132,6 \times 543 \mathrm{~mm}$ ).
Weight: net, $38 \mathrm{lbs}(17,2 \mathrm{~kg})$; shipping, $48 \mathrm{lbs}(21,8 \mathrm{~kg})$.

## Accessories furnished

HP 11065 A 6 -ft rear input cable, guarding preserved, terminated end mates with 3660 B .
HP 11085A remote control cable.
HP rack mounting kit.

## Accessories avaliable

HP s62/AR Digital Recorder, basic instrument with 11. column capacity. Column boards, connectors and cables not included. $\$ 1485$; Rack, $\$ 1460$.
HP 5050 B Digital Recorder, basic instrument with 18 column capacity and 3 code discs. Column boards, and cables required are not included, $\$ 1975$.
Price: HP Model 3460B, $\$ 4295$.
Opt. Hso, Optimum Noise Rejection for 50 Hz line, add $\$ 60$. Opt. 001, 1-2-2-4 BCD Output, no chatge.

# DIGITAL VOLTMETER <br> Resolution: $1 \mu \mathrm{~V}$ on 1 V ; 1 mV on 1000 V range Model 3462A 

 DIGITAL VOLTMETERS

The solid-state Model 3462A, 6-digit DVM, offers a resolution of 1 part in $1,200,000$ at $20 \%$ overrange. Sensitivity is $1 \mu \mathrm{~V}$ and accuracy is $\pm(0.004 \%$ of reading $+0.002 \%$ of range) over a $10^{\circ} \mathrm{C}$ temperature variation for a period of 90 days.

The potentiometric-integrating technique used in the 3460 B is also used in the 3462A. The true average of the input voltage is measured over a fixed sample period. Accuracy results largely from the potentiometric principle using precision resistance satios and a stable reference voltage. This, in combination with the integration and guarding system, results in the superimposed noise immunity of the integrating DVM's while retaining potentiomerric accuracy. Virtually no loading errors result from an input impedance of greater than $10^{\circ}$ ohms.
The 3462 A offers a maximum reading rate of 1.1 seconds per reading on all ranges. The 3462A is fully programmable. Digital output for all readings include polarity, decimal location, overload, and seven digits of data.
Null measurements can be performed with $1 \mu \mathrm{~V}$ sensitivity. A front-panel, high-resolution zero adjust is provided to compensate for any thermals in connections to external circuitry. BCD output capability permits recording of data, and remote programmability permits system applications.

## Ranging

Voltages are measured on four ranges from $\pm 1$ V $10 \pm 1000$ $V$ full scale. Ranges can be selected automatically, manually, or remotely. An important advantage is the ability to read up to $20 \%$ above full scale on any range ( 1200 V dc on the 1000 $V$ range). An overload condition is indicated on both the front sanel and the recorder output when the input is greater than 1.2 times full scale on any range during manual operation or greater than 1200 V in automatic operation.
Automatic selection of the appropriate input voltage range nay be made with the front-panel selector or by an external aircuit closure to ground. The autoranging circuitry utilizes :he full $20 \%$ overranging capability of the 3462A.

## Jrogramming

The HP 3462 A is designed for fully automatic operation within a digital data acquisition system. Voltage range can be jelected by external circuit closures to ground.
To simplify system cabling, input connections can also be nade at the rear of the instrument. All remote-control lines and electrical outpurs are referred to chassis ground and do not interfere with the guard.
1.2.4.8* binary-coded decimal voltages (ground referenced) are produced for each measurement and for indication of measurement function, voltage range, and polarity, A complete printed record of the 3462 A output information can be sbrained with an HP Model 562A/AR or HP 5050B Digital Recorder.

## Specifications <br> Ranges

Fall range dlsplay: $\pm 1.000000 \mathrm{~V} ; \pm 10.00000 \mathrm{~V}$; $\pm 100.0000$; $\pm 1000.000$.
Overranging: $20 \%$ on all ranges.
Range selection: manual, automatic, or remote.

## Performance

Accuracy ( 90 days, $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},<50 \% \mathrm{RH}$ ): $\pm(0.004 \%$ of reading $+0.0002 \%$ of range).
Accuracy ( 90 days, $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},<95 \% \mathrm{RH}$ ): $\pm(0.004 \%$ of reading $+0.0004 \%$ of range).
Stability (constant temperalure $\pm 1^{\circ} \mathrm{C},<50 \%$ RH)
24 hr: $\pm$ ( $0.0015 \%$ of reading $+0.0002 \%$ of range $)$.
180 day: $\pm(0.006 \%$ of reading $+0.0004 \%$ of range $)$.
remperature coefficient ( $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ ): $\pm(0.0002 \%$ of reading $+0.00002 \%$ of range) per ${ }^{\circ} \mathrm{C}$.

Veasuring speed

Fange	Interration inlerval	Reading Perlod (whont range ohanga)	Auto.   range   Thine	Remote Range The	Polarity Seleotion Thime
$\begin{array}{r} 1 \mathrm{~V} \\ 10 \mathrm{~V} \\ .000 \mathrm{~V} \end{array}$	5	1.1 s	\| 60 ms	8 ms	no delay

Reads within specified accuracy when triggered coincident with itep input voltage.

## nput Characteristics

nput: floated and guarded signal pair (special gold-plated binding post on front panel or connector on rear panel are selected by front-panel switch). Guard may be operated up ro $\pm 500 \mathrm{~V}$ de with respect to chassis ground ( 350 V rms). Low may be operated up to $\pm 50 \mathrm{~V}$ de with respect to guard.

1-2.2.4 available with HP 3462A Oplion 001.
input resistance

Range	Speclfloallana
1 V and 10 V	$10^{10} \Omega$ within $\pm 5 \%$ of null,   otherwise $10^{\circ} \Omega \pm 0.03 \%$
100 V and 1000 V	$10^{\prime} \Omega \pm 0.03 \%$

Input Impedance: 40 pF in parallel with $10^{-} \Omega$ at front panel.
Eftectlve Common-Mode Rejection (ECMR): ECMR is the rasio of the peak common-mode voliage to the resultant error in read. ing with $1 \mathrm{~h} \Omega$ uabalance in either lead.

EfFECTIVE COMMON MODE REJECTION


Normal-Mode Rejection (NMR): NMR is the ratio of the peak normal-mode signal to the resultant error in reading.



## Remote Control

## Range selectlon

Automatic: pushbutton selector or a switch closure to ground through $<100 \Omega$ provides autorange operation. 60 ms is required per range change, 180 ms max.
Remote: a switch closure to ground through < $100 \Omega$ for a period $>100 \mu$ selects range desired.
Manual: pushbution selector.
External Read Command

Trigat	Open Cxt Volage	Tringer Level	Duralion	Load
Positive going Direct coupled	-10V	0 V or contact closure to ground	$\begin{aligned} & 100 \mathrm{\mu s} \\ & \text { to } 10 \mathrm{~ms} \end{aligned}$	$\begin{gathered} 1 \mathrm{~mA} \text { at } \\ 0 \mathrm{~V} \\ 6 \mathrm{~mA} \text { at } \\ +30 \mathrm{~V} \end{gathered}$
Negative going Direat coupled	$+10 \mathrm{~V}$	-10	$\begin{gathered} 100 \mu \mathrm{~s} \\ 1010 \mathrm{~ms} \end{gathered}$	$\begin{gathered} 2 \mathrm{~mA} a t \\ -10 \mathrm{~V}, 5 \mathrm{~mA} \\ a f-30 \mathrm{~V} \end{gathered}$
AC Coupled		$20 \mathrm{~V} 0 \cdot \mathrm{p}$ with rise time $\leq 10 \mu \mathrm{~s}$	$>100 \mu \mathrm{~s}$	$5 \mathrm{k} \Omega$ in parailel with 25 oF ( $0.01 \mu \mathrm{~F}$ coupling capacilor used)

Voltmeter reset switch closure 10 ground through $<100 \Omega$ assures minimum reading period.
Trigger hold-otf: hold-off level is +3 V to +10 V with max. current of 6.3 mA (provided by an external device).
Input resístance: $10^{i} \Omega \pm 0.03 \%$ can be programmed by contacr closure to ground of $<100 \Omega$.

## Recorder Data

Print command: de coupled.
Print level: -1.0 V with $2 \mathrm{k} \Omega$ source resistance.
Print hold-off level: -17 V with $7.5 \mathrm{k} \Omega$ source resistance (minimum load resistance is $15 \mathrm{k} \Omega$ ).
BCD outputs: 4-line BCD (1-2.4.8), 2 columns, consisting of polarity and decimal locarion, overload, and 7 digirs of dala (HP 3462A Option 001 is available for 1-2-2-4 BCD).

## General

Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ unless specifed orhervise.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $\div 75^{\circ} \mathrm{C}$.
RFI: meets MIL.J-6181D.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ io $60 \mathrm{~Hz}, 90 \mathrm{VA}$. Availabie on special order for operation with powedine frequencies between 50 Hz and 400 Hz .
Dimenslons: $163 / 4^{\prime \prime}$ wide, $5^{\prime \prime}$ high, $213 / 8^{\prime \prime}$ deep ( $425 \times 127 \times 545$ mm ).
Weight: net 38 lbs ( $17,2 \mathrm{~kg}$ ): shipping $56 \mathrm{Jbs}(25,4 \mathrm{~kg})$.

## Accessorles furnished

HP 11065A 6-ft rear input cable, guarding preserved, terminated end mates with 3462A. ( $\$ 20$ (or additional cable.)
HP 11085A remote control cable. ( $\$ 30$ for addicional cable)
HP rack mount kit.

## Accessorles available

HP $562 \mathrm{~A} /$ AR Digital Recorder, basic instrument with 11. column capacity, Column boards, input connector assemblies and cables required for operation are not included. \$1485; rack, \$1460.
HP 5050 B Digital Recorder, basic instrument with 18 -column capacity and 3 code discs. Column boards and cables required for operation are not included. $\$ 1975$.
Price: HP 3462A, $\$ 5390$.
HP 3462A option 001 (1.2-2.4 BCD output), $\$ 5390$.
HP 3462A option Hs0 (optimum noise rejection for 50 Hz line frequency), add $\$ 60$.
HP 3462A option 001, option H50 (1-2-2.4 BCD output and optimum noise rejection for 50 Hz line frequency), add $\$ 60$.

## Digital IC's—Friend or Foe?

It's no surptise that the digital IC has produced an unprecedented revolution in complexity of design. But it's just this sophistication that has produced nonrepairable printed circuit boards, increasingly long test times, and warranty costs that undermine profits. A troubleshooting quagmire has given way in many organizations to the board exchange program where legions of spare-but-work. able printed circuit boards await their fallen brethren because the boards are not field repairable.

It would seem that an integrated 8 input NAND gate should be easier to test than the comparable circuit of discrete components. But the problem with the integrared NAND is simallaneitythe troubleshooter has to worry about nine things at a time. In the discrete


Having internal nodes can assist troubleshooting digital circuits. With IC's, only inputs and outputs are accessible.
implementation, single leads may be individually tested. But for the IC, when you have signals flying by at megahertz rates, how does one tell whether the NAND is inoperative or that eight high inputs never occurred at the same time? The answer: multi-pin, in-circuit, digital IC testing. The troubleshooting aids on the following pages should relieve many of the frustrations inherent in finding the
bad IC on a complicated printed circuit board.

## A new era begins

The IC Troubleshoorers are a new breed of rest equipment designed specifically for in-circuit digital testing. Incircuit testing implies exercising the IC in its own environment whether using the circuit's normal stimulus or providing a new stimulus directly where it is needed. The IC Troubleshooters, singly or combined into kits, are unique in their ability to isolate problems to a node and then to analyze failures for their cause.

Some very perplexing troubleshooting challenges a:e simplified by the IC Troubleshooters. The feedback loop problem, where an error propagates back on itself through a succession of IC's. presents a redious problem to even the most experienced troubleshooter. As the number of IC's in the loop increases, fault isolation by signal tracing becomes forbiddingly difficult. Yet this is where the 10529 A Logic Comparator excels: it looks for the outpurs expected from the given inputs whether or not the inputs are correct.


10529A Logic Comparator-an in-circuit ic functional tester.

## Stimulus-response in-circult testing

Until now this valuable technique has been denied the digital rroubleshooter by low impedance output circuits which thwart arbitrary signal injection between gates. The 10526 T Logic Pulser, how: ever, injects a single 300 -nanosecond pulse anywhere in TTL and DTL circuitry. The proper polarity pulse is always provided: high going into low nodes and low-going into high. Sufficient drive capability allows "reeing" to check operation of multiple input gates.

How should one look for injected pulses in-circuit, or for pulse activity in


10526T Logic Pulser and 10525T Logic Probe combine for digital slimulus-response in-circuit testing
general? A large percentage of IC failures result from open bonds; the oscilloscope is a natural tool since lack of pulse activiry is displayed by a flat trace. But for this simple but so often encountered malfunction the 10525 series of Logic Probes is really the answer. With the indicator at the troubleshooter's fingertips, a flashing light indicates pulse activity or a single flash, on or off, indicates a single pulse, even in the low nanosecond range. See the foliowing pages for the 10525 Probe with the right spec's for your logic.
The 10528A Logic Clip is a multi-pin in-circuit tester. Sixteen bright LED's tell you the instantaneous states of all pins on 14 and 16 -pin DIP's. Another val-uable-and ner'-troubleshooting technique combines $\mathrm{Clip}_{\mathrm{i}}$ and Pulser on sequential circuits. The Pulser can provide the stimulus signal such as clock, shift, preser, clear, transfer, and count, while the Clip monitors all the outputs.


10528A Logic Clip combines with Pulser for sequential circuit test.

The IC Troubleshooters are low-cost, hand-held instruments. But don't let size and price fool you, the IC Troubleshoot. ers are rugged and rrouble-free. And most importantly, they fit the problem.

## DIGITAL CIRCUIT IEST

THE IC TROUBLESHOOTERS
Total solution for IC logic testing Models 5011T, 5015T Logic Troubleshooting Kits


Model 5011 T Logic Troubleshooting Kił

- In-circuit analysis
- Dynamic and staric testing
- Multi-pin testing and analysis
- Complete TTL and DTL troubleshooting kit
- Stimulus-response capability
- In.circuir IC faule finding

The HP 5011 Logic Troubleshooting Kit combines all the troubleshooting capability of the four instruments described in the following pages.

These instruments, the 10529 A Logic Comparator, the 10526T Logic Pulser, the 10525T Logic Probe, and the 10528A Logic Clip, have been designed to work togerber to detect incircuit logic failures and to analyze failures for their specific causes. Using them you will quickly derive savings of troubleshooting dollars while repairing IC logic boards more easily than ever before.

The Logic Comparator attaches to 14. and 16 -pin dual inline TTL and DTL circuits-both sequential and combinatorial logic are testable. The IC under test is allowed to operate normally while its outputs are compared against a reference IC of the same type inserted in the Comparator. Shouid the circuit under test operate improperly, the failure is detected and displayed on the hand-held Comparator's panel. Sixteen LED's exactly pinpoint the failed node.

Once a failure has been isolated, the other test instruments can provide exacting analysis. For example, the Logic Probe will indicate if any pulse activity is present at the suspect node; the Probe's ability to detect single pulses, high or low, as narrow as 10 nanoseconds can insure the total absence of signals at the node. Placing the Logic Pulser on the suspect node with the Probe will allow detection of shorts to ground or the power supply-even the powerful burst of energy from the Pulser will not cause a pulse on a supply buss or ground.

Another analysis method employs the Logic Clip and Eogic Pulser. The Pulser can be used to inject reset and clear signals directly into flip-flops, counters, decoders, etc. with the Clip attached to monitor the effects. With the system clock re. moved or shorted, the Logic Pulser can inject clock pulses one-at-a-time, and deviations from prescribed sequences can be observed on the Logic Clip 16-pins-at-a-time.
Applications of the IC Troubleshooters are endless and limited only by the imagination of the troubleshooter. In production, the lab, feld service or wherever digital IC's are used. their ease of use will rapidly create substantial savings of test time and dollars.

Specifications, 5011 T
Includes:
Model 10529A Logic Compararor
Model 10525T Logic Probe
Model 10526 T Logic Pulser
Model 10528A Logic Clip
Weight: Net, $3 \mathrm{lb}(1.36 \mathrm{~kg})$ : shipping, $5 \mathrm{lb}(2,27 \mathrm{~kg})$.

## Options

01: Twenty extra blank reference boards for Comparazor, 550 .
02: Twenty preprogrammed reference boards (common TTL
[C's) for Comparator, 9150
04: Multi-Pin Stimulus Kit for Pulser, s10.
05: Tip Kit for Probe or Puiser, $\$ 15$.
06: Pulse Nemory; for TTL Probe $\$ 25$.
Price: $\$ 625$ (1-4). $\$ 595$ ( 5 -49).

## Model 5015T Logic Troubleshootlng Mini-Kit

- TTL/DTL troubleshooting kit
- Stimulus-response capability
- Ideal for lab and field service applications

The HP 5015T Logic Troubleshooting Kit combines the unique logic analysis capability of the 10525 T Logic Probe. 10526T Logic Pulser, and the 10528A Logic Clip into a single handy kit. These three instruments allow you to greatly increase the speed and ease of your TTL and DTL IC trouble. shooting.
The 5015T Kit derives value above that of the separate instruments from the complementing characteristics of its three Troubleshooters. Pulser/Probe and Pulser/Clip combinations are powerful stimulus response teams that allow you to analyze circuits statically and dynamically on borh a single and multipin basis. The benefir to you is a great increase in the efficiency of your roubleshooting time.
The 10525T Logic Probe provides an indication of logic state at your fingertips. Not only are TTL and DTL highs and lows displayed but also open circuits and bad levels are clearly shown. Dynamically, pulse trains to 50 MHz may be monitored and single pulses as narrow as 10 nanoseconds are detected. Thus the Logic Probe will quickly indicate the absence of key signals such as clock, reset, start. shift, transfer, etc.
The 10526T Logic Pulser brings you a new concept in digital croubleshooting: injecting a pulse betryeen logic gares. With high current sinking and sourcing capability, the Pulser, once its pulse button is pressed, can drive low nodes high and high nodes low for 300 nanoseconds before returning to its high impedance off state. The selection of a high pulse or low pulse is automatic-just press the button!

The Logic Pulser may be used with the Logic Probe in many ways. Use the Pulser to inject signals at IC inputs while checking outputs with the Logic Probe. Convenient in-circuit stimulus is the key and is a capability unique to the Logic Pulser. The very high input impedances of boch Puiser and Probe insure no circuit loading effects.
The 10528A Logic Clip's ability to monitor all the pins of TTL and DTL DIP's makes it extremely useful for resting flip-flops, counters, shift registers, decoders, etc. The Logic Pulser can inject clock and reset signals while the Clip allows you to see exactly hor the device responds. Improper opera. tion is immediately apparent.
This powerful combination of instruments is useful in the lab. production, field service. and in training applications or wherever lots of capability at a low price is desired. The time they save you in your digital troubleshooting will quickly recover the low cost of the kit.

## Specifications, 5015 T

Includes:
Model 10525 T Logic Probe
Model 10526T Logic Pulser
Model 10528A Logic Clip
Welght: net, 1 lb 6 oz ( $0,63 \mathrm{~kg}$ ); shipping, $1 \mathrm{lb} 10 \mathrm{oz}(0,74$ kg )
Options
04: Multi-Pin Stimulus Kit for Pulser. $\$ 10$.
05: Tip Kit for Probe or Pulser, $\$ 15$.
06: Pulse Memory for TTL Probe, $\$ 25$.
Price: $\$ 285$ (1-4), $\$ 250$ (5.49).


16 voltmeters clipped onto a single IC? HP's Model 10528A Logic Clip is 16 binary voltmeters that attach to any 14 or 16 pin dual in-line TTL or DTL IC. An LED corresponds to each pin and lights if the pin is high or stays unlit if the pin is low. Thus all states of an IC may be viewed with a single glance. Are the input signals right? Are the ourputs correct? Is the IC operating? All these questions and more are answered by the Logic Clip.

The Clip has no cables or controls. What's more it operates on any pin configuration. It automatically seeks $V_{c c}$ and ground no matter which pins they are. The display is obvious: tro rows of 8 LED's-it's like looking into the IC to see how it's operating. The intuitive relationship of the pin logic level to the light display greatly simplifes the troubleshooting procedure. You are free to concentrate your attention on your circuit rather than on measurement technique. Any way you lonk at the Clip, it's quite a buy at $\$ 125$.

## Specifications, 10528A

Input threshold: $1.4 \pm 0.6 \mathrm{~V}$; TTL or DTL compatible (except gates with expander inputs)
Input impedance: one TTL load ( -1.2 mA typical per input).
Input protection: voltages $<-1 \mathrm{~V}$ or $>7 \mathrm{~V}$ must be current limited to 10 mA .

## General

Supply voltage: $5 \mathrm{~V} \pm 10 \%$ across any 180 or more inputs.
Maximum current consumption: 120 mA .
Temperature: 0 to $59^{\circ} \mathrm{C}$
Price: $\$ 12 \$$ (1-4), $\$ 100$ (5-49).

## DIGITAL CIRCUIT TEST

THE IC TROUBLESHOOTERS
Dynamic indicators of logic activity Models 10525T, 10525E Logic Probes


## Model 10525T Logic Probe

- Dynamic indicator of logic activity
- Pulse stretching for narron' pulses
- Bad level/open circuit detection
- No adjustments required
- Indicator at finger rips
- TTL/DTL compatible
- Safe overload protection

Using the HP 10525T Logic Probe grearly simplifes tracing logic levels and pulses through IC circuitry for logic design, maintenance checks. troubleshooting, or training. It instantly tells you whether the circuit touched is logic high, low, bad level, open circuited, or pulsing. The 10525 T Logic Probe replaces the 10525 A providing extra capability which was not available in the older Probe.

The 10525T Probe has preset logic thresholds of 2.0 and 0.8 volts nominal which correspond to the high and low stares of conventional TTL and DTL circuits. When touched to a high level, a bright band of light appears around the probe cip; when rouched to a low level, the light goes out. Open circuits or voltages in the "bad level" region betreeen the preser thresholds cause lamp illumination ar half brilliance. Single puises of 10 as or greater are easily viewed by stretching to one-(xentieth second. The lamp flashes on or blinks off depending upon the pulse's polarity. Pulse trains to 50 MHz cause the lamp to biink off and on at a 10 Hz rate. With so much information so readily displayed it's like having an oscilloscope at your probe tip.

Using the Probe you can first run the circuit under rest at normal speed while checking for the presence of key signals such as clock, reset, start. shift and transfer pulses. Next step the circuit one pulse at a time while checking the troth tables of the logic packages to turn up any defects. In this mode, combining the Probe with the 10526T Logic Pulser will greatly enhance the ease of your trcubleshooting. The Pulser provides
a convenient means of injecting single pulses whose effects you can monitor with the Probe.

With no adjustments needed and with an indicator at your finger tips, the Model 10525T Logic Probe frees you to concentrate on circuit troubleshooting rather than measurement tecluniques. Connectors provided with the Probe facilitate connection to the required 5 volt power source from either the circuit under test or a laboratory supply. A ground clip is provided with which you can directly connect the Probe circuitry to the ground of the test circuit. Shortening the ground return path results in improved noise rejection and frequency response. Model 10525 T also functions quite well with logic families other than TTL and DTL, as long as the logic levels are near 2.0 and 0.8 voles.

The Probe is rugged, repairable, and warranted for one year. Its 25 ks input is protected against overload voltages includiog accidental contact with Nixie ${ }^{\text {B }}$ supplies and 120 V ac.

## Specifications, 10525T

Inpuk impedance: $>25 \mathrm{k} \Omega$ ( $\mathrm{V}_{30} / \mathrm{I}_{1 n}$ characteristic similar to low power TTL).
Logic one threshold: $2.0 \mathrm{~V} \pm 0.2 \mathrm{~V}$.
Logic zero threshold: $0.8 \mathrm{~V}+0.2 \mathrm{~V},-0.4 \mathrm{~V}$.
Input minimum puise width: 10 ns ( 5 ns typicai).
input maximum pulse repetition frequency: $>50 \mathrm{MHz}$.
input overload protection: $\pm 70$ volts continuous, $\pm 200$ volts intermittent. 120 V ac for 30 seconds.

## General

Power requirement: $S V \pm 10 \%$ at 100 mA .
Power supoly input protection: +7 to -15 voles (includes power lead reversal protection).
Temperature: $0^{\circ}$ to $55^{\circ} \mathrm{C}$.
Accessories included: BNC to alligator clips, ground clip.
Options
005: Tip Kit, $\$ 15$.
006: Pulse Memory, $\$ 2 \mathrm{~s}$.
Price: \$95 (1-4), \$75 (5-49).

## Model 10525E ECL Logic Probe

- Compatible with emitter-coupled-logic
- Finger tip indicator of logic levels and pulse activity
- Protected from overload voltages

The latest addition to the IC Troubleshooters is Model 10525 E ECL Logic Probe for checking your emitter-coupled. logic (ECL) digital systems. Similar to its forerunners, the 10525 T and H , but optimized for ECL, the Model E is fasrer than its predecessors and uses a - 5.2 volt power supply. Ir detecrs ECL logic levels and pulses, displaying all information via a single lamp in the probe tip. Lamp indication is the same as employed by the earlier Probes: lamp on for logic ones, off for logic zeros, and flashing to indicate puises. The Model E includes all the handy features that make its predecessors so popular. Single pulse capturing and stretching, high input impedance, and blowout-proof inpurs are all included.

The 10525 E thus makes available the full range of Logic Probe advantages in IC logic checkout of your ECL digita! systems. The natural correlation of logic level to light indication plus finger up display of all information will greatly aid your IC signal tracing for board repair and design debugging. The benefits of Probe usage are quick to accrue when the 10525 E is put to nork saving you dollars and frustration in your ECL troubleshooting tasks.

# THE IC TROUBLESHOOTERS Stimulus response testing of digital IC's Model 10525H Logic Probe, Model 10526T Logic Pulser 

## Madel 10525H High Level Logic Probe

Model 10525H High Level Logic Probe brings finger tip convenience to your design and troubleshooting of systems with logic circuits in the 12 to 25 volt power supply range. With it you can immediately simplify testing of a broad range of high level circuits, including HTL and HNNIL, MOS, relay, and discrete logic.

Operation of and information displayed by the 10525 H are analogous to those of the 10525 T . The " H " model responds to higher input voltage levels and accepts a power supply anywhere between 12 and 25 volts. In addition, frequency response has been decreased assuring better compatibility with the types of devices that the Probe will test.

Intended for use in industrial environments, the 10525 H features unmatched ruggedness and reliability. Both the probe tip and power inputs are well protected from damage due to overvoltage. The coaxial porver cord is strain relieved at both ends assuring reliable connections even under extreme conditions. Relizbility is further enhanced by inclusion of most of the probe circuitry into a single, custom IC which greatly reduces the component count.

## Specifications, 10525H

Input Impedance: $>20 \mathrm{k} \Omega$.
Logic one threshold: $9.5 \mathrm{~V} \pm 1 \mathrm{~V}$.
Logic zero threshold: $2.5 \mathrm{~V} \pm 1 \mathrm{~V}$.
Input minimum pulse width: 100 ns
Input maximum pulse repetition frequency: $\gg \mathrm{MHz}_{\text {. }}$.
Input overload protection: $\pm 70 \mathrm{~V}$ continuous, $\pm 200 \mathrm{~V}$ intermittent, 120 V ac for 30 seconds.

## General

Power requirements: +12 to +25 V at 100 mA . Includes power lead reversal protection.
Temperature: 0 to $55^{\circ} \mathrm{C}$.
Accessorles Inciuded: BNC to alligator clips, ground clip.
Option
005: Tip Kit, $\$ 15$.
Price: $\$ 95$ (1-4), $\$ 75$ (5-49).

## Model 10526T Logic Pulser

- In-circuir stimulation without unsoldering
- Automatic injection of proper polarity pulse
- Greatly simplifies digiral troubleshooting
- Ourput protected against ovecload
- TTL/DTL comparible
- Enhances utility of Logic Probe and Clip

At last, the Model 10526 T Logic Pulser solves your old design and troubleshooting problem of pulsing in-circuit IC's on TTL and DTL logic boards. Merely touch the Pulser to the circuit under test, press the pulse button and all circuits connected to the node (outputs as well as inputs) are briefly driven to their opposite state. No unsoldering of IC outputs is required. Pulse injection is automatic so you need not concern yourself whether the test node is in the bigh or low state: high nodes are pulsed low and low nodes, high, each time the button is pressed.

The Pulser is essentially a single-shot pulse generator with high ourput cursent capability packed in a convenient easy-touse probe. Ability to source or sink up to .65 amperes insures sufficient current to override IC outputs in either the high or low state. Output pulse width of $0.3 \mu \mathrm{~s}$ limits the amount of

energy delivered to the device under test thereby eliminating the possibility of destruction. Additionally the Pulser output is tri-state so that circuit operation is unaffected by probing until you press the pulse button.
Combining in-circuit pulse injection with the unique derection capabilities of the HP 10525 T Logic Probe and 10528 A Logic Clip focuses new power on solving the problems of fault isolation. Pulser/Probe and Pulser/Clip combinations en. able you to hold complete stimulus-response capability at your finger tips. Questions such as: "Is a gare functioning?": "Is a pin shorted to ground or Vcc?": "Is a counter counting?"; are quickly and easily answered without unsoldering pins or cutting PC traces.

Just inject signals into the test device with the Pulser and monitor results with the Probe and Clip. The Probe is useful when its pulse stretching capability is required, such as when resting gates and one-shots. The Clip is handy for sequential devices with multiple outputs (counters, shift registers).

## Specifications, $10526 T$

Output HIGH pulse voltage: $>2 \mathrm{~V}$ at .65 A ( 1 A trpical at V ps $=$ $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ )
Output LOW pulse voltage: $<0.8 \mathrm{~V}$ at .65 A (1A typical at $\mathrm{V} p s=5 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ).
Output impedance, active state: <2 obms.
Output impedance, off state: $>1$ megohm.
Pulse width: $0.3 \mu \mathrm{~s}$.
Input overlaad protection: $\pm 50$ volts continuous.
Power supply input protection: $\pm T$ volts (includes power lead reversal protection).

## General

Power requirement: s $\mathrm{y} \pm 10 \%$ al 25 mA .
Temperature: $0^{\circ} \mathrm{C}$ to $59^{\circ} \mathrm{C}$.
Accessorles Included: BNC to alligator clips, ground clip.
Options
004: Multi-pin Stimulus Kit, $\$ 10$.
005: Tip Kir, \$1s.
Price: 505 (1.4), $\$ 75$ (5.49).

## THE IC TROUBLESHOOTERS

## In circuit IC functional tester

Model 10529A Logic Comparator


## Model 10529A Logic Comparator

- Dramatically cuts troubleshooting time
- In-circuit IC testing with no unsoldering
- Simple to use with no adjustments
- Dynamic errors stretched and displayed
- Comparible with TTL/DTL logic levels
- Self.powered

The Model 10529A Logic Compararor is an extremely useful service, production, and design troubleshooting rool. This handy instrument simply clips onto poxered TTL or DTL IC's and through a clever comparison scheme instantly displays any logic state difference berween the test IC and a reference IC. Logic differences are identified to the specific pin(s) on 14 - or 16 -pin dual in-fine packages with the Comparator's display of 16 light emitting diodes (LED). A lighted diode cortesponds to logic difference.

The real value of the Logic Comparator is the time it can save in locating a faulty IC. There are no controls to be set. and it needs no power connections. An IC to be tested in the powered but malfunctioning module, instrument, or system is first identified. A reference board with a good IC of the same rype is then inserted in the Comparator. The Comparator is clipped onto the test IC, and an immediate indication is given if the test IC operates differently from the reference IC. Even very brief dynamic errors are detected, stretched, and displayed.

The Logic Comparator operates by connecting the test and reference IC inputs in parallel; thus the reference IC is exercised by input signals identical to those of the test IC. The outputs of the tro IC's respond separately and are compared; any difference in outputs greater than 200 ns in duration signals a failure.

When troubleshooting logic, it is reassuring to know that the logic rester is operating properly. A test board is supplied with
the Logic Comparator for this purpose. When inserted in place of a reference board, the test board exercises all of the Comparator's circuitry, test leads, and display elements to verify proper operation.

The Logic Comparator is an unparalleled aid for locating in-circuit failed IC's. The user need not attempt to correlate readings from an oscilloscope or voltmerer with data on schematics and logic diagrams. Just clip-and-read. Functional differences are isolated precisely to the node of failure.

The Logic Comparator's ease of use and small size make it an invaluable addition to the troubleshooter's rest gear either in the field or in the factory. With TTL and DTL failures that are functionally selated, the Comparator can find the bad IC up to ten times faster than conventional signal tracing techniques. At its low price, the Logic Comparator can pay for itself in only days.

## Specifications, 10529A

Input threshold: 1.4 V nominal, TTL or DTL compatible.
Test IC loading: outpurs driving rest IC inputs are loaded by 2 low-power TTL loads plus inpur of reference $I C$. Test IC oucpues are loaded be 1 low-power TTL load.
Input protection: volitages $<-1 \mathrm{~V}$ or $>7 \mathrm{~V}$ must be currene limited to 10 mA .
Sensitivity:
Error sensitivity: 200 ns. Errors greater than this are detected and streached to at least 0.1 second.
Delay varlation immunity: so ns. Errors shorter than this value are considered spurious and ignored.
Frequency range: with a $50 \%$ clock dury ocle, maximum fre. quency is typically 2.5 MHz .

## General

Supply voltage: $5 \mathrm{~V} \pm 10 \%$.
Maximum current consumption: 300 mA .
Supply protection: supply voliage must be limited to 7 V .
Temperature: $0^{\circ}$ co $55^{\circ} \mathrm{C}$.
Accessories incleded: 1 test brard: 10 blank reference beards: 1 carrying case.
Optlons
001: twenty extra blank reference boards. $\$ 50$.
002: wenty preprogrammed reference bnards (common TTL IC's). $\$ 150$.


DISPLAYS


Hewlett-Packard's X.Y and graphic displays are high-performance units that provide bright, easy-to-see readours for OEM systems. These displays are complete units with self-contained cathoderay tuhe, vertical and horizontal deflection amplifiers, video ( $z \cdot 1 \times i s$ ) amplifier, and high and low voltage power supplies needed for operation.

Electrostatic deflection in these graphic displays has reduced poxer requirements which increases life and reliability and correspondingly reduces maintenance costs, An expansion mesh. inserted in the CRT beam allows a large display size in a compact packiage.

## Selection available

The size and rype of CRT, can be selected to match yous application. Stan. dard display sizes range from $8 \times 10 \mathrm{~cm}$ to 14. 17. or 19 inches (diagonal measurement). All displays can be adapted for free-standing (desk top) use or can be mounted in standard instrument racks or special-purpose racks.

## Large screen

Models 1310A and 1311A are direcred beam, high-speed $19^{\prime \prime}$ and $14^{\prime \prime}$ graphic displays with unexcelled dynamic performance. An electrostatic CRT provides a crisp, small spor which allops these displays to match speed with computer
generated graphic information. The high linear rriting speed of 10 inches per microsecond reduces programing complexiry by allowing characters and vec. tors to be plorted in random fashion.

Model 1300A has a wide bandwidth of de to 20 MHz which was developed to display analog computer waveforms and in system and lab applications. The bright, $8^{\prime \prime} \times 10^{\prime \prime}$ viewing area gives the high zesolution eequired in many system measurement applications.

## Half-rack displays

Models 1330A, 1331B. and 1331D provide a compact display of analog computer processed dara and real time information. Model 1330A has a convencional CRT and 1331 B and 1331 D dis. plays have a mesh storage CRT with both variable persistance and bistable operation. The bistable mode allows a display to be stored and viewed in normal ambient light with a bright display of 100 foot Lamberts. In addition, data can be written continuously during the full one hour storage time. Madel 13318 with its front panel controls, also has variable persistence and standard storage modes in addítion to bistable storage. Model 1331D has rear panel controls and inputs for installation in computer or graphic display systems.

All three displays have 1 MHz X and Y bandwidths and 5 MHz 2 -axis band. width for sharp, high sesolution displays in raster and directed beam applications.

## Low frequency display

Models 1208A and 1208B ate economical, low frequency system displays which are available in a cabinet style (1208A) and a $51 / 4^{\prime \prime}$ high rack style (1208B). The X and Y amplifiers are identical. each with a bandwidth of 600 kHz . Convenient front panel controls allow adjusernent of deflection factor from 100 $\mathrm{mV} / \mathrm{div}$ to $1 \mathrm{~V} / \mathrm{div}$.

## Special requirements

If you have special requirements for a display which is mechanically or elecsrically different from the standard models in this catalog. contact your Hew-lert-Packard field engineer. He specializes in solving measurement problems and can help you select a special display to fit your specific requirements.

Typical changes are: modifed external appearance, special graticules or phosphors on the CRT, different size CRT's. special paint to match your system, dif. ferent knobs, panels, and enclosures. Electrical performance can also be changed to match your system requirements.


## Advanced display performance

Models 1310A and 1311A are directed beam, high speed 19" and $14^{\prime \prime}$ graphic displays that offer unexcelled dyoamic performance. For the first time, a display matches speed with computer generated graphic information. This speed is made possible through significant advances in large screen cathode-ray tube design. The electrostatic CRT provides a crisp, small spor anywhere in the large quality area of the CRT. Also, the CRT has a more rectangular shape than previous displays and information can be writuen anywhere in this large viewing area. Bright, easy-to-see displays result from the 28.5 kV accelerating potential while X-ray emissions are unmeasurable, ensuring a safe operating environment.


High writing speeds
Linear writing speed is an unsurpassed 10 inches per microsecond which allows character strokes to be written in less than 100 nanoseconds. Maximum slew rate of the electronics is 100 inches per microsecond. The large-step jump and settle time is $1 \mu$. This offers tremendous programming simplicity since characters and vectors can be plotted in random fashion from anywhere in the display area. Point plotting time for small steps is less than 200 ns per point thus, matrix type displays are wricten in minimal time.


## Electrostatic deflection

Electrostatic deffection replaces deflecton coils needed oy magnetic CRTs and the high powered circuits tr, drive the coils. Power consumption of these displays is a scant 100 watts which eliminates noisy fans and bulky mechanical cooling assemblies. Electrostatic deflection ends the need for major and minor deflection systems with multiple inpur connections. The single differential input for each axis significantly reduces the effects of common mode signals. Inpur RC is 10 kohms shunted by 40 pF with switchable 50 ohm terminations available when required.

Internal construction is modular, rugged, and very serviceable. Plug-in circuit cards reduce calibration or trouble shooting time. Also, a board exchange program assures minimum down time since fully tested circuit boards are air-parceled from the HP parts center.


These displays are supplied with open frame construction for mounting in a standard 19 -inch rack or in your custom designed enclosures. Covers and a tilt stand are available for free standing applications. Refer to Options and accessories in the specifications for listings of the standard items that are available.


## Designed for OEM systems

These high-quality, large-screen displays are designed for easy interfacing to systems requiring a visual readout. Each is a complete module with a CRT, power supplies, and analog deflection amplifiers which only require analog inputs to the $\mathrm{X}, \mathrm{Y}$, and $Z$ axes to randomly draw dots and vectors.

## Easily accessible controls

Each display has an attractive vacuum formed plastic mask that covers the front panel controls and supports an optional antiglare contrast filter. The focus, trace align, position X. and position $Y$ controls are accessible as screvrdriver adjustments through holes in the mask while the intensity control has a knob in front of the mask. The orthogonality, gain X, and gain $Y$ controls, which only requice access during system calibration, are accessible by removing the mask.


Versatile inputs
Signal inputs for the $X, Y$, and $Z$ axes are through rear panel BNC connectors. A slide switch on each inpur amplifies
allows selection of 50 ohm or 10 k ohm input impedance for easy $O E M$ system interfacing. Inputs to the $X$ and $Y$ amplifiers are floating with the low side connected to ground through a 47 ohm resistor which can be easily replaced with a different resistor for true differential inputs.

A one volt input to the X or Y axes will deflect the beam full screen. Horizontal and vertical deflection factors are adjustable through a front panel adjusement. Deffection polarity can also be easily changed to match system requirements by simply reversing the CRT neck pin leads from each output amplifier.

The one volt input to the $Z$-axis amplifier (also called video inpur) unblanks the bean, which can be adjusted over a 2.5:1 range by the gain control on the Z -axis amplifier. A polarity reversal switch on the Z -axis amplifer allows fast interfacing to the graphic system input.


## Special displays

The builr-in dexibility of the 1310 A and 1311 A package design permits special mouncing confogutions and many different size CRT's as shown. The cathode-ray tubes, pictured here, range in size from 8 -inches to 23 -inches (diagonal mea. surement). The phoros of a 21 -inch rectangular CRT and 19-inch round CRT are representative of the mechanical design flexibility and CRT mounting configurations. If your graphic display system requires a special CRT or mechanical configuration, contact your Hewletr-Packard field engineer for information.

# COMPUTER GRAPHIC DISPLAYS <br> $10 \mathrm{in} . / \mu \mathrm{s}$ Writing Speed <br> Models 1310A, I311A 

Specifications, 1310A, 1311A

## Vertical and horlzontal ampliflers

Risetime: $70 \mathrm{~ns}, 10 \%$ to $90 \%$ points for full screen deflection or less.
 Bection in 1311 A and s in. deflection in 1310A.
Phase shift: $<0.1^{\circ}$ to 50 kHz and $<1^{\circ}$ to 250 kHz for full screen signals.
Linear writling time: <100 ns/inch.
Linear wiftling speed $>10$ inches/ $\mu$ s.
Dagonal settling time: signal settles to within 1 spot diameter of final value in $<1 \mu s$ for any on screen movements.
Sequential polnt plotting tima: signal settles to within 0.01 in. of final value in $<200$ ns for any 0.1 in . step.
Repeatability: $<0.15 \%$ of full screen error for re-addressing a point from any direction on screen.
Crosstalk: $<0.015$ inch with one input shorted and the other input excited by 500 kHz .

Deflection factor" ${ }^{\prime \prime}$

Model	Vertioal	Horlzontal
1310 A	1 volt for 11 in, deflection	1 volt tor 15 in. deflection
1311 A	1 volt for $81 / 2$ in. deflection	1 volt lor 11 in. deflection

- Horlzontal and veriteal defiection iactors adjustable from front panel control with attenuation of $2.75,1$.
Spot fitter and motion: < 0.015 inch.
Position: zero input can be set to any on screen position.
Polarlty: positive vertical inpur moves beam up; positive horizontal input moves beam right. Polarity can be reversed by changing in. ternal lead connections.
Input RC: driven side 10 k ohms shunted by $<40 \mathrm{pF}$. Shield input is 47 ohms to ground. This can be replaced with 10 k ohms for differential input. A switchable 50 ohm termination between shield and center conductor is also provided.
Maximum Input: $\pm 50 \mathrm{~V}$ (dc + peak ac ) with 10 k ohm internal termination $\pm 5 \mathrm{~V}$ ( $\mathrm{dc}+$ peak ac) with 50 ohm internal termiDation.
Linearity: $1 \%$ of full scale display along major axes.
Drift: $0.05 \mathrm{in} . / \mathrm{hr}$ and 0.10 in . in 24 hr with covers installed.


## Z-axis amplifer

Risetime: <14 ns.
Sensitivity: i V provides full blanking or intensity.
Input polarity: internal switch selects polarify (switch is normally set so negative voltage unblanks signal).
Gain adjust: intemal, adjustabie over 2.5:1 attenuation ratio.
Balance: internal adjustment provides $\pm 1 \mathrm{~V}$ offset.
Input RC: approx 10 k ohms shunted by approx 60 pF . 50 ohm termination may be selected with internal switch.
Maximum Input: $\pm 50 \mathrm{~V}$ ( $\mathrm{dc}+$ peak ac ) with 10 k ohm internal termination, $\pm 5 \mathrm{~V}$ ( $\mathrm{d} c+$ peak $2 c$ ) with 50 ohm internal termination.

## Cathode-ray tube

Vlewing area: Model 1310 A ( 19 in. ), 11 in. high, 15 in , wide: Model 1311 A ( 14 in .), $81 / 2 \mathrm{in}$. high, 11 in . wide.
Type: post-accelerator, 28.5 kV accelerating potential, P31 aluminized phosphor is standard (refer to options for other phosphors). Electrosratic focus and deflection
Resolution: 67 lines/inch using shrinking raster method.
Erightness: at least $50 \mathrm{ft} . \mathrm{L}$. measured at $0.1 \mathrm{in} . / \mu \mathrm{s}, 60 \mathrm{~Hz}$ rate, with spot size of 0.020 in . in 1310 A and 0.015 in. on 1311 A .
Contrast ratio: 4:1 or greater.
$X$-ray emisslon: CRT emission not measurable, with Victoreen Model 440RF/C, in background noise.

Spot size

Model	Spot 5ize in Qualty Ares	Sixe of Quallity Ayea
1310 A	0.020 inch	$11^{\prime \prime} \times 11^{\prime \prime}$
1311 A	0.015 inch	$812^{\prime \prime} \times 81 / 2^{\prime \prime}$

Imploston protection: rim and rension banding prevents implosive deracuation.
Phosphor protectlon: circuit detects absence of defection and limits beam current. (Protection is designed for P31 phosphor).

## General

Front panel controls: Knob, intensity: Screwdriver adjustments, focus, astigmatism, vertical position, horizontal position: Scres. driver adjustments (behind front panel mask), trace aliga, vertical gain, horizontal gain, orthogonality.
$X, Y$, and $Z$ input connectors: BNC rype mounted to rear panel. Walght: Model 1310A, net $53 \mathrm{lb}(24 \mathrm{~kg})$, with covers $59 \mathrm{lb}(26,8$ kg ) ; shipping, $71 \mathrm{lb}(32,2 \mathrm{~kg})$. Model 1311A, net $40 \mathrm{lb}(18,1$ kg ), with covers $45 \mathrm{lb}(20,4 \mathrm{~kg})$; shipping. $62 \mathrm{Ib}(28, \mathrm{l} \mathrm{kg})$.
Dimensions: dimensional deawings are too numerous for preseniation in this catalog. Contact your local HP Field Engineer for a data sheet with these drawings.
Power: lls V ac $\pm 10 \%$ or 230 V ac $\pm 10 \%, 48 \mathrm{~Hz}$ to 440 Hz . maximum power 115 VA.
Environment: remperature, $0^{\circ}$ to $\div 55^{\circ} \mathrm{C}$ operating, $-40^{\circ} \mathrm{C}$ to $\div 70^{\circ} \mathrm{C}$ non-operating: Humidiry, up to $95 \%$ relative humidity to $40^{\circ} \mathrm{C}$; Aititude, up to $15,000 \mathrm{ft}$ operating; up to $25,000 \mathrm{ft}$, nonoperating; Shock, 30 g level with 11 ms duration and $1 / 2$ sine wave shape; Vibration, vibrated in three planes for is min. each with 0.010 iach excursion, 10 to 55 Hz .

Price (OEM discounts are available.)
Model 1310A: 19 -inch Display
$\$ 3000$.
Model 1311A: 14 -inch Display . $\$ 2875$
Accessories supplied: sack mount adapter kir, front panet mask.
Options (order by oprion number)
003: cop and bottom covers with tilt stand, add $\$ 100$. (Rack mount adapter not supplied with Option 003 inseruments.)
005: neutral-density contuase screen improves trace contrast for easier viewing. Add $\$ 40$ for 1310 A or $\$ 30$ for 1311 A.
006: blue contrase filter with anti-glare coating, add 540 . For 1310A and 1311A add 530 .
604: P4 aluminized phosphor in lieu of P31, no charge.
607: P7 aluminized phosphor, with amber flier, in liev of P31, add $\$ 40$ for 1310 A , add $\$ 30$ for 1311A.
639: P39 aluminized phosphor in lieu of P31, no charge.
Accessories
Cover kits: field installation of top and battom covers. For stand alone operation, a tile stand is required since the covers are not designed to support an instrument.
Price: Model 1310A Cover kit (HP P/N 01310.68703) \$60. Price; Model 1311A Cover kit (HP P/N 01311.68703) $\$ 60$.
Tidt stand kits: field installation of tilt stand for stand alone operation. Price, Model 1310A Tilt Stand kit (HP P/N 01310. 68702) \$50: Price, Model 1311A Tilt Stand kit (HP P/N 01311.68702) $\$ 30$.

Rack mounting klts: rack mounting adapter kits are supplied with standard inseruments on initial order or may be ordered later as a kit. Price, Model 1310A Rack Mount Adapter kit (HP P/N 01310.68701) \$10: Price, Model 1311A Rack Mount Adapter kit (HP P/N 0\311.68701) $\$ 10$.
Chassis slide kits: fixed slides, HP P/N 01310-68704 for 1310A or HP P/N 01311.68704 for 1311A, Price $\$ 100$ : pivor slides for 1311 A only, HP P/N O1311.687505. Price $\$ 120$.
Display cable, Model 10488A
Madel 10488A is a 12 ft cable with chree color coded coaxial cables inside a shielded jacket. Each end has three male BNC connectors that permit connection of the $\mathrm{X}, \mathrm{Y}$, and Z inputs to the system. Price, $\$ 50$.

# LARGE SCREEN DISPLAY <br> $20 \mathrm{MHz}, 8 \times 10 \mathrm{in}$. screen <br> Model 1300A 

DISPLAYS

## Description, 1300A

The extremely pide dc to 20 MHz bandwidth of the Model $1300 \mathrm{~A} X, Y$, and $Z$ amplifiers provide capabilities for displaying boch alphanumeric and graphic dara as well as analog system monitoring. An $8 \times 10$-inch viewing area with a bright display provides high resolution readouts needed for many system measurement applications.

Fast 20 ns risetime, 200 as settling time, and 80 ns point plotting time allow rapid switching of input data without flicker. This, coupled with less than $0.15 \%$ repeatability error and $1 \%$ linearity. provides accurate, stable graphic displays even with several unsynchronized multiplexed inputs. Resolu. tion and plotting speed is such that 2000 well defined characters may be writen within the $8 \times 10$-inch viewing area in 40 rows of 50 columns.

## Specifications, 1300A

## X-Y amplifiers

Bandwidth ( 8 -inch reference at 50 kHz ): dc.coupled, dc to 20 MHzz ; ac-coupled, 2 Hz to $20 \mathrm{M} / \mathrm{Hz}$
Risetime: <20 os ( $10 \%$ to $90 \%$ points).
Deflectlon factor: at least $0.1 \mathrm{~V} / \mathrm{in}$, gain control allow's deflection facior to be adjusted between approx $0.1 \mathrm{~V} / \mathrm{in}$, and $0.25 \mathrm{~V} / \mathrm{in}$.
Drift: $<0.5 \%$ of full sereen/hrafter $1 / 2 \mathrm{hr}$ warmup; $<1 \% / 8 \mathrm{hr}$.
Jitter and movement: $<0.01$ in.
Settling time: (jump scan time) <200 ns to within a trace width of final value for any on screen movement.
Repeatability: < $0.15 \%$ error for re-addressing a point from any direction from a source impedance of $<4 \mathrm{k}$ obms.
Input RC: 1 megohm shunted by approx 20 pF .
Input: single-ended: maximum input $\pm 500 \mathrm{~V}$ (dc + peak ac).
Linearity: over $8 \times 10-\mathrm{in}$. screen, $\pm 1 \%$ of full screen; any in, with respect to any other in., within $10 \%$. Includes geometric distortion caused by pincushion, symmetry, and orthogonality.
Phase shift: $0.1^{\circ}$ to 50 kHz , up to 100 inch signal: $1^{\circ}$ to 1 MHz , up to 10 -inch signal.
Cross talk: 40 dB at 20 MHz with full scale input signals; im. perceprible below 5 MHz .

## $Z$ axis amplifier

Analog input: do to $20 \mathrm{M} \mathrm{Hz}_{z}$ bandwidth over the 0 to 1 V range; +1 V for fuli blanking, -1 V for full intensity; gain control allows defection factor to be adjusted between approx $0.1 \mathrm{~V} / \mathrm{in}$. and $0.25 \mathrm{~V} / \mathrm{in}$. balance adjustment allows intensity reference level adjustment of $\pm 1 \mathrm{~V}$, maximum input $\pm 500 \mathrm{~V}$ (dc + peak ac): differential delay with either X or Y amplifier, $\pm 2 \mathrm{~ns}$.
Rise time: $<20$ ns ( $10 \%$ to $90 \%$ points).
Sweep blank input: digital dc blanking with $<1 \mathrm{k}$ ohm source and -0.7 V to +5 V ; unblanking with $>20 \mathrm{k}$ ohm source and 0 V to -5 V . Repecition rates to 1 MHz .
Chop blank input: ac-coupled blanking, +50 V blanks CRT. Input grounded when not in use.
Calibrator: line frequency square wave of $0.5 \mathrm{~V} \pm 2 \%$.

## Cathode-ray qube

Viewing area: $8 \times 10$-inches.
Accelerating potential: $>20 \mathrm{kV}$.

## Writing speed

Photographic: $>20 \mathrm{in} / \mu \mathrm{s}$. Using Polaroid ${ }^{3}$ CLi-s camera and 3000 speed film.
Visual (for 3 ft lamberts brightness at 60 Hz refresh rate): vector, $>2$ inches/ $\mu \mathrm{s}$; dot writing time, 40 ns .
Sequential point plotting time: <80 as for 3 ft lamberts bright. ness at 60 Hz refresh rate.
Brightness: 30 fi lamberts line brightness at $0.1 \mathrm{inch} / \mu \mathrm{s}$ refreshed at 60 Hz rale.


Spot size; $<30$ mils throughout $8 \times 10$-inch screen at 30 ft lamberts light oupput; nominally 20 mils at center screen (shrinking raster).
Phosphor and graticuie: aluminized P31 phosphor with 1 -inch grid and 0.2 -inch subdivisions on major axis of internal graticule. Other phosphors are available, refer to Options; other graticules are available on special order. A light green filter supplied with Model 1300A provides increased contrast.

## Control and input locations

Front panel: intensiry, focus and on-off swich. Astigmatism and trace align are resessed screwdriver adjusments.
Rear panel: X.Y-Z inputs, calibrator, X.Y gain, position and ac de inpur switches, $Z$ axis gain and balance.
Dimensions: $163 / 4^{\prime \prime}$ wide, $12-7 / 32^{\prime \prime}$ high, $197 / 8^{\prime \prime}$ deep over-all $181 / 2^{\prime \prime}$ behind panel rack mount ( $425,310,505,470 \mathrm{~mm}$ ).
Weight: net, $45 \mathrm{lbs}(20,41 \mathrm{~kg})$; shipping, $66 \mathrm{lbs}(29,9 \mathrm{dkg})$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$; 48 to 440 Hz ; approx 175 W .
Price: Model 1300A, X.Y monitor, $\$ 2400$. OEM discounts are available.
Options (order by option number)
001: neutral density contrast filter with light transmission of $\approx 30 \%$, add 315 .
002: P2 aluminized phosphor in lieu of P31, no charge.
004: P4 aluminized phosphor in lieu of P31, no charge.
007: 97 aluminized phosphor with amber filter in lieu of P31, no charge.
011: P11 aluminized phosphor in lieu of P31, no charge.
631: non internal graticule CRT with P31 aluminized phosphor, add \$20.
Accessories
Anti-reflection filters: Model 10181A, amber for P7 phosphor, $\$ 35$. Model 10182A, green for standard phosphors, $\$ 35$.
Chassis sildes: fixed slides, HP Part No. 1490.0714, \$42; pivor slides, HP Part No. 1490-0718, $\$ 40$.
sulde adapter kit: one adapes kit required for mounting one pair of slides, HP Part No. 1490-0721, $\$ 35$.
Special order
A number of special modifications are available. They include: front panel $X$ and $Y$ inputs and conerols, X10 preamplifer for $10 \mathrm{mV} / \mathrm{in} \mathrm{X}$ and $Y$ defection factors, binary $Z$ axis to provide eight gray scales, attenuators for X and Y amplifiers. Contact your local Hewletr-Packard Field Engineer for details about these or any other special requirements you may have.

Description, 1330A, 1331A, 1331C
Models 1330A, 1331A, and 1331C Displays are compact half-rack size instruments for displaying analog compurer. processed data and real time information. The high frequency response of these instruments make them extremely useful read-out devices in applications such as system display monitors. graphic displays, nuclear spectrometer, semi-conductor curve tracer, swept-frequency measurements, frequency ratios, phase shift measurements. raster displays, and amplicude versus time displays.

The 5 MHz Z-axis bandwidth provides sharp, high resolution displays in raster and directed beam applications. Differential input amplifiers on vertical and horizontal inpurs reduce noise common to the inner and outer conductors of the input cables. Careful design of the solid-state X and Y amplifiers provides stable operation, long-term reliability, minimum maincenance, and low power consumption.

## Storage displays

Model 13318 has front panel controls for convenient manual operation of X-Y position and storage or variable persistence controls where spot deflection and dot writing speed varies. Model 1331D has rear panel operating controls and remotely programmed inpurs needed for computer or graphic display systems.

## Variable persístence

Model 1331B writes and stores shades of gray which adds a third dimension to displayed data. Intermediate shades of
gray can be obtained by providing a Z.axis signal betroeen the -1 volt blanking and +1 volt full intensification voltages.

## Burn-proof CRT

The CRT used in both displays is as burn proof as a standard CRT which allows carefree operation. This means that no special precautions are required during normal operation.

## Bistable storage

A new, Hewlerr-Packard developed bistable storage mode has been added to both displays. This bistable mode allows you to simultaneously store and view the display for up to one hour in normal ambient light with the bright 100 foot-Lambert display. In addition, with Hewlett-Packard bistable storage, data can be written continuously during the full one hour storage time. In bistable operation the beam is either stored full on or is not stored, thus the image is extremely uniform. Also, since the background in bistable mode is slightly illuminared the stored spor resolution becomes berter than when the back. ground is dark as in the rariable persistence mode with maximum persistence.

The Hewlert-Packard developed mesh type bistable storage tube in these displays eliminates the need for memory devices to constantly refresh the display. Other advantages of this type tube which makes it ideal for system applications are: bright stored displays which allow's vieteing in high ambient light conditions: long life, comparable to standard CRT tube life, with no reduction in storage characteristics or brightness; and use in the storage mode does not reduce tube life.

Specifications, 1330A, $1331 \mathrm{~B}, 1331 \mathrm{D}$
(Unless otherwise nored, specifications apply on all models.)

## Vertical and horizontal amplifiers

Bandwidth: de to 1 MHz ( 3 dB down ar 1 MHz ).
Phase shift: $<1^{\circ}$ to 500 kHz .
Settling time: signal seteles to wirhin 1 spor diameter of final value in $<1 \mu \mathrm{~s}$, for any on-screen movement.
Deflection factor
Vertical: 1 V for 8 div defection. Incernally adjustable from 0.09 $\mathrm{V} / \mathrm{div} 100.14 \mathrm{~V} / \mathrm{d} \mathrm{s}$.
Horizontal: 1 V for 10 div deflection. Internally adiustable frem $0.09 \mathrm{~V} / \mathrm{div}$ to $0.14 \mathrm{~V} / \mathrm{div}$.
Common mode rejection ratio: 40 dB to 10 kHz for differential inpue of 3 V maximum between outer and inner coaxial inpue leads.

Maximum Input: $\pm 50 \mathrm{~V}$ (dc - peak ac).
Input: differential between center conducior and shield, shield may be grounded with internal connection. Polarity is reversible.

## Inpul RC

Single ended; 100 k ohms shunred by approx 80 pF to ground.
Differential: 200 k ohms shunted by approx 80 pF .

## 2 Axis amplifier

Bandwidth: dc 105 NHz ; rise time, approx 70 ns .
Input RC
Single-ended: 10 kohms shunted by approx 60 pF to ground. Differential: 20 kohms shunted by approx 60 pF .
Input: -1 V blanks spot inf any intensity; +1 V provides maximum incensity.
Maximum input: $-10 \mathrm{~V}(\mathrm{dc}+$ peak 16).

# SYSTEM DISPLAY <br> Flicker free storage or refreshed displays Models 1330A, 1331B, 1331D 

## 1330A cathode-ray tube and controls

Type: mono-accelerator 3 kV accelerating potential; P31 phosphor standard (refer to options for other phosphors)
Graticule: $5 \times 10$ div incernal graticule. $1 \mathrm{div}=1 \mathrm{~cm}$. Subdivi. sions markings of 0.2 div on major horizontal and vertical axis.
Display linearity: horizontal, $<5 \%$ difierenct between any two div; Vertical. $<5 \%$ difference berween any two div.
Eeam flnder: returns beam to screen regardless of setting of hori. zontal, vertical, or intensity controls. Rear panel switch.

## 1331B/1331D cathode-ray tube and controls

Type: post-accelerator storage tube $\approx 10.5 \mathrm{kV}$ accelerating poren. tial, aluminized P31 phosphor.
Gratleule: $8 \times 10$ div internal graticule. 1 div $=0.95 \mathrm{~cm} .0 .2$ div sub-divisions marked on major axes.

## Storage parameters

	Blstable   Mode	Varlable Perslatence   Mode (13s1B)
Writing Speed	$>20$ div/ms	$>40$ div/ms
Dot Writing Time	$<3 \mu \mathrm{~s}$	$<2 \mu \mathrm{~s}$
Information Slorage Rate	$>250 \mathrm{kHz}$	$>300 \mathrm{kHz}$
Storage Time	$>1 \mathrm{hr}$	Writing Mode, $>1 \mathrm{~min}$,   Store Mode, $>15 \mathrm{~min}$.   Min Persisiance, $\approx 0.2 \mathrm{~s}$
Brightness	$>100 \mathrm{fl}$	$>100 \mathrm{fl}$
Erase Time	$\approx 1 \mathrm{~s}$	$<500 \mathrm{~ms}$

Beam finder: returns beam to screen regardless of setting of $X$ and Y position controls. Rear panel switch.
Model 1331D programmable functions (write, store, erase) All program inputs are TTL/DTL compatible.

Input levels: high state is +2.0 V or greater, low state is +0.8 V or less for all program plug inputs. For high state $=2.4 \mathrm{~V}$, $\mathrm{I}_{\text {ant }}=0.4 \mathrm{~mA}$ max. For low state $=0.4 \mathrm{~V}, \mathrm{I}_{\text {xaurec }}$ is $<1 \mathrm{~mA}$.
Remote erase: low state for $10 \mu \mathrm{~s}$ minimum initiates erase cycle.
Remote mode transfer: high state is View Mode, Ins state is Write Mode.
Doting writing using mode transfer: dor may be written by transferring to Write Mcode for 7 us per dol. No degradation of View/Storage time occurs.
Erase Verify: indicates end of erase cycle. The output voltage is high approx 125 ms after start of erase cycle. Voltage then drops to low state and remains low to the and of the crase eycle. High state is 2.4 V minimum with $I_{\text {xameo }}=80 \mu \mathrm{~A}$ maximum. Low state 0.4 V maximum with $\mathrm{I}_{\mathrm{sink}}=3.2 \mathrm{~mA}$ maximum.

## General

## Inpyt connectors

$X, Y$, and $Z$ inguts: rear panel BNC.
Model 1331 D program connector: Cannon Model 1sP.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 48$ to 440 Hz , approx 60 watts at nomal line.
Weight: net, $191 / 2 \mathrm{lbs}(8,85 \mathrm{~kg}$ ); shipping, 25 lbs ( $11,34 \mathrm{~kg}$ )
Price: OEM discounts are available for all models.


011 (1330A): Pli phosphor in lieu of P3 1 no charge Note: beam finder intensification function is remoted from Option 011 displays.
631: non-internal graricule CRT with P31 phosphor Add $\$ 20$ for 1330 A and add $\$ 30$ for 1331 B or 1331D.

## Options for 1331D

016: provides direct connection of the 1331 C to a 12555 A inter. fact kit for displays using HP computers

Add $\$ 150$
Dimensíons:


Display cable, model 10488A: provides interconnection between the display and the signal input source. The cable has three color. coded coaxial cables with three male BNC connectors on each end for the $X, Y$, and $Z$ inputs.
Length: approx $12 \mathrm{ft}(3.6 \mathrm{~m})$.
Price: Model 10488A Display Cable
850
Storage display cable: provides interconnection between a Model 1331D and the signal input source. The cable has connectors on each end that mate with a Cannon Model 15P connector. The cable carries $X, Y, Z$, and remote ecase signals.
Length: approx $12 \mathrm{ff}(3.6 \mathrm{~m})$.
Price: Model 10489A Storage Display Cable
Frame adapter: a 7 -inch ( 18 cm ) high panel which allows two displays to be mounted side-by-side in a standard 10 -inch ( 48 cm ) rack.
Price: Adapter Frame (P/N 5060.8761)
Fller ganel: covers half of a Frame Adapier when only one display is in a Frame Adapter.
Price: Filler Panel (P/N 5060.8760 )
Camera adapter: Model 10366B adapter provides mounting of a HP Model 195A, 197A, or 198A camera.
Price: Model 10366B Camera Adapter
Tlme mark generator: the Model 226A Time Mark Generator can be used to check system linearity with external sweep inputs when a display is used in a system with analog dispiays. A programming option is available which would allow the 226 A to be programmed into a system calibration routine.

## Price

Mode! 226A Time Mark Generator
8670
Model 226A Programming Option 003
add \$150


## Speciflcations, 1208A/B

Vertical and horlzontal ampliflers
Bandwidth; do to 600 kHz when decoupled: 20 Hz to 600 kHz when ac-coupled. ( 3 dB down from 8 .div reference signal.)
Deflection factor: continuously variable from $<0.1 \mathrm{~V} / \mathrm{dir}$ to $>1$ V/dis.
Input: differential or single-ended.
Input coupling: front panel selection of ac or de.
Input RC: approx 100 k ohms shuned by approx 70 pF .
MaxImum Input: $\pm 200 \mathrm{~V}$ (ds + pesk ac $)$.
Common-mode
Rejection ratio: 40 dB (100:1).
Slgnal maximum: up $10 \pm 4 \mathrm{~V}(\mathrm{dc}+$ peak ac).
Frequency: de to 10 kHz .
Phase shift
Same $X$ and $Y$ deflection factor (with + inputs): $<1^{\wedge}$ so 300 kHz for defection factors belorv $0.2 \mathrm{~V} /$ div. $<1^{\circ}$, to 100 $k \mathrm{~Hz}$ for deflection factors above $0.2 \mathrm{~V} / \mathrm{div}$.
Different $X$ and $Y$ defiection factors (with + input, - input, or differential): $<3^{\circ}, 10100 \mathrm{kHz}$.

## Cathode-ray tube and controls

Type: monoaccelerator, 3 kV accelerating porential; P31 phosphor standard (sec options for other phosphors): etched safety glass faceplate reduces glare.
Gratleute: $8 \times 10$ divisions, internal graticule. 0.2-div subdirision markings on major axes. 1 div $=1 \mathrm{~cm}$. Front panel recessed screwdriver adjust aligns trace with graticule.
Beam finder: retums trace to CRT screen regardless of setting of horizontal, vertical, or intensity controls.
Intensity modulation: +2 -vol signal blanks trace of normal
intensity: +8 volt signal blanks any intensity. DC-coupled input on rear panel; amplifer risetime approx 200 ns; input $R$ is $s k$ ohrms.

## Callbrator

Type: line frequency square wave.
Output: I volt $\ddagger 1.5 \%$, front pinel connector (banana plug).

## General

Weight
Model 120BA (cablnet): aer, $21 / 2 \mathrm{lbs}(9,8 \mathrm{~kg}$ ); shipping, 31 lbs ( $14,1 \mathrm{~kg}$ ).
Model 1208B (rack): net, $201 / 2 \mathrm{lbs}(9,3 \mathrm{~kg}$ ); shipping, 33 lbs ( $15,0 \mathrm{~kg}$ ).
Power: lis or $230 \mathrm{~V} \pm 10 \%, 48$ to 440 Hz , approx 35 watts.
Dlmensions
Cablnet: 8.5/17" wide, $113 / 4$ " high, $181 / 8^{\prime \prime}$ deep ( $211,1 \times 298,5 \times$ $474,4 \mathrm{~mm}$ )
Rack: $19^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $167 / 8^{\prime \prime}$ deep over.all ( $483,132.5$, \{28,6) $15 \% /{ }^{\prime \prime}(390,5)$ bebind front panel.
Price: Model 1208 A or 1208 B X.Y display, $\$ 635$.
Options (specify' by' option number)
002: P2 phosplior, no charge.
006: (1208B) rear input terminals wired in parallel with front panel input terminals. Increases input shunt capacitance to approx 120 pF . Add $\$ 55$.
007: P7 phosphor, no charge.
011: Pl1 phosphor, no charge. Beam finder intensification is remeved from Option 011 displays.
Specials: special versions arailable with defection factor ranges 10 either $5 \mathrm{mV} /$ div of $100 \mu \mathrm{~V} /$ div. Consult your Hewlett-Packard field engineer for latest information.

# CRT DISPLAY Raster Display and Directed Beam Display Models 6610A, 6947A 

 DISPLAYS

Mode」 6610A is a large screen, directed beam, graphic dis. play used to output computer and instrument generaked graphic information. Extremely fine spot resolution combined wirh superior brightness provide a high quality, easy-ko-inter. pret display. Available in open frame or cabinet models.

## Specifications*, 6610A

Linear writing speed: $>0.3 \mathrm{in} / \mu \mathrm{s}$.
Diagonal setting time: beam settles to within 0.010 in of final value in $<40 \mu$ s for full screen jump scan movement.
Sequential point plotting time: beam sectles to within 0.010 in. of final value in $<1.2 \mu \mathrm{~s}$ for any 0.10 inch step.
Repeatability: <0.020 inch error for re-sddressing a point from any position on screen. $<0.010$ inch crosstalk.
Deflection factor: $0.2 \mathrm{~V} / \mathrm{inch}$.
Spot jitter and motion: < 0.010 inch.
Display stability, position, and size: beam will remern to original position on CRT screen within 0.020 inch $\pm 0.2 \%$ of displacement $/{ }^{\circ} \mathrm{C}$ when measured over an 8 -hour period.
Risetime: 40 ns.
Video response: dc to 10 MHz ( $3 d B$ down).
Senstivity: 1 volt provides full blanking or intensity. Rear parel contrast control adjustable over 6:1 attenuation ratio. Polarity rerersal switch.
Input characteristics: 10 k ohms single ended (unbalanced). ds coupled, 50 ns 2 -axis delay' mached to $x-y$ amps.
Vlewing area*: 10 in high $\times 13 \mathrm{in}$. wide usable, 17 in . diagonal. Bonded CRT faceplare. P4 phosphor is standard. 0.015 in spot size.
Brightness: at least 150 ft . L measured at $0.15 \mathrm{in} . / \mu \mathrm{s}, 60 \mathrm{~Hz}$ rate, spor size at 0.015 in., P4 phosphor.
Phosphor protection: detects bean speed and protects by over. riding the z -axis.
$X, Y$, and $Z$ input connectors: BNC type mounted to rear panel,
Weight: net. $85 \mathrm{lbs} .(38,6 \mathrm{~kg}$ ) ; shipping, $100 \mathrm{lbs} .(45.4 \mathrm{~kg}$ ).
Dimensions: open frame model, $141 / 8^{\prime \prime}$ high. $17^{\prime \prime}$ wide, $277 / \mathrm{B}^{\prime \prime}$ deep. $(358,6 \times 431,8 \times 581,2 \mathrm{~mm})$.
Power: $115 \mathrm{Vac} \pm 10 \%, 208 \mathrm{Vac} \pm 10 \%, 230 \mathrm{Vac} \pm 10 \%$; 48 to $440 \mathrm{H}_{2}: 140 \mathrm{~W}$ average. 280 W max.
Operating temp. yange: $0^{\circ}$ to $53^{\circ} \mathrm{C}$.
Price: Model 6610A Display, open frame model, $\$ 2700$. OEM dis. counts a a ailable.
Options (order by option number) 003: rounded corner cabinet model. add sio0. 004: chassis slides: for open frame model only, add $\$ 100$.

- Specificstions apply to 10 inch $x 10$ inch area, all speciffeations refer to tempersolure of $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.



## Precision raster display

The HP Model 6947A is a monocbrome precision raster display. Special consideration is given to the display's resolu. tion, frequency response, sweep linearity and stability.

## Specifications

Input circuit: 75 ohms unbalanced to ground: 124 ohms balanced. Input impedance (unterminated): 12 K ohms.
Input connectors: BNC with hoop-through faciliey.
input level: 0.5 to 4 V p-p for 85 -volt signal at kinescope.
Rise tlme: less than 40 ns for a step change input.
Input polarity: differential inpur: reversible polarity.
Frequency response: -3 dB at 18 MHz .
DC restoration: keyed back-porch clamp.
Fleld rate: vertical lock and interlace ( $2: 1$ ), 50 or 60 Hz feld rate. CRT: $14^{\prime \prime}$ diagonal. P4 phosphor, aluminized; $0.010^{\prime \prime}$ spot at 30 fl .
Geometric raster distortion: less than $1.5 \%$ overall: less than $1 \%$ in safe title area (senter $80 \%$ of full picture).
Pulse cross dlsplay: enables inspection of synchronizing information transmitted with the wideo signal.
Sync: composite video, 2 -cable and 3 -cable drive.
Ext: Sync input must be negative, from -1 V to -8 V . Separate vertical sync input must be negative, from -3 V to -5 V .
Tomperature ratings: operating: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Controls: front-panel ofi-on ac switch, contrast, brightness, focus, height, width, sync, $50 / 60 \mathrm{~Hz}$ field rate switch, pulse cross display sritch, and video input selector switch.
Input power: switchable between 115 and 230 Vac $\pm 10 \%$, 48 . $440 \mathrm{~Hz} ; 75 \mathrm{~W}$ at 115 Vac .
Weight: net, $43.8 \mathrm{lbs} .(19,8 \mathrm{~kg})$; shipping $6 \mathrm{a} .5 \mathrm{lbs} .(29,2 \mathrm{~kg})$.
Fack mounting: two angle brackets provided
Dimensions: $17.1 / 16^{\prime \prime}(43,3 \mathrm{~cm}) W \times 101 / 2^{\prime \prime}(26,6 \mathrm{~cm}) \mathrm{H} \times$ 20.9/16" ( 52.2 cm ) D.

Price: \$2250.

## Options

033: UHF input connertors, add $\$ 30$.
034: circularly polarized laminared safety glass, add $\$ 50$.
Models can be ordered with optional higher line rates.
Higher line rates ( 60 Hz field rate)—Add $\$ 200$.

Option number	001	002	003	004	005
Lires	675	729	875	945	1029

Hewlett-Packard offers a complete line of oscilloscopes. The ascilloscopes shown in Figure 1 are representative of the wide selection available. These oscilloscopes will satisfy the requirements of almost any measurement application.

Because Hewlett-Packard is a measurement company, we know how important an accurate oscilloscope is to your job. The oscilloscope is che screwdriver of the electronics industry and has evolved into a very accurate measurement tool. Displays are larger and brightef, bandwidth has increased, sweep speeds are faster and more linear, and controls are easier to operate. In general, the most versatile of all rest instruments has become even more accurate and versatile.

Hewletr-Packard has pioneered and incorporated many measure capabilities into oscilloscopes which are now taken for granted To name a few: internal graticule CRT, beam finder, expansion mesh CRT, trigger holdoff, mixed sweep. general purpose sampling to 18 GHz , time domain reflectometry, and rugged
variable persistence/storage.
Over the years, changes in measurements and scope rechnology have made the business of selecting, selling, and setvicing scopes a bit more complex. This is where Hewlett-Packard's comulative experience, rechnological leadership in many fields, and worldwide sales/service organization can be focused on your specific requirements.

## Applleatlons assistance

Solving your measurement problems is what Hewlett-Packard field engineers have built their excellent reputation on. Our field engineers attend frequent seminars which keep them abreast of latest developments. Oscilloscope application notes and technical dara sheets are readily available from Hewiett-Packard.

## Service and repair

Hervletr-Packard scopes are designed to perform faithfully for extended periods of time and to be easily and inexpensively serviced when required. You have the


Figura 1. Representative oseliloscopes and displays from Hewlett-Packard's product line.
assurance that your scope will perform as expected for years to come because of Hewlett-Packard's world-wide customer service organization. Replacement parts and service assistance are available at a Hewlett-Packard field office near you.

## Tralning aids

Training on new scopes and new applications has a high priority at HewletrPackard. We can help you learn more about our measurement capabilities, how to operate or use a scope, and how to properly repair or calibrate our products. In the Hewlett-Packard library of video tapes are hours of valuable information to bring you and others in your organization to almost any desired level of competence.

## Selecting an oscilloscope

Today's selection of an oscilloscope is not as easy as it was in previous years. The recent technological changes have considerably increased the price/performance ratios that are available to you. To make the best selection, use your im. mediate measurement application as a starting point. Then look at your past as well as possible future measurement requirements. Then ask a fext questions to reduce the number of scopes you have to look at before deciding on the best price/ performance ratio.

## Cathode-ray tube

Are the screen and spot size adequate? Are there photographic requirements that may require special phosphor? Do you need storage? Storage and variable persistence is very useful when observing very slowly changing phenomena, reduces photographic requirements by allowing you to photograph the trace you want, and a recent innovation provides a storage writing speed of greater than $400 \mathrm{~cm} / \mu \mathrm{s}$ to capture elusive fast transients.

## Vertical amplifier

Bandwidth and deffection factor are important points to consider. Is the bandwidth consistent through all ranges? Is the display crisp or noisy on the lower deffection factor ranges? At the same time, check the input impedance to see how much the input shunt capacitance will degrade your signal. Would a seiecrable inpur impedance be useful for both general purpose probing and 50 ohm measurements?

## Trigger source

Trigger source selection increases the usefulness of a multi-channel oscilloscope. Does the scope have selecrion versatility to determine time delay between signals, comparison of signals with delay, or coincidence for AND and OR gates.

## Time base

Time base characteristics are other points to be considered. Are the sweep speeds compatible with your bandwidth requirements? Does the time base have trigger holdoff to allow triggering on complex waveforms without losing sweep accuracy? Do you need delayed sweep, mixed sweep, or expanded sweep?

## Need Special modifications?

We welcome the challenge of your special requirements in scopes. It's that simple. Whether it be a special panel paint or a substantial electrical modifica. tion, we'd like to do it for you.

## Basic types of scopes

When you examine essentially all of the possible measurement requirements fulfilled by oscilloscopes, there are really perhaps only four types. In somewhat broad categories, these are: (i) plug.in/ mainframe, (2) nonplug-in, (3) port. able, and (4) monitor (or display). Fol. lowing are some characteristics and typical applications for each type. Figure 2 show's representative scopes.

## Mainframe/plug-ins

Here is where a first-order decision is usually made: Do you need plug-in capa. bility? Mainframe and plug.ins can be selected for the combination closest to each potential application, and character. istics can be changed to accomplish vary-
ing tasks. If a mainframe is selected carefully, it will allow upgrading through newer plug-ins as they become available and as the job requires them.
General purpose laboratory scopes (i.e, mainframe and plug-ins) are used in basic circuit design for almost every electronic product. Choosing a scope to do only today's job in the lab may be unwise since its useful life will likely be diminished.

Available plug-ins might include band-
widths up to at least 100 MHz dif. ferential/dc offset; two or four channels; standard, delayed or mixed sweep operation; sampling ar bandwidths to 18 $\mathrm{GHz}_{2}$ and time domain reflectometry. These give specialized measurement capability without investing in a whole new scope!

Hewlett-Packard offers such genera!purpose laboratory oscilloscopes and is therefore committed to anticipating your

## Table 1. Oscilloscope Selection

## 1300 Series X-Y Displays

Standard size CRT and large-screen X.Y or graphic displays. Both standard CRT and rugged, bistable storage/variable persistence models. Large-screen graphic displays up to a 19 -inch CRT have bright traces and the speed to keep up with a computer. OEM discounts are available See Page 109 280 System High Frequency Plug-in Scope

The one plugin instrument to solve nearly any general-purpose laboratory or production line measurement problem. Bandwidths of $500 \mathrm{kHz}, 35 \mathrm{MHz}, 50 \mathrm{MHz}$, $75 \mathrm{MHz}, 100 \mathrm{MHz}, 250 \mathrm{MHz}$, or $>600 \mathrm{MHz}$. Standard, storage/variable persistence, $>400 \mathrm{~cm} / \mu \mathrm{s}$ storage writing speed or big-screen. Sampling to 18 GHz .

See Page 122

## 1700 Series Portable Scopes

Rugged, light.weight instruments adequare for almost any field service or laboratory application. Bandwidths of $35 \mathrm{MHz}, 75 \mathrm{MHz}$, and 150 MHz . Storage with variable persistence at 35 MHz bandwidth. Operation from ac line, de line or sousce, or from an optional battery. Economically priced, too. See Page 156 140 System General-Purpose Plug-in Scope

A valued performer for Hewlett-Packard customers around the norld. Standard and storage/variable persistence models and a mainframe with $8 \times 10$ inch display area. Real-time plug-ins to 20 MHz , sampling to 18 GHz . TDR, swept frequency, and spectrom analyzer plug-ins.

See Page 167

## 1200 Serles Low Frequency Scopes

Low frequency, non-plug-in scopes of proven, all-solid-state circuit design. Many operating features normally found only on much wider bandwidth, more expensive scopes. Bandwidths of 500 kHz or 7 MHz in standard or storage/ variable persistence. Deflection factors as low as $100 \mu \mathrm{~V} /$ div. See Page 151 Oscilloscope Accessories

Supporting accessories to get the most out of your scope investment. Cameras and adapters, testmobiles, active and passive probes, and adapters to meet most any need. See Page 173


Figure 2. Hewlett-Packard scopes of four basic measurement types.
future design needs and to having the plugins there when you need them.

## Nonplug-in

Nonplug-in scopes are frequently referred to as "dedicated." They are often dedicated to one specific rask because the performance characteristics can perform that task for the useful life of the scope. As an initial investment, a nonpluge in instrument will cost less for comparable capability than a plug-in type.

By far the most common nonplug-in scopes are low frequency. Such a low frequency scope will have a bandwidth of perhaps 500 kHz (some extend to a fere megahertz). High sensitivity low frequency scopes are used in applications in many differenr engineering and scientific disciplines.

## Portables

Portable oscilloscopes are a category which usually refers to whether or not the instrument reas designed to be handcarried from one measurement location to another.

Most portable scopes are nonplug-in, with performance characteristics selected at purchase time to remain adequate for the life of the instrument. A portable scope is often used for field service work, such as maintaining a computer. However, a portable scope may still provide a good buy for design work.

Battery operation also extends to variable persistence and storage portable oscilloscopes. This provides a rugged storage tabe and remote operarion for your most exacting field service work.

When is an oscilloscope really portable? Carefully consider the characteristics inherent in the word portable. Obviously weight, size, and form factor enter but, also power consumption, rug. gedness, and reliability muse also be con. sidered.

Hewlett-Packard has economically priced portables that meer any requirement. These portables are really portable. There is no fan required and no holes are required for convection cooling. An internal battery, ac or de line power provides complete mability of these instruments to allow the field measurements to 75 MHz and storage operation to 35 MHz . A metal front panel is also provided for front panel protection and allows storage of many accessories.


Figure 3. Typlcal oscllioscope block diagram.

The power required by Hewlett-Packard portable oscilloscopes has allowed very rugged instruments to be developed. These scopes, designated as 1700 B Opt 300 and 1707 B Opt 300 meet the require. ments of the AN/USM 339 and AN/ USM 338. In face, a few modifications allowed the oscilloscope to surpass the dripproof test and operate under water. Meeting these rugged requirements did not reduce the laboratory accuracy of these instruments and they incorporate the same basic proven circuits as the standard 1700 series oscilloscopes.

## Oscilloscope basics

Because the oscilloscope can display electrical signals which vary with time, it has become today's most widely used electronic measuring instrument. It produces a visual display of any physical quantity which can be represented as a voltage. This permits precise measurement and analysis of the phenomenon represented by the voltage.

The block diagram in Figure 3 shows the essential parts of an oscilloscope.

## The cathode-ray tube

A CRT produces an electron beam whose movement is controlied by the vertical and horizontal amplifiers and by the power supplies which form, shape, and accelerate it. This electron beam surikes a phosphor screen and a visible glow results as the beam is moved.

Since the beam deffection can be calibrated against a grid (graticule) on the CRT face, amplitude and time measurements can be made. All Hewlett. Packard graticules are internal and in the same plane as the phosphor, eliminating paral. lax.

Hewlett-Packard manufactures all its own CRT's and technological leadership has accompanied this.

An expansion mesh, used first by Hew. lett-Packard in 1962, with a voltage on it produces an electrostatic field which bends the beam after is initial deflection at the electron gun structure. By conrolling mesh radius. Hewlett-Packard CRT designers have produced increasingly larger display areas while simultaneously reducing the over-all length of the tube.

Storage scopes are available with rug. ged variable persistence (the time it takes for the trace to fade to $10 \%$ of its orig. inal brightness). This is made possible by use of a storage mesh immediately behind the phosphor. Control circuits then determine the rate at which a dis. play fades away after being stored as a charged pattern on the mesh.

## Vertical deflection system

Since the CRT is limited as to the range of defection voltages which can be applied, a vertical amplifier and attenua. tor are used. These are accurately calibrated to provide a deflection factor related to the graticule (e.g., $5 \mathrm{mV} / \mathrm{dj}$. vision).

Hewlett-Packard vertical deflection systems have been made more useful with simplified, yet functional, concrols. As better circuits have been designed, adjustments previously adding to front panel confusion have been eliminated or 10 cated inside for use only in periodic calibration. An example of functiona! and innovative amplifier design is a selectable input impedance, either 505 or high $Z$.


Figure 4. Power supply module can be operated outside the mainframe to facilitate maintenance.

## Horlzontel deflection system

To deflecr the electron beam horizontally, an amplifier and swreep generator ase used. A sawrooth waveform generator sweeps the beam at a selectable uniform rate. With such a linear rate of sweep, calibration to the graticule is possible (e.g., $1 \mathrm{~ms} /$ division).
For meaningful displays, the horizontal deflection systen must provide synchronizing circuits to start the sweep at a specific instant with respect to the measured wavefom. Automatic triggering on Hewlett-Packard scopes makes starting of the sweep a quich, easy step. And preset adjustments produce synchronized sweeps with little or no adjustment. This allow's stable, one-knob triggering on sig. nals to beyond 500 MHz .

In addition to a direct-reading expander control, which minimizes errors, a time base in the HP 180 System fea. tures a X100 sneep expansion. This allows derailed examination of selected portions of a display, a fearure normally found only on more expensive delaying rime bases.

## Power supplies

Scopes contain low and high voltage power supplies and determine, with the CRT, the maximum capability of a scope, especially of a mainfrane.
Low voltage poner supplies give op. erating power to scope circuits such as the vertical and horizontal amplifiers. The high voltage power supply forms and controls the CRT electron beam.

Hewlett-Packard has made contribu. tions in power supplies, too. and two examples will show their significance:

1. The 1700 Series portable scopes have an advanced design LVPS. It is
highly efficient and has a newly designed de.to-dc converter. The result is a scope which consumes approximately 25 watts and operates from ac line, do line or source, or optional battery.
2. Mainframes in the 180 System have a reliable LVPS which, when repair may be required, can be removed from the instrument in a fully operating status; refer to Figure 4. Repair or calibration time is greatly reduced

## Input probes

Proper selection of well-designed probes will minimize circuir loading effects and provide the most accurate and useful waveform information. Improper matching of probe to circuit measure. mene point or of probe to scope will cause risetime errors in pulse measurements and cause both amplitude and phase errors in CW measurments.
The effects of resistive loading have been recognized for some time. High input impedances have been used to reduce the voltage division between circuit and measuring device. This technique will cause minimal error if measurements are at low frequencies and the circuit test point has a low impedance.
When these probing requirements are not met, inaccuracies result for one big reason: CAPACITANCE. And the effects of capacitance in the probe or scope input change drastically because of frequency.

Hewlett-Packard has pioneered in helping solve the capacitance problem in high frequency measurements by providing selectable inpur impedance- 50 ohms or a high Z with low capacitance. This measurement convenience is available because of Hewletr-Packard's innovative design, illustrated in Figure 5, that uses thick-film attenuators, a first, for the scope industry.

## Sampling oscliloscopes

Sampling oscilloscopes use a technique which is similar in principle to use of


Figure 5. Howieft.Packard innovation uses thick-film substrate in cam-operated attenue. tors, sllowing selection of 500 or high inpuit impedance with low capacitance.
a stroboscope for study of periodic or varying motion.
Samples are taken on successive recurrences of a waveform. As each amplitude sample is taken later in time on the waveform, the CRT beam is deffected to the corresponding point where a visible dot is then displayed. The rate at which sampling occurs is very fast; thus the dots are displayed as a coherent-appearing waveform on the CRT. Figure 6 illus. trates the sampling technique.

Samples are obtained when a pulse "turns on" the sampling sircuit for an extremely short rime. During this interval the input waveform amplitude is mea. sured, the samples are then effectively "stretched" in time, and amplified at relatively low bandwidths.
Thanks to fast-switching diodes developed by Herwlett-Packard-some even for use in other rypes of instrumentation -sampling scope bandwidths have progressed to the 18 GHz poinc. Hewlett. Packard introduced the first commercially a vailable sampling scope over ten years ago. Once again, cumulative technology has kept Hewlett-Packard sampling scopes a leader, both in performance and price, typifed by the Model 1810A, a 1 GHz sampling plug in that is both low in price and as easy to operate as a real. time oscilloscope.


Figure 6. Sampling scope technique reconslructs wavetorm from conseculive samples.

# GENERAL PURPOSE TO 18 GHz <br> Solid-state, compact, plug-in design <br> 180 Series 

## High Standard For Oscilloscope Measurements

The growing 180 Oscilloscope System establishes the standard for high-performance, high-frequency, general-pupose oscilloscope design. This modern plug in system allows you to match your oscilloscope capability to your particular application. These small all solidstate scopes are ideal for all types of high frequency measurements. This reliable, accurate performance has been proven in applications varying from shipboard testing, to fight-line checkout, to exacting measwernents of computer memories. This system is designed to meet today's requirements and still provide capabilities for future growth.

## Complete Selection For Any Measurement Need

A wide selection of mainframes and plug-ins assure you the right combination to fit a particular measurement at the minimum cost. All controls are logically atranged to allow quick familiarization for easy, fast, accurate measurements.


Mainframes
A wide selection of mainframes provides a choice of bandwidths to cover present and future needs. For measurements to 100 MHz , the 180 C and 180 D have bright, fast writing displays; the 181 A and AR bave highly burn resistant rariable persistence and storage CRTS: the 184 A and 1848 have an extremely fast storage writing speed of $100 \mathrm{~cm} / \mu \mathrm{s}$ and, as an option, $400 \mathrm{~cm} / \mu \mathrm{s}$ also with a burn resistant CRT; and the 182 C has a large screen display for easy-tosee multi-trace applications. Models $183 \mathrm{~A} / \mathrm{B} / \mathrm{C} / \mathrm{D}$ have bandwidths grearer than 600 MHz with writing speeds of 4 and $\mathrm{s} \mathrm{ns} /$ div for high speed pulse and CW measurements. All mainframes, except the large-screen 182 C , are available in compact cabinet or $51 / 4^{\prime \prime}$ high rack styles which take little bench or rack space.

## Vertical Plug-ins

The wide selection of plug.ins assures the right plug.in for almost any measurement application. To fir your application. the realtime verical plug-in is available in $500 \mathrm{kHz}, 35 \mathrm{MHz}, 50 \mathrm{MHz}$, $75 \mathrm{MHz}, 100 \mathrm{MHz}, 200 \mathrm{R} 1 \mathrm{~Hz}$ and 250 MHz bandwidchs with deflection factors of $100 \mu \mathrm{~V}, 10 \mathrm{mV}, 5 \mathrm{mV}, 5 \mathrm{mV}, 10 \mathrm{mV}$, and 10 mV , respectively. Differential/ds offset measurements are provided by the 1803 A which measures offset voltages with an accuracy of $0.5 \%$. Large signal, single-shor measurements are available in 183 mainframes in excess of $600 \mathrm{M} \cdot \mathrm{Hz}$ with the direct access 1831 A plug. in.

## Time Bases

For accurate timing measurements, the time base plug-ins give you a choice of single, expanded, and delayed sweeps with sweep times of $5 \mathrm{~ns} /$ div in 180 mandrames and $1 \mathrm{~ns} /$ div in 183 mainframes. Applications that only requite sweep expansion are provided by the 1824 A at considerably lower cost than a delayed sweep time base. The 1824A not only provides an expansion of up to 100 times but it maintains the $\pm 3 \%$ sweep accuracy that is often lost in a display magnification. If a delayed sweep is required, the 1825A provides calibrated delayed and mixed sweeps for accurate measurements. Also, by using a single reference line on the CRT, you can make differential timing measurements with approximately $1 \%$ accuracy.

## Sampling Plug-ins

The new generation sampling plugins provide the easiest and fastest low level, high frequency measurements available at this time. The 1810 A operates and looks like a real time plug-in and provides fast, accurate, low-level measurements to 1 GHz . Measurements to 4 GHz and 18 GHz are provided by the 1811 A and its remote feedebru sampling heads, 1432 A and 1430 C . The remore sampling heads reduce measurement errors by eliminating long high frequency interconnecting lines and the ieedthru characteristic allows measurements to be made while the system is operating normally with its own loads.

## TDR

Time Domain Reflectometry is a fast, convenient technique of measuring the electrical characteristics of transmission systems. For wideband applications, Models 1815A/B and 1818A will display an impedance profile of a system that shows magnitude, nature, and distance of a discontinuity from the test point. Model 1818A is a Low cost, eass to-use 170 ps risetime system for installation evaluation and servicing of transmission systems. For design work or critical system installations, the $1815 \mathrm{~A} / \mathrm{B}$ with its remote sampling heads provides calibrated 35 ps rise times which will display discontinuities as ciose as $1 / 4$-inch apart.
Waveguide transmission systems can also be checked by using the 1580 A narrow band TDR system. This narrow band TDR clearly shows the magnitude of discontinuities with the location directly calibrated in feet or optionally meters from the source. This allows rapid system set-up or repair of faults caused by mis. aligned or corroded waveguide flanges, coaxial cable connectors or damaged waveguide.

## Swept \&requency testing

Hewlett-Packard's Model 8755 series Frequency Response Test Sets are precision detection and display systems for making the basic microwave measurements of insertion gain/loss and retum loss (VSWR) from 100 MHz to 18 GHz . The 875SL is cabinet mounted with a large screen display for bench applications: the 8755 M occupies a minimum of space when rack mounted.

The 8755 system has been specifically designed to achieve a full 60 dB drnamic range when used with solid state sweepers (HP 8620 series) which typically have an output level in excess of +10 dBm . The 60 dB dynamic range from +10 all the way to -50 dB means it is possible to view a full 40 dB of return loss with couplers having a 20 dB auxiliary arm coupling factor. Refer to page 492 for specifications.

## Operation in Extreme Env/ronment

A 180 system has been developed to meer the exureme environmental requirements of the military. This system, which includes plug.ins and front panel cover with accessories, is available as an AN/USM-281A. The same ruggedized system can also be obtained as a 180 F mainframe and with 1801 F and 1821 F plug.ins or as a rack mount model in the 180ER.

180 System Selection Charts

	MAINFRAMES	
Model No．	DESCRIPTION	Prloe
1800	Cabinet style for up to 100 MHz real time plug－ins	\＄ 950
1800	$51 / 4$－inch high rack／bench style version of 180 C	1050
181A	Cabinet slyle，variable persistence and storage CRT， 100 MHz	1950
181AR	$55 / 4$－inch high rack／bench style version of 181A	2025
182C	Large screen， 100 MHz ，cabinet style	950
183A	Cabinet style，$>500 \mathrm{MHz}$ bandwidth， $4 \mathrm{~cm} / \mathrm{ns}$ writing speed	1850
1838	51／3－inch high rack／bench style version of 183A	1925
183 C	Cabinet styls，$>500 \mathrm{MHz}$ bandwidth，selectable scan， 4 or $8 \mathrm{~cm} / \mathrm{ns}$ writing speed	2500
1830	$51 / 4$ inch high rack／tench style version of 183C	2600
188 A	Cabinet style， 100 or $400 \mathrm{~cm} / \mu \mathrm{s}$ storage writing speed， 100 MHz	2200
1848	51／4－inch high rack／bench style version of 184A	2275

## Vertical Plug－ins

Model No．	1801A	1803A	1804 A	1805 A	1806A	1807A	1898A	（1）1810A＊	（18）14	（1）1830A	（1）（3）1831A／B	（1833A
Bandwidth，MHz	50	$\begin{array}{r} 40 \\ (30) \\ \hline \end{array}$	50	100	0.5	35	75	$\begin{gathered} \text { 1GHz } \\ \text { (sampling) } \end{gathered}$	$\begin{aligned} & 4 \text { or } 18 \mathrm{GHz} \\ & \text { (sampling) } \end{aligned}$	250	$\begin{aligned} & >600(\mathrm{~A}) \\ & >500(\mathrm{~B}) \end{aligned}$	200
Min．Deflection factor／div	5 mV $(500 \mu \mathrm{~V}$ 0 pt 001 cascaded $)$	$\begin{gathered} 5 \mathrm{mV} \\ (1 \mathrm{mV}) \end{gathered}$	20 mV	5 mV	$100 \mu \mathrm{~V}$	10 mV	5 mV	2 mV	2 mV	10 mV	$\approx 6 \mathrm{~V}$	10 mV
Channels	$\begin{gathered} 2 \\ (1 \text { cas. } \\ \text { caded }) \end{gathered}$	1 dift	4	2	2	2	2	2	2	2	1	4
$\begin{aligned} & \text { Differentíal } \\ & \text { Input } \end{aligned}$	Yes	Yes （with dc Offset）	No	Yes	1831A only	Yes						
Price	$\begin{gathered} \$ 680 \\ (0.8001 \\ \$ 830) \end{gathered}$	\＄1025	\＄1050	\＄1400	\＄675	\＄450	\＄880	\＄1750	\＄1700	\＄950	$\begin{aligned} & \$ 375(A) \\ & \$ 425(B) \end{aligned}$	\＄1700

Time Base Plug－ins

	TIMEBASEPLUG－INS								TDR	TDR／SAMPLING	SWEPT AMP ANALYZER
Model No．	1820C	1821A	1824A	1825A	（21810A	（3）18114	C1804	C1841A	（3）184	（181515／6	（2）755A
Ext Trle	150 MHz	100 MHz	150 MHz	150 MHz	$>1 \mathrm{GRz}$	18 GHz （with counldown）	$>500 \mathrm{MHz}$	$>500 \mathrm{MHz}$	$\begin{aligned} & <170 \mathrm{ps} \\ & \text { riselime } \\ & \text { TDR } \\ & \hline \end{aligned}$	3s psealibraled fise Iimio TDR，I2．4 GHZ slngle channal sam－	Swepl fravency tasting foom 0.1 to $18^{\circ} \mathrm{GHZ}$ with
Int Trlg	100 MHz	75 MHz	100 MHz	100 MHz	1 GHz		250 MHz	250 MHz	syslam	pling i815a calibra．   lad in feet 1815B	-50 dB sens．
Swaep Times／dlv	5 ns－1s	10 ns －Is	$5 \mathrm{~ns}-1 \mathrm{~s}$	$5 \mathrm{~ns}-1 \mathrm{~s}$	100 ps （expanded） $-50 \mu \mathrm{~s}$	$\begin{gathered} 1009 \\ \text { (axDanded) } \\ -5 \mu s \end{gathered}$	$\begin{gathered} 1 \mathrm{~ns} \\ -0.1 \mathrm{~s} \end{gathered}$	$\begin{gathered} 1 \mathrm{~ns} \\ -0.15 \end{gathered}$		callbralad 1 п metars．Plug－in ra． quires sampling	
Dolayed and Mlued Swerd	No	Yes	$\begin{gathered} \text { XI00 } \\ \text { Expand } \end{gathered}$	Yes	No	No	No	Delayed		head and tunnal dilode．	
Price	\＄400	5700	\＄550	$\$ 800$	\＄1750	（0）$\$ 1700$	\＄700	\＄1150	\＄1200	C5\＄250	（3） 31350

Mainframe／Vertical／Time Base Compatibility Chart

		Vertioal Plug－In												T／me Base Plug－In							TOR／Sampling			
MAINFRAME		高	驫	票		希	$\underset{\mathbf{a x}}{\underline{\mathbf{a}}}$	\|㽞	㷛			妿	嵌			$\left\lvert\, \begin{aligned} & \text { 皆 } \\ & \hline \end{aligned}\right.$	芯	若	受举	$\stackrel{I}{\bar{I}}$		$\pm$		－
180C／D		$x$	$x$	$x$	x	$x$	x	x					$x$		$x$	$x$	$x$				$x$	$x$	$x$	x
181A／AR		$x$	$x$	$x$	$x$	$x$	$x$	x					x		$x$	$x$	$x$				x	$x$	$x$	$x$
182C		$x$					X		x	X	$x$				$x$	$x$	X	$x$						
	$<100 \mathrm{MHz}$	$x$	$x$	$x$	x	X	$x$	x					x		X	X	X				X	$x$	x	$x$
183	$>100 \mathrm{MHz}$	$x$			$x$						X		X	X	$x$	x	x							
A／8／C／D	Opl 035	$x$	$x$	x	$x$	$x$	x	x	x		X	X							x					
184A／B		$x$	x	X	X	X	X	X					X		x	X	x				X	$x$	$x$	X

notes：
1．Operates in 183 mainframes oniy．
2．Double size plug－ln．
3．Fequires option 035 to 183 malnframes and lB40A Time Base．
4．Price is without sampling heads and tunnol dodes．
5．See page 452 for spechica－ tons．

## LARGE SCREEN， 100 MHz

Plug－in flexibility Model 182C

## Description，182C

Model 182 C plug．in oscilloscope mainframe provides large screen， 100 MHz bandaridth in the proven 180 oscilloscope sys－ tem．The parallax free，internal graticule is $8 \times 10$ divisions with each division equal to 1.29 cm ，which makes it easier to view displays from a distance．This larger CRT area， $66 \%$ larger than $8 \times 10 \mathrm{~cm}$ displays，also improves viewing of dis－ plays such as four－channel，differential／dc．offset，and time do－ main reflectometer measurements．
Another feature of this mainframe is its design for maintain－ ability．Plug－in circuit modules that connect to a printed circuit mother board almost eliminate interna！cabling．which increases reliability and makes it easier and quicker to get an instrument hack into service．For example；the hocizontal amplifier is on a plug－in circuit board that includes a section of front panel with knobs and switches mounted on it．This allow＇s a complete， pre－rested board to be quickly installed which keeps instrument doxntime to a minimum．Also，the function of major circuit areas，test points，and adjustment values are printed on the cir－ cuir boards so a knoxiledgeable technician can easily adjust or repair the circuits．

## Specifications，182C

## Cathode－ray tube and controls

Type：post accelecator， 19 kV accelerating potential；aluminized P31 phosphor（other phosphors available，ste Options）．
Graticule： $8 \times 10$ dir internal graticule 0.2 div subdivisions on major axes． 1 dic $=1.29 \mathrm{~cm}$ ．Front panel recessed screwdriver adjustment aligns trace with graticule．Scale control illuminates CRT phosphor when viewing with hood or taking phorngraphs．
Beam Iinder：returns trace to CRT screen regardless of setting of horizontal，vertical，or intensity controls．
Intensity modulation：approx $+2 \mathrm{~V}, \geq 50$ ns pulse width $(\leq 10$ $\mathrm{M} \mathrm{Hz}_{2} \mathrm{CW}$ ）will blank trace of normal intensity．Iaput R，approx 5 k ohms．Maximum Input voltage，$\pm 20 \mathrm{~V}$（dc $\perp$ peak ac）．

## Calibrator

Type：approx 1 kHz square $\begin{gathered}\text { nave，}<j \mu \mathrm{~s} \text { rise time．}\end{gathered}$
Voltage：two outputs． 250 mV p．p and 10 V p－p：accuracy，$\pm 1 \%$ ．

## Horizontal amplifier

## External input

Bandwidth：dc－coupled．de to 5 MHz ；ac－coupled， 5 Hz to 5 $\mathrm{MHz}_{\mathrm{z}}$
Deflection factor： $1 \mathrm{~V} /$ dir，$x 1 ; 0.1 \mathrm{~V} /$ dir，$\times 10$ ；accuracy，$\pm 5 \%$ ． Vemier provides continuous adjustment between ranges．
Dynamic range：$上 20 \mathrm{~V}$ ．
Maximum input：$\pm 300 \mathrm{~V}$（dc + peak ac）．
Input RC： 1 megohm shunted by approx 30 pF ．

## Internal sweep

Sweep magnitier：x 10 ；accuracy，$\pm 5 \%$（including $3 \%$ accuracy time base）．

## General

Outputs：four emitter follower outputs on rear for main and de－ layed gares，main and delayed sweeps or vertical and horizontal outputs when wsed with sampling plug－ins；maximum current available，$\pm 3 \mathrm{~mA}$ ；outpues will drive impedance $\geq 1000$ ohms without discortion．
Weight：（without plug－ins）net， $261 / 2 \mathrm{lb}(12,02 \mathrm{~kg})$ ；shipping $381 / 2$ lb $(17,46 \mathrm{~kg})$ ．


Power： 115 or $230 \mathrm{~V} \pm 10 \%, 48$ to $440 \mathrm{~Hz},<110$ walls with plug．ins at normal line．Max．mainframe power， 200 VA．

Operating environment：temperature， $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ：humidity， up to $95 \%$ relacive humidity at $40^{\circ} \mathrm{C}$ ；altitude，up to $15,000 \mathrm{fr}$ ： vibration，vibrated in three planes for is minutes each with 0.010 inch excursion， 10 to 55 Hz ．
Dimenslons： 7 15／16 in，wide $x 13$ 5／16 in．high $\times 195 / 8$ in． deep over－all（ $201,6 \times 338.1 \times 498.5 \mathrm{~mm}$ ）．
Accessories furnished：blue light filter：power cord．
Price：（mainframe less plug．ins） Model 182C Oscilloscope Mainframe $\$ 950$ Model 182C Option 010 Oscilloscope Mainframe $\$ 900$

## Options

002：aluminized P2 phosphor in lieu of P31，no charge．
007：aluminized P7 phosphor in lieu of P31，no charge．
010：mainframe withour rear panel main and delayed sweep and gare ourpurs Less $\$ 50$
011：aluminized P11 phosphor in lieu of P31，no charge．Beam． finder does not intensify display on Option 011 oscilloscopes．

## Description, 180C/D

Models 180C (cabinet style) and 180D (rack style) mainframes contain the basic functional circuits and power supplies for teal time 1800 serics plug.ins to 100 MHz, TDR and 12.4 GHz sampling and dual channel 1 GHz and 18 GHz sampling plug-ins. Basic mainirame features are: $8 \times 10$ division ( 1 div $=1 \mathrm{~cm}$ ) internal, parallax.free graticule; internal flood gun for scale illumination; $x 3$ and $\times 10$ sweep magnifier; external horizontal inpuc: twó calibrator ourputs of 250 mV and 10 V ; and the Hewlett.Packard developed beam finder.

The cathode-ray tube has is kV accelerating potential for fast visual and photographic writing speeds which makes is easy to measure low duty cycle pulses. Photographic writing speed with $\mathrm{P}_{31}$ phosphor is $1500 \mathrm{~cm} / \mu \mathrm{s}$ and is measured using an HP 195A Camera, 10,000 ASA film without film rogging techniques.

To facilitate servicing, the modular power supply may be simply unplugged and removed from the mainframe for complete access to all components. In addition, the power supply may be operated in this exposed condition without requiring separate extenders which further simplifies and speeds up main. tenance procedures. A horizontal gain calibrator, Model 10411A, is available to provide fast calibration of the mainframe horizontal amplifier. This and other accessories are listed in the accessories section.

## Specifications, 180C/D

## Cathode-ray tube and controls

Type: post accelerator, approx 15 kV acceleraing potential; aluminized P31 phosphor (see Options for other phosphors).
Graticule: $8 \times 10 \mathrm{div}$ internal getiticule, 1 div $=1 \mathrm{~cm} .0 .2 \mathrm{div}$ subdivisions on major axes. Front panel recessed seresudriver adjusment aligns trace with graticule. Scale conuol illuminares CRT phosphor when viewing with hood or caking phorographs.
Beam finder: retums erace to CRT sercen regardless of seteing of horizontal, verical, or intensity controls.
Intensity Modulation (External Input)
Input: approx $+2 \mathrm{~V}, \geq 50$ ns pulse width ( $\leq 10 \mathrm{MHz}$ sine Weve) will blank trace of normal intensity.
Input R: approx 5 kohms.
Maximum input: $\pm 20 \mathrm{~V}$ ( $\mathrm{dc}+$ peak ac ).
Photographic writing speed: $1500 \mathrm{~cm} / \mu \mathrm{s}$. Measured using P31 phosphor, 10,000 ASA $\overline{\mathrm{I}} \mathrm{m}$ without film logging and HP Model 195A camera ( 1.3 lens, $1: 0.5$ object-to-image ratio). Writing speed may be increased substancially by using film fogging techniques, Pll phosphor, and faster camera lenses.

## Calibrator

Type: approx 1 kHz square wave, $<3 \mu$ s rise time.
Voltage: iwo outputs, 250 mV p-p and 10 V p-p into $\geq 1$ megohm: accuracy, $\pm 1 \%$.

## Horizontal amplifler

## External Input

Bandwidth: de co $5 \mathrm{MHz} d c$-coupled; 5 Hz to 5 MHz ac-coupled. Deflection factor: $1 \mathrm{~V} / \mathrm{div}, \times 1 ; 0.2 \mathrm{~V} / \operatorname{div}_{3} \times 5 ; 0.1 \mathrm{~V} / \mathrm{div}, x 10$; accuracy $\pm 5 \%$. Vernier provides continuous adjustment between ranges.
Dynamle Range: $\pm 20 \mathrm{~V}$.
Maximum Input: 600 Vdc (ac-coupled inpur)
Input RC: approx 1 megohm shunted by approx 30 pF .

## Internal sweep

Magnifier: $\times 5, \times 10$, accuracy $\pm 5 \%$ (with $3 \%$ accuracy time base).

## General

Outputs: four rear panel, emitter follower outputs provide main and delayed gates, main and delayed sweeps, or vertical and hori-

zonesl outputs when used with TDR/Sampling plugins. Maximum current available $\pm 3 \mathrm{~mA}$. Outpuy will drive impedances of $\geq 1000$ ohms without distortion.
Welght (without plug-Ins)
Model 180 C (cabinet) : net $24 \mathrm{lb}(10,9 \mathrm{~kg})$; shipping, 36 lb $(16,3 \mathrm{~kg})$.
Model 180D (Rack): net, $26 \mathrm{lb}(11,8 \mathrm{~kg})$; shipping, 40 lb ( $18,1 \mathrm{~kg}$ ).
Power: 115 or $230 \mathrm{~V}, \pm 10 \%$; 48 to 440 Hz ; nomally < 110 watts with plug-ins at nomal line. Max. power, 200 VA .
Operating environment: Temperarure, 0 to $+55^{\circ} \mathrm{C}$; Humidisy, 10 $95 \%$ relative humidity to $40^{\circ} \mathrm{C}$; Altitude, to $15,000 \mathrm{ft}$; Vibration, vibrated in three planes for 15 min. each with 0.010 inch excursion, 10 to 55 Hz .

## Dimensions

Cabiner Model 180C: 77/8" wide, $113 / 8^{\prime \prime}$ high, $214 / 4 "$ deep behind pancl ( $200 \times 289 \times 540 \mathrm{~mm}$ ).
Rack Model 180D: $163 / 4$ in. wide, $57 / 32$ in. high, $213 / 8 \mathrm{in}$. deep over.all (425, 132.6. 543 mm$), 143 / 8 \mathrm{in}$. (493 mm ) deep behind rack mounc cabs.
Accessories furnished: $71 / 2$ foot power cord, Model 10179A mesh contrast filter, one blue plastic light fiter: rack mounting hard. ware and 2 probe hoiders (HPP/N $5050-0464$ ) are also supplied with 180 D rack model.
Price (malnframe less plug-Ins)
Model 180C Oscilloscope Cabinet Style Mainframe $\$ 950$
Mode! 180C Option 010 (Sec options) $\$ 900$
Model 180D Oscilloscope, Rack Styie Mainframe $\$ 1050$
Model 180D Option 010 (See Opuions) $\$ 1000$

## Options

The following options are available to modify a mainframe to fit your application. If other mainframe changes are required, contact your Hewlett-Packard Field Engineer.
002: aluminized P2 phosphor in lieu of $P_{31}$, no charge.
007: aluminized P7 phosphor in lies of P31, no charge.
010: deletes the rear panel outputs for main and delayed gates and main and delayed sweeps Less, $\$ 50$
011: aluminized P11 phosphor in lieu of P31, no charge. Beamfinder does not intensify display on Option 011 oscilloscopes.


## Descríption, 184A/B

The Model 184A cabinet style and 184B, $51 / 4$ " high rack style variable persistence and storage mainframes provide writing speeds of 100 or $400 \mathrm{~cm} / \mu \mathrm{s}$. These writing speeds are so fast that traces you previously had to photograph to see can now be viened directly in normal ambient light. A unique FAST mode optimizes writing speed by switching the CRT display to reduced scan while maintaining full calibration and resolution. A second graticule, for the fast mode, is superimposed in the center of the screen and a front panel light indicates when the scope is in the FAST mode.

The 184 Option 005 offers an unexcelled FAST writing speed of $400 \mathrm{~cm} / \mu \mathrm{s}$ and the standard 184 provides an exceptional $100 \mathrm{~cm} / \mu \mathrm{s}$. The ultra-fast stored writing speed of $400 \mathrm{~cm} / \mathrm{s}$ s is fully compatable with a single-shot, 5 ns rise time transient with an amplitude of greater than 5 divisions. Combining this superior single-shot writing speed with variable persistence also provides bright clear displays of low repetition rate digital waveforms.

Advances in target material and processing provides ex. tremely high writing speed as well as a very rugged storage surface. This highly burn resistant, high-speed stozage surfare does not require special operating procedures.

The fast storage roriting speed of the 184 storage CRT is extremely useful for displaying single soreep or low repetition rate signals with fast rise times. This capability allow's you to study a naveform or to photograph the trace with a general purpose scope camera as in Figure 1. The digital word, in Figure 1 from TTL logic is occuring at a 1 Hz rate and is integrated, using variable persistance, to a bright clear display which is easily viewed in normal ambient light. The high writing speed allows storage and display of randorn noise pulses such as that in Figure 1 or single shot transients as shown in Figure 2. For general purpose use where maximum writing speed is not of prime concern, a STD mode provides maximum brightness, highest contrast ratio, and largest display area (see Figure 3). A storage time control allows a trade-of of viewing brightness for storage time which makes it possible to retain a display for greater than 30 minutes in STD mode and greater than five minures in FAST mode. Another useful storage mode is the store mode coupled with the time base set for single-sweep operation. In this mode the 184 will remain prepared to store a signal for over 30 minutes in STD mode and more than five minutes in FAST mode.

This high speed storage tube also provides the same high concrast as a conventional CRT and with a bright display of

100 foor lamberts in the STD mode and 50 foot lamberts in the FAST mode. Also, by modulating the Z-axis, you can easily distinguish between several race intensities.


Figure 1. 16 bit word from TTL logic repeated 16 times at a 1 Hz rate. The 10 ns duration noise pulse occurs only ance in 16 words.


Figure 2. Single-sweep display at $100 \mathrm{~ns} / \mathrm{div}$.


Figure 3. Digital word at 250 Hz rep rate integrated to a bright clear display in STD mode using variable persistence.

## Specifications, 184A/B <br> Cathode-ray tube and controls

Type; post-accelerator storage tube; aluminized P31 phosphor.
Graticule: $8 \times t 0$ div internal graticule, 0.2 dis subdivisions on major axes. 1 div $=0.95 \mathrm{~cm} .8 \times 10$ div internal graticule superimposed in center of normal scope graticule (for fast writing speed mode). 1 div $=0.475 \mathrm{~cm}$. Front panel adiustment aligns trace with graticule.
Beam finder: returns trace to CRT screen regardless of setting of horizontal or vertical controls.
Intensity modulation: approx $+2 \mathrm{~V}, \geq 50 \mathrm{~ns}$ pulse width ( $\leq 10$ $\mathrm{N} / \mathrm{Hz} \mathrm{CW}$ ) blanks trace of nomal intensity. Input R. 5100 ohnis. Writing modes: conventional (non-strrage), standard and fast (variable persistence and storage). Pressing store and either STD or FAST provides maximum persistence with frondguns off for a ready-to write state. The CRT will remain primed and ready. 10 write for $>30 \mathrm{~min}$. in STD/STORE and $>5 \mathrm{~m}$ m, in FAST/ STORE.

## Persistence

Conventional: natural persistence of P31 phosphor (apprnx 40 as).
Variable: from $<50 \mathrm{~ms}$ to $>1 \mathrm{~min}$.
Storage writing mode

Model	STD   Mode	FAST   Moda*
$184 A / 184 \mathrm{~B}$	$>0.2 \mathrm{~cm} / \mu \mathrm{s}$	$>100 \mathrm{~cm} / \mu \mathrm{S}$
$184 A / 184 \mathrm{~B}$		
(Option OOS)	$>0.2 \mathrm{~cm} / \mu \mathrm{S}$	$>400 \mathrm{~cm} / \mu \mathrm{s}$

-Calibrated ares reduced to $4 \times 5 \mathrm{~cm}$.
Brightness
Standard: $>100$ foor lamberts.
Fast: > 50 foor lamberts.

## Storage firne

Standard writing speed; variable from $>1 \mathrm{~min}$. at normal intensity to $>30$ min. at reduced brightness.
Fast writing speed: variable from $>10$ s at normal intensity $10>5$ min. at reduced brightness.
Erasa: manual, pushbutton erasure takes approx 300 ms .

## Horizontal amplifier

External input
Bandwidth: dc to 5 MHz ; ac-coupled, 5 Hz to 5 MHz .
Deflection factor: $1 \mathrm{~V} /$ div in $\mathrm{X} 1: 0.2 \mathrm{~V} /$ div in $\mathrm{X} 5: 0.1 \mathrm{~V} / \mathrm{div}$ in X 10 ; accuracy $=5 \%$.
Dynamic range: $\pm 20 \mathrm{~V}$.
Maximum inpet: 600 V dc (ac-coupled input).
Input RC: approx 1 megnhm shunted by approx 30 pF.

## Internal sweep

Magnifier: X5, X10; accurscy, $\pm 5 \%$ (with $3 \%$ accuracy lime base).

Callbrator

## General

Type: approx 1 kHz square arave, 3 as rise time.
Amplitude: 10 V p-p; accuracy. $\pm 1 \%$.
Outputs: four rear panel emitter follower outputs for main and delayed gares, main and delayed sweeps, or vertical and horizontal ourpurs when used with TDR/Sampling plug-ins. Maximum current available. $\pm 3 \mathrm{~mA}$. Will drive impedances $\geq 1000$ ohms without distortion.
Weight (without plug.ins)
Modes 184A (Cabinet): 24 lb ( 10.9 kg ); shipping, 40 lb ( 18.1 kg).
Madel 1848 (Rack): $26 \mathrm{lb}(11,8 \mathrm{~kg}$ ): shipping, 40 lb (18.1 $\mathrm{kg})$.
Operating environment: temperature 0 to $55^{\circ} \mathrm{C}$ i humidis', to $95 \%$ relative humidit to $40^{\circ} \mathrm{C}$ : alritude, to 15.000 ft; vibration. vibrated in three planes for is minutes each with 0.010 inch excursion, 10 to 55 Hz .
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to $\{40 \mathrm{~Hz}, 115$ watts at normal line wich plug-ins. Max. mainframe power, 225 VA .
Dimensions
Cabinet Model 184A: 77/8" wide, $113 / 8^{\prime \prime}$ high. $21 / i^{\prime \prime}$ decp behind panel ( $200 \times 289 \times 540 \mathrm{~mm}$ )
Rack Model 184B: 163/4" wide. 5.7/32" high, 213/8" deep over-all ( $425 \times 132,6 \times 5.13 \mathrm{~mm}$ ), $14 \frac{1}{8} 8^{*}(493 \mathrm{~mm})$ deep behind rack mount tabs.

## Price

Model 184A Cabinet storage Mainframe $\$ 2200$
Mindel 184A Option 005 Fas: storage CRT add 5500
Model 184 B rack style srorage mainirame $\$ 2275$
Model 184B Oprion oos fast scarage CRT
add $\$ 500$
Accessories furnished: one Model 10178 A mesh onntrast fiter. one blue plastic light filter (HP P/N 5060-0548), one 230 V fuse package (HP P/N 5080.9672), ne 7.5 fe (1.9 m) 3 -wire power cord. A rack mouns kit (HP P/N 5060.8740) and two probe hangers (HP P/N 9040-0464) are also supplied with the 18.\{B rack model.

100 MHz, STORAGE CRT<br>Plug-in flexibility Models 181A, 181AR

## Description, 181A/AR

Models 181A (cabinet style) and 181AR (rack style) main. frames provide plug.in fexibility, 100 MHz bandwidth capability with a variable persistence/storage cathode-ray tube. The storage mesh CRT allows you to adjust the amount of time a rrace is retained to march your measurement requirement. In addition, the 181 offers storage capability for over one hour to permit you to study or photograph a display at your convenience.

Variable persistence and storage is useful ior displaying many types of signals, especially low repetition rate or single shot events. Variable persistence allows you to adjust the rrace retention time to match your signal requirements, thus eliminating annoying slow sweep ficker.
Improvements in target material and processing provide a very rugged storage surface which resists burns. The CRT is so burn resistant that you do not require any special operating procedures.

The single shot Writing speed in the 181 is variable from $20 \mathrm{~cm} / \mathrm{ms}$ to greater than $5 \mathrm{~cm} / \mu \mathrm{s}$. This allows adjustment of the writing speed to match the measurement requirement which provides more versatile scope operation. The integrating capability inherent in this storage CRT allows fast rise repetitive pulses to be displayed even though they may be well beyond the single shot n'riting capability of the CRT.

## Specifications, 181A/AR <br> Cathode-ray tube and controls

Type: post-accelerator storage tube: 8.5 kV accelerating potential: aluminized P31 phosphor.
Graticule: $8 \times 10$ div internal graticule, 0.2 div subdivisions on major axes. 1 div $=0.95 \mathrm{~cm}$. Front panel adjustment alizns trace with graticule.
Beam Inder: returns trace to CR'T screen regardless of setting of horizontal or vertical controls.
Intensity modulation: approx $+2 \mathrm{~V}, \geq 50$ ns pulse width ( $\leq 10$ MHz CW' ) blanks trace of normal intensity. Input R, 5100 ohms.
Persistence
Normal: natural persistence of P3I phosphor (approx $40 \mu \mathrm{~s}$ ). Variable: from $<0.2 \mathrm{~s}$ to $>1 \mathrm{~min}$.
Storage writing speed
Write mode: $>20 \mathrm{~cm} / \mathrm{ms}$.
Max write mode: $>5 \mathrm{~cm} / \mu \mathrm{s}$.
Brightness: $>100$ foor Lamberts.
Storage time: from Write mode to Store, traces may be stored at reduced intensiry for $>1$ hour. To View mode, traces may be viewed at normal intensiry for $>1$ minute. From Max Write mode to Store, traces may be stored at reduced intensity for $>s$ minutes. To View mode, traces may be stored at normal intensity for $>$ is seconds.
Erase: manual, pushbutton erasure takes approx 300 ms .

## Horizantal emplifier

External input
Bandwidth: dc-coupled, ds to 5 MHz ; accoupled, 5 Hz to 5 MHz .
Deflectlon factor: $1 \mathrm{~V} / \mathrm{div}$ in $\mathrm{X}: ; 0.2 \mathrm{~V} / \mathrm{div}$ in X ; $; 0.1 \mathrm{~V} / \mathrm{div}$ in X10, accuracy $\pm 5 \%$. Vernier provides continuous adjust. ment between ranges.
Dynamíc range: $\pm 20 \mathrm{~V}$.
Maximum input: 600 V dc (ac-coupled input). Input RC approx 1 megohm shunted by approx 30 pF .
Internal sweep
Magnifier: $x s, x 10 ;$ accuracy, $\pm 5 \%$ (with $3 \%$ accuracy time base).


Type: approx 1 kHz square wave, $3 \mu$ s rise time.
Amplitude: 10 V p.p: accuracy, $\pm 1 \%$.

## General

Outputs: four rear panel emitter follower ourpurs for main and delaped gates, main and delayed sweeps or vertical and horizontal outputs when used with TDR/Sampling plug-ins. Maximum cursent available, $\pm 3 \mathrm{~mA}$. Will drive impedances $\geq 1000$ ohms without distortion.
Weight (without plug.ins)
Model 181A (cabinet): net. $24 \mathrm{lbs}(10,9 \mathrm{~kg}$ ); shipping, 40 lbs $(18,1 \mathrm{~kg})$.
Model 181AR (rack): net, 26 lbs ( $11,8 \mathrm{~kg}$ ); shipping, 40 lbs $(18,1 \mathrm{~kg})$.
Operating environment: temperature, $0^{\circ}$ to $+55^{\circ} \mathrm{C}$ humidity, to $95 \%$ relative humidity to $40^{\circ} \mathrm{C}$ altitude, to $15,000 \mathrm{ft}$; vibration, vibrated in three planes for 15 min each with 0.010 inch ex. cursion. 10 to 55 Hz .
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to $440 \mathrm{~Hz}, 115$ watts at normal line with plug-ins. Max mainframe power, 225 VA.
Dimensions
Model 181A (cabinet): $77 / 8^{\prime \prime}$ wide $\times 113 / 8^{\prime \prime}$ high $\times 211 / 4^{\prime \prime}$ deep ( $200 \times 289 \times 530 \mathrm{~mm}$ ) .
Model 181 AR (rack): $163 / 4^{\prime \prime}$ wide $\times 51 / 4^{\prime \prime}$ high $\times 213 / 8^{\prime \prime}$ deep over-all ( $425 \times 132,6 \times 543 \mathrm{~mm}$ ) $193 / 8^{\prime \prime}(493 \mathrm{~mm})$ deep behind rack mounts.
Accessories furnished: $71 / 2 \mathrm{fr}$ power cord, Model 10178 A mesh contrast filter; rack mounting hardware and two probe holders (HP P/N S0s0.0464) are supplied with rack models.
Price (mainframe less plug-Ins)
Model 181A Oscilloscope, Cabinet Style Mainframe. \$1950
Model 181AR Oscilloscope Rack Style Mainframe
$\$ 2025$
Options (order by option number)
H49: Model 181A or 181AR with remote programming capability for Write, Max, Write, Normal, Store, View, and Erase functions. Programming accomplished through contact closure, DTL, or TTL logic sources. Price: Option H49, add $\$ 500$.

4 and $8 \mathrm{~cm} / \mathrm{ns}$ WRITING SPEED<br>Plug-in flexibility, 600 MHz real time<br>Models 183A, 183B, 183C, 183D



Models 183A/B/C/D mainframes, with their related plug-ins, provide real time frequency response through the VHF region. This high frequency response is accomplished without sacrificing viewing ease, accuracy, operating simplicity, or plug.in versatility in wide band general purpose applications.

The fast writing speed of these main frames allows easy viewing of slow rep rate digital words or other groups of fast-rise pulses in computers and high speed digital systems. In communication system analysis, the wide band response allow's undistorted displays of modulation envelopes on rf carriers.

All four mainfcames offer full $6 \times 10 \mathrm{~cm}$ displays at 4 $\mathrm{cm} / \mathrm{ns}$ writing speed. In addition, the $183 \mathrm{C} / \mathrm{D}$ offers incceased w'riting speeds of $8 \mathrm{~cm} / \mathrm{ns}$ in a reduced scan mode. This fast writing speed allow's easy photographic recording of high-speed, single-shot transients thru the capabilities of either the 10 mV 250 MHz dual channel plug. in or direct access plug-ins extend. ing to 600 MHz .

To take advantage of this fast writing speed, two time bases are available which provide accurate expanded sweep times to $1 \mathrm{~ns} / \mathrm{div}$. Both the standard and delaying time bases provide ultra stable triggering to 500 MHz giving clear clean jitter free displays for all general purpose applications.

## Specifications, 183A/B/C/D <br> Cathode-ray tube and controls

Type: post accelerator, 20 kV accelerating porential; aluminized P31 phosphor (other phosphors available): safery glass faceplate.
Writing speed:* Models 183A/B, $4 \mathrm{~cm} / \mathrm{ns}$; Models $183 \mathrm{C} / \mathrm{D}, 4 \mathrm{~cm} /$ ns in normal scan: $8 \mathrm{~cm} / \mathrm{ns}$ in reduced scan.

## Graticule

Models 183A/B: $6 \times 10$ division intermal graticule. 1 div $=1$ cm . 0.2 division subdivisions on major axes.
Models 183C/D: normal scan, $6 \times 10$ division internal graticule. 1 div $=1 \mathrm{~cm} .0 .2$ division subdivisions on major axes; reduced scan, $6 \times 10$ div internal graticule superimposed in center of normal scan graticule. 1 div $=0.5 \mathrm{~cm}$.
Flood gun: illuminates CRT phosphor. Normal or pulsed mode of operation selected with rear panel switch. Scale control adjusts graticule illumination in normal mode and pulse width in pulsed mode which increases photographic writing speed.
Bearn finder: returns irace to CRT screen regardless of setting of horizontal or vertical conerols.
Intenstity modulation: approx $+2 \mathrm{~V}, 50 \mathrm{~ns}$ pulse width ( $\leq 15$ MHz CW) blaaks trace of normal intensity, Input R, 4700 ohms. +15 V blanks trace of any intensity.

## Calibrator

Pulse timing: selectable, 2 kHz rep rate ( 0.5 ms period), $30 \mu \mathrm{~s}$ pulse width: 1 MHz rep rate ( $1 \mu \mathrm{~s}$ period), 100 ns pulse width. Accuracy, $\pm 0.5 \%+10^{\circ} \mathrm{C}$ ro $+40^{\circ} \mathrm{C} ; \pm 1 \% 10+59^{\circ} \mathrm{C}$.
Ampiltude: selectable, 30 mV or $500 \mathrm{mV}, \pm 1 \%$ into a 50 ohm $\pm 0.5 \%$ load.
Source R: 50 ohoms, nominal.
Pulse shape (measured with 1 GHz bandwidth sampler): rise time (negative slope), 1 ns; overshoot and ringing, $\pm 3 \%$ max; flatness, $\pm 0.5 \%$ after 5 ns with pulse top and base line perturbations averaged.
External calibrator input: calibrator shaping nerwork shapes an external negative input that exceeds -0.5 V peak. Rep.rate extends to $>10 \mathrm{MHz}$. Input R, approx 10 k ohrns. Rear panel input selected with rear panel switch and front panel light indicates when switched to external position.

[^7]

External input: bandwidth, de-coupled, de to 8 MHz ; ac-coupled, 2 Hz to 8 MHz ; defection factor, $1 \mathrm{~V} / \mathrm{div}, \mathrm{X} 1: 100 \mathrm{mV} / \mathrm{div}$, X10; accuracy $\pm 5 \%$, vernier provides continuous adjustment between ranges and extends deflection factor to at least $10 \mathrm{~V} /$ div: dynamic range, $\pm 20 \mathrm{~V}$ : maximum input, $\pm 350 \mathrm{~V}$ ( $\mathrm{dc}+$ pcak ac) : input RC, approx 1 megohm shunted by approx 20 pF .
Internal sweep magnifier: Xi0; accuract, $\pm 5 \%$.

## General

Outputs: two rear panel emitter follower oupurs for main or delaged gates (vertical or horizontal outputs when used with sampling plug.ins). Output amplicude is approx $\pm 0$. is V with 1840 A time base plug-in. Will drive impedances $\geq 1000$ ohms withour distortion.
Weight (without plug-ins): Models $183 \mathrm{~A} / \mathrm{C}$ (cabinet) net, 33 lbs ( 15.0 kg ); shippiag, 46 lbs ( $20,9 \mathrm{~kg}$ ); Models 183B/D (rack) net, $35 \mathrm{lbs}(15,9 \mathrm{~kg})$; shipping, $48 \mathrm{lbs}(21,8 \mathrm{~kg})$.
Operaking environment (mainframe operates within specifications over the following ranges): temperature, $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$; humidity, to $95 \%$ relative humidity to $40^{\circ} \mathrm{C}$; altitude, to $15,000 \mathrm{ft}$; vibration, yibrated in three planes for 15 minutes each with 0.010 inch excursion, 10 to 55 Hz .
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to 440 Hz , approx 115 watts with 1830A and 1840 A plug-ins at: 115 V and 60 Hz . Maximum mainframe power at normal line, 155 watts.

## Dimensions

Models 183A/C (cablnet): $71 / 8^{\prime \prime}$ wide, $113 / \mathrm{g}^{\prime \prime}$ high, $223 / 4^{\prime \prime}$ deep behind front panel ( $100 \times 289 \times 578 \mathrm{~mm}$ ).
Models 1838/D (rack): $163 / 4^{\prime \prime}$ wide, $5.7 / 36^{\prime \prime}$ high, $24^{\prime \prime}$ deep over-all ( $425.5,132.6,543 \mathrm{~mm}$ ), $22^{\prime \prime}$ ( 558.5 mm ) deep behind rack mount tabs.
Accessories supplied: Model 10179A mesh contrast filter, $71 / 2 \mathrm{ft}$ power cord; reduced scan mask for 183C/D (HP Part No. 00183. 04111 ). Rack mounting hardware and two clip-on probe holders (HP Part No. 5050.0464) with 183 B and D rack models.
Price (mainframe less plug.ins)
Model 183A Oscilloscope, Cabinet Style Maninframe $\$ 1850$
Model 183 B Oscilloscope, Rack Style Mainframe $\$ 1925$
Model 183C Oscillosrope, Cabinet Syle Mainframe $\$ 2500$
Model 183D Oscilloscope, Rack Style Mainframe $\$ 2600$

## 75 \& $50 \mathrm{MHz}, 2$ CHANNEL <br> $5 \mathrm{mV} / \mathrm{div}$; High Z or 50 ohms at 75 MHz <br> Models 1808A, 1801A



Description, 1808A
Model 1808A is an ideal vertical amplifier for design or trouble-shooting logic circuits using ECL components. This plug-in provides low drift and fexible triggering for accurate CW and timing measurements. Other convenience features are: $5 \mathrm{mV} /$ div to $10 \mathrm{~V} /$ div; dc to 75 MHz bandwidth on all ranges; selectable display polarity on each channel; and selectable high Z or 50 ohm inputs.

General purpose probing is provided by a one megohm input with a very low 12 pF shunt capacitance to reduce phase shift and signal loss in CW measurements. A switchable, high quality, 50 ohm input is also provided, which allows matching to a 50 ohm source with minimum reflections due to the low 1,2:1 VSWR. This 50 ohm input provides accurate rise time measurements with virtually no reflections to degrade the input signal or introduce phase shift. The so ohm input also allows active and passive probes with very low input capacitance to be used which further reduces signal degradation.

## Specifications, 1808A

Modes of operation; channel $A$; channel $B$; channels $A$ and $B$ displayed alternately on successive sweeps (ALT); channels A and B displayed by switching berween channels at approx 400 kHz rate (CHOP), with blanking during switching; and channel A plus channel B (algebraic addition).
Each channel (2)
Bandwldth: ( 3 dB down from 8 div reference signal from a terminated 50 ohm source): deccoupled, de to 75 MHz ; ac. coupled, approx 8 Hz to 75 MHz .
Rise time: <4.7 ns (measuted from $10 \%$ to $90 \%$ points of 6 div input step from a terminated so ohm source).

## Deflection factor

Ranges: $5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} /$ div ( 10 calibrated positions) in 1 , 2 , s sequence. $\pm 2 \%$ attenustor accuracy. Vemier provides continuous adjustment between defection factor settings and extends maximum deflection factor to at least $12.5 \mathrm{~V} / \mathrm{div}$.
Polarity: + up or - up, selertable.
Stgnal delay: input signals are delayed sufficiently to view leading edge of input pulse without adcanced trigger.
input coupling: selectable, ac and dc ( 1 megohm), 50 ohms (dc), or ground. Ground position disconnects input connector and grounds amplifier input.

## Input (selectable)

AC and DC: 1 megohm $\pm 1 \%$ shunted by approx 12 pF . 50 ohm: 50 ohms $\pm 1 \%$. VSWR, $<1.2: 1$ at 75 MHz on all ranges.

Maximum Input
AC and DC: $\pm 300 \mathrm{~V}$ (dc + peak ac) at 1 kHz or less; $\pm 150 \mathrm{~V}(\mathrm{dc}+$ peak ac) on $s \mathrm{mV} / \mathrm{div}$ range at 1 kHz or less.
50 ohm: 10 V rms (dc.coupled input).
Drift: $<100 \mu \mathrm{~V} / /^{\circ} \mathrm{C}$.

## A + B operation

Amplifier: bandwideh and defiection factors are unchanged; either channel may be inverted for $\pm \mathrm{A}+\mathrm{B}$ operation.
Differentlal Input (A-B) common mode: for frequencies from dc to $2 \mathrm{MHz}, \mathrm{CMRR}$ is at leass 40 dB on $5 \mathrm{mV} /$ div and at least 20 dB on other ranges for common mode signals of 24 div or less.
Trlggering
Source: A . B , or composite ( $\mathrm{A}+\mathrm{B}$ ) modes, on the signal displayed; chop mode, on A or B signal; alternate mode, on A, B, or successively (comp) from the displayed signal on each channel.
Frequency: de to 75 MHz on signals causing 0.5 div p-p or more vertical defecrion in all display modes (1820A, 1821A require I diy $\mathrm{p}-\mathrm{p}$ ) except de to 100 kHz in chop mode.

## General

Operating environment: same as Model $180 \mathrm{C} / \mathrm{D}$ mainframe.
Weight: net, 5 lbs ( $2,3 \mathrm{~kg}$ ); shipping. 9 lbs ( $4,1 \mathrm{~kg}$ ).
Price: Model 1808A Dual Channel Verical Amplifier, $\$ 880$.
Accessories furnlshed; two 10:1 coltage divider probes.

## Options

003: Model 1808A withour probes, less $\$ 80$.


## Description, 1801A

Model 1801A is a dual channel vertical amplifer plug-in for 180 system mainframes. Operating charactecistics are: 5 $\mathrm{mV} /$ div to $10 \mathrm{~V} /$ div defection factors; de to 50 MHz band. width constant on all ranges; selectable display polarity; and selectable input coupling. The two channels can be operated singly, algebraically added, of in dual trace modes with alternate or chopped switching and selectable trigger source.

For added measurement versatility, Option 001 provides a Xs multiplier for $1 \mathrm{mV} / \mathrm{div}$ deflection factors. Option 001 also provides a Channel B output, which can be cascaded into Channel A for $500 \mu \mathrm{~V} /$ div deflection factor.

## Specifications, 1801A

Modes of operation: channel $A$ : channel $B$; channels $A$ and $B$ displayed alternately on successive sweeps (ALT): channels A
and $B$ displayed by switching between channels at approx 400 kHz rate (CHOP), with blanking during switching; channel A plus channel B (algebraic addition).
Each channel (2)
Bandwldth (measured with or without a Model 10004B probe, 3 dB down from 8 div reference signal from a terminated so ohm source): de-coupled, de to 50 MHz ; ac-coupled. approx 8 Hz to 50 MHz . Eower limir is approx 0.8 Hz with 10004 B probe.
Rise tima: <7 ns (measured with or without 10004B probe $10 \%$ to $90 \%$ of 8 div input step from a terminated 50 ohm source).
Deflection factor: $5 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$ ( 12 positions) in 1 , 2. 5 sequence. $\pm 3 \%$ attenuator accuracy. Vernier provides continuous adjusement between deficction factor settings and extends maximum deflection factor to at least 50 V /div.
Polarity: + up or $-u p$, sclectable.
Signal delay: input signals are delayed sufficiently to view lead. ing edge of input pulse withour advanced external trigger.
Input coupling: selectable, ac, dc, or ground. Ground position disconnects signal input and grounds amplifier input.
Input RC: 1 megohm $\pm 2 \%$ shunted by approx 25 pF .

## Maximum Input

DC-coupled: $\dot{\vdots} 350 \mathrm{~V}$ ( $\mathrm{dc}+$ peak ac) at 10 kHz or less; $\pm 150 \mathrm{~V}(\mathrm{dc}+$ peak ac) on $9 \mathrm{mV} /$ di- range at 10 kHz or less.
AC-coupled: $\pm 600 \mathrm{~V} \mathrm{dc}$.
$A+B$ operation
Amplifier: bandwidth and deflection factors are unchanged, either channel may be inverted for $\pm \mathrm{A} \pm \mathrm{B}$ operation.
Differential Input ( $A-B$ ) common mode: CMRR is at least 40 dB at $5 \mathrm{mV} / \mathrm{div}$ and at least 20 dB on other ranges for frequencies between de and 1 MHz and for common mode signals of 24 div or less.
Triggering
Source: $\mathrm{A}, \mathrm{B}$, of composite $(\mathrm{A}+\mathrm{B})$ modes, on the signal displayed; chop mode, on $A$ or $B$ signal; alternate mode, on $A$, B or successively (comp) from the displayed signal on each channel.
Frequency; de to 50 MHz on signals causing 0.5 div or more vertical deflection in all display modes except dc to 100 kHz in chop mode.

## General

Weight: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg}$ ) ; shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg}$ ).
Environment; same as Model 180C/D mainframes.
Accessories furnished: two $10004 \mathrm{~B}, 10: 1$ divider probes, approx $31 / 2$ f.
Price: Model 1801A Dual Channel Vertical Amplifier, 5680: Model 1801A Option 003 Dual Channel Vertical Amplifier. $\$ 600$.
Options (order by option number)
001: provides XS magnifer and channel B vertical ouput. Contact your Hewlett-Packard field engineer for mose information abour this option.
003: Model 1801A without probes, less $\$ 80$.
090: 6 ft 10006 B probes substituted for $10004 \mathrm{~B}, 10: 1$ atcen, no charge.
091: 10 ft 10005 B probes substitured for 10004B, $10: 1$ atten, no charge.

Description, 1807A
Model 1807A is an economical, dual channel plug-in for applications involving logic timing measurements in circuits using MOS and TIL elements. A selection of standard, delay generators, or expanded sweep time bases, allow timing measurements to $5 \mathrm{~ns} / \mathrm{div}$ in 180 mainframes or to $1 \mathrm{~ns} / \mathrm{div}$ in 183 mainframes. The 181 or 184 variable persistence/storage mainframes provide bright, clear displays of low rep rate logic pulses when they are too slow for standard CRT displays.


## Specifications, 1807A

Modes of operation: channel A; channel B; channels A and B displayed altemately on successive sweeps (ALT): channels A and $B$ displayed by switching between channels at approx 100 kHz rate ( CHOP ), with blanking during switching: and channel A plus channel $\mathbf{B}$ (algebraic addition).

## Each channel (2)

Bandwidth: (measured with or without 10004 B prode. 3 dB down from 8 div reference signal from a terminared 50 ohm source): decoupled, dc to 35 MHz ; ac-coupled, approx 8 Hz to 35 MHz . Lorerer limit is approx 0.8 Hz with 10004 B probe.
Risa time: <10 ns (measured with or withour 10004B probe. $10 \%$ to $90 \%$ of 8 div input from a terminated 50 ohm source).
Deflection factor: $10 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} /$ div ( 9 positions) in 1 . 2,5 sequence. $\pm 3 \%$ attenuator accuracy. Vernier provides continuous adjustment between deflection factor settings and ex. tends maximum deflection factor to $12.5 \mathrm{~V} / \mathrm{div}$.
Polarity: + UP or - UP, selecrable on channel B.
Signal delay: input signals are delayed sufficientiy to view leading edge of input pulse without advanced trigger.
Irput RC: 1 megohm $\pm 2 \%$ shunted by approx 27 pF .
Input coupling: selectable, ac, dc, or ground. Ground position disconnects input connector and grounds amplifier inpul.
Maximum inout
DC-coupled: $\pm 350 \mathrm{~V}$ (dc + peak ac) at 10 kHz or less; $\pm 150 \mathrm{~V}$ (dc + peak ac) on $10 \mathrm{mV} / \mathrm{div}$ at 10 kHz or less. AC-coupled: $\pm 600 \mathrm{~V} d c$.
$A+B$ operation
Amplifier: bandwideh and deflection faciors are unchanged: channel $B$ may be inverted for $+A \pm B$ operation.
Differential input ( $A-B$ ) common mode: for frequencies from dc to 1 MHz , CMRR is at least 40 dB on $10 \mathrm{mV} / \mathrm{dir}$ and at least 20 dB on other ranges for common mode signals of 24 div or !ess.

## Triggering

Source: on channel $A$ for channel $A$, chop and alternate modes, on channel B for channel B mode, on signal displayed for $\mathrm{A}+$ $B$ mode.
Frequency: do to 35 MHz on signals causing 0.5 div p-p or more vertical deflection in all display modes except dc to 100 kHz in chop mode.

## General

Environment: same as $180 \mathrm{C} / \mathrm{D}$ mainframe.
Weight: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg}$ ); shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg}$ ).
Price: Model 1807A Dual Channel Vertical Amplifer, $\$ 450$.

## DIFFERENTIAL/DC OFFSET Calibrated Vo to 600 V <br> Model 1803A

## Description, 1803A

Model 1803A is a differential/de offset amplifier plug.in for 180 system mainffames. Operating characteristics are: defleccion factofs of $1 \mathrm{mV} / \mathrm{div}$ to $2 \mathrm{~V} /$ div from de to 30 MHz and from $5 \mathrm{mV} /$ div to $20 \mathrm{~V} /$ div to 40 MHz ; CMRR of 86 dB (20,000:1) on the $1 \mathrm{mV} / \mathrm{div}$ range with a 10 volt common mode signal; and calibrated offset voltage that provides differential comparison of pulse amplitude measurements with $0.5 \%$ acturacy.

## Specifications, 1803A

Vertical deflection
Bandwldth: (measured with or without 10004 B probe, 3 dB down from an 8 div reference signal from a terminated 50 obm source.) DC-coupled: ds to 40 MHz from $0.005 \mathrm{~V} /$ div to $20 \mathrm{~V} / \mathrm{div}$; de to 30 MHz on $0.001 \mathrm{~V} /$ div and $0.002 \mathrm{~V} /$ div or when using $\mathrm{V}_{0}$ range of 0 to 6 V or two most sensitive vales/div sectings for other $V_{0}$ ranges.
AC-coupled: lower bandwideh limit is approximately 2 Hz , upper bandwidth is the same as de-coupled. Lower bandwidth is approx 0.2 Hz with 10004 B probe.
Risetime: <10 ns for defiection factors of $0005 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} /$ div; $<12 \mathrm{~ns}$ on $0.001 \mathrm{~V} /$ div and 0.002 on $\mathrm{V}_{\mathrm{f}}$ range of 0106 V and on two most sensitive volts/div setting for other $V_{0}$ ranges. (Measured with or without 10004 B probe. $10 \%$ to $90 \%$ points of input step from a terminated so ohm source.)

## Deflection factor

Ranges: from $0.001 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} /$ div ( 14 calibrated positions) in $1,2,5$ sequence. $\pm 3 \%$ attenuator accuracy.
Vernler: provides continuous adjuscment berween deflection factor settings; extends maximum defection factor to at least so $\mathrm{V} /$ div. Uncalibrated light indicates wheo vernier is not in CAL position.
Input coupling: $a c, d c$, ground, or $V_{0}$ for both + and - inputs. Ground disconnerts signal inpul and grounds amplifier input for reference.
Maximum Input

Vo Range	Deflection Factor	$(\mathrm{dc}+\mathrm{peak} \mathrm{ac})$
0106 V	$0.001 \mathrm{~V} / \mathrm{div}$ to $0.02 \mathrm{~V} / \mathrm{div}$	$\pm 15 \mathrm{~V}$
0106 V	$0.05 \mathrm{~V} / \mathrm{div}$ co $0.2 \mathrm{~V} / \mathrm{div}$	$\pm 150 \mathrm{~V}$
0 to 6 V	$0.5 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} /$ div	$\pm 600 \mathrm{~V}$
01060 V	$0.01 \mathrm{~V} / \mathrm{div}$ to $0.2 \mathrm{~V} / \mathrm{div}$	$\pm 150 \mathrm{~V}$
0 10 60 V	$0.3 \mathrm{~V} /$ div to $20 \mathrm{~V} / \mathrm{div}$	$\pm 600 \mathrm{~V}$
0 to 600 V	$0.1 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$	$\pm 600 \mathrm{~V}$

## Overload recovery

6 V overload: within $\pm 10 \mathrm{mV}$ of final signal value in $\leq 0.3$ as within $\pm 5 \mathrm{mV}$ in $\leq 1 \mu \mathrm{~s}$, and within 1 mV in $\leq 1 \mathrm{~ms}$.
60 V overload: wishin $\pm 100 \mathrm{mV}$ of final signal value in $\leq 0.3$ $\mu \mathrm{s}$, within $\pm 50 \mathrm{mV}$ in $\leq 1 \mu \mathrm{~s}$, and within $\pm 10 \mathrm{mV}$ in $\leq 1 \mathrm{~ms}$. 600 V overload: arithin $\pm 1 \mathrm{~V}$ of final signa! ralue in $\leq 0.3 \mu \mathrm{~s}$, within $\pm 0.5 \mathrm{~V}$ in $\leq 1$ us, and wicbin $\pm 100 \mathrm{mV}$ in $\leq 1 \mathrm{~ms}$.
Common made rejection ratio: measured at $0.001 \mathrm{~V} / \mathrm{div}$. (CMRR decreases writh increasing deflection factor.)

Frequenct Range
DC $10<100 \mathrm{kHz}$
100 kHz to $<1 \mathrm{MHz}$
$1 \mathrm{\lambda IHz}$ to $<10 \mathrm{MHz}$
20 MHz
60 Hz

Common Mode Input Sinewave (Maxp-p)
CMIRR
$\geq 20,000: 1(\geq 86 \mathrm{~dB})$
$\geq 10,000: 1(\geq 80 \mathrm{~dB})$

$$
\geq \frac{5,000: 1}{\text { Preq. in } \mathrm{MHz}}
$$

$$
\geq 50: 1(\geq 34 \mathrm{~dB})
$$

$$
\geq 2,000: 1(\geq 66 \mathrm{~dB}) *
$$

10 V
10 V
10 V
Freq. in MHz
JV
10 V

Vo output: calibrated de offset roliage available a front panel connector, continuously variable from $010 \pm 0.006 \mathrm{~V}, 010 \pm 0.06 \mathrm{~V}$,

[^8]

0 to $\pm 0.6 \mathrm{~V}$, or 0 to $\pm 6 \mathrm{~V}$. Accurag of the $\pm 6 \mathrm{~V}$ range is $\pm 0.15 \%$ of reading $\pm 8 \mathrm{mV}$ when driving a resistance of 10 megohms or higher.
DC offset

	Defleation Factor	Comparison Accuracy
Vo Range$010 \pm 6 \mathrm{~V}$	$0.001 \mathrm{~V} / \mathrm{div}$ co $0.02 \mathrm{~V} / \mathrm{div}$	$\pm(0.15 \%+8 \mathrm{mV})$
	0.05 V/div to 0.2 V/div	$\pm(0.75 \%+8 \mathrm{mV})$
	D. $5 \mathrm{~V} / \mathrm{div}$ to $2 \mathrm{~V} / \mathrm{div}$	$\pm 1 \%$
	$5 \mathrm{~V} /$ div to $20 \mathrm{~V} / \mathrm{div}$	$\pm 3 \%$
0 ¢0 $\pm 60 \mathrm{~V}$	$0.01 \mathrm{~V} / \mathrm{div}$ to $0.2 \mathrm{~V} / \mathrm{div}$	$\pm(0.4 \%+80 \mathrm{mV})$
	$0.5 \mathrm{~V} / \mathrm{div}$ to $2 \mathrm{~V} / \mathrm{div}$	$\pm(0.75 \%+80 \mathrm{mV})$
	$5 \mathrm{~V} /$ div to $20 \mathrm{~V} / \mathrm{div}$	$\pm 3 \%$
$010 \pm 600 \mathrm{~V}$	0.1 V/div $102 \mathrm{~V} / \mathrm{d}$	$\pm(0.63 \%+0.8 \mathrm{~V})$
	$5 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$	$\pm 3 \%$

Triggering de to 40 NHz on signals causing 0.5 div or more vertical defecrion.

## General

Welght: net, $5 \mathrm{lbs}(2,3 \mathrm{~kg})$; shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Environment: same as Model 180C/D mainframes.
Prlce: Model 1803A Difierential DC Offset Amplifer, S1025.

## Description, 1804A

Model 1804A is a four channel vertical amplifier plug-in for 180 system mainframes. Operating characteristics are: 20 $\mathrm{mV} /$ div to $10 \mathrm{~V} /$ div defection factors: de to 50 MHz band. width; and selectable input coupling. The four channels may be operared singly or in any combination of traces in alternate or chopped nodes with selectable trigger source.

## Specifications, 1804A

Modes of operation: channel A, B, C, or D or any combination displayed alternately on successive sweeps (ALT); channels A, B. C. or D or any combination displayed by switching between channels at approx 1 MHz rate (CHOP), with blanking during switching.
Each channel (4)
Bandwidth: (measured with or without 10004B probe 3 dB down from 8 div reference signal from a terminated 50 ohm source.) DC-coupled, de to 50 MHz ; ac-coupled, 10 Hz to 50 MHz . Lower limit is approx 1 Hz with 10004 B probe.
Risetime: <7ns. (Measured with or without 10004B probe; $10 \%$ to $90 \%$ of 8 div inpur step from a terminated 50 ohm source.)

## 4 CHANNEL; HIGH GAIN $10 \mathrm{mV} /$ div to $50 \mathrm{MHz} ; 100 \mu \mathrm{~V} /$ div to 500 kHz Models 1804A, 1806A



Deflection factor
Ranges: from $0.02 \mathrm{~V} /$ div to $10 \mathrm{~V} / \mathrm{div}$ (9 calibrated positions) in $1,2,5$ sequence. $\pm 3 \%$ a tenuator accuract.
Vernier: provides continuous adjustment between all deflection factor ranges; extends maximum deflection factor to ar least $25 \mathrm{~V} /$ div: Uncalibrated light indicates when vernier is not in CAL position.
Signal delay: input signals are delayed sufficiently to ríew leading edge of input pulse without advanced ext trigger.
Input coupling: ac, de, or ground. Ground disconnects input signal and grounds amplifier inpur for reference.
Input RC: 1 megohm $\pm 2 \%$ shunted by approx 25 pF .
Maximum input: dc-coupled, $\pm 350 \mathrm{~V}$ (dc + peak ac) at 10 kHz or less; $\pm 150 \mathrm{~V}$ (dc + peak ac $)$ on $20 \mathrm{mV} / \mathrm{div}$ at 10 kHz or less; ac-coupled, $=400 \mathrm{~V}$ dc.
Trace identification: pushbutton control displaces respective trace approx 0.5 dir .
Triggering
Source: selectabie on signal from any channel in either chop or alternate mode, or successively from the displayed signal on each channel in altemate mode.
Frequency: dc to 50 MHz on signals causing 0.5 div or more verrical deffection in all display modes except shop; de to 200 kHz in chop mode.

## General

Accessory supplied: Model 10412A extender card for ring counter board.
Weight: net, 5 lbs $(2,3 \mathrm{~kg})$ : shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Environment: same as Model $180 \mathrm{C} / \mathrm{D}$ mainframes.
Price: Model 1804A Four Channel Vertical Amplifier, sloso.

## Description, 1806A

Model 1806A is a dual channel, differential input amplifier for low level measurements in 180 system mainframes. Operating characteristics are: dc to 500 kHz bandwidth, $100 \mu \mathrm{~V} /$ div to $20 \mathrm{~V} / \mathrm{div}$ deflection factors, 100 dB CMRR from de to 10 kHz with a $\pm 10 \mathrm{~V}$ common mode signal on the $100 \mu \mathrm{~V} / \mathrm{div}$ range, and less than $20 \mu \mathrm{~V}$ of noise, measured tangentially at full bandwidth.

## Specifications, 1806A

Modes of operatlon: channel A alone; channel B alone; channels $A$ and $B$ displayed alternately on successive sweeps (ALT); channels $A$ and $B$ displayed by switching between channels at approx 100 kHz rate (CHOP) with blanking during switching.

Each charnel (2)
Bandwidth: (measured with or without 10012B probe 3 dB down from 8 div reference from a terminated 50 ohm source) dc-coupled, de to 500 kHz ; ac-coupled, approx 2 Hz to 500 kHz lower limit is approx 0.2 Hz with 10012B probe. Bandwidth limit switch reduces upper bandwidth to approx 50 kHz .
Deflection factor
Ranges: from $100 \mu \mathrm{~V} /$ div to $20 \mathrm{~V} / \mathrm{div}$ ( 17 positions) in $1,2,5$ sequence, $\pm 3 \%$ attenuator accuracy.
Vernier: provides continuous adjustment between defection factor settings and extends maximum deflection factor to at least $50 \mathrm{~V} /$ div.
Ingut: differeatial or single-ended on all ranges, selecrable.
Input coupling: selectable AC, DC, or OFF for both + and - inpurs. Of position disconnects sigmal input and grounds amplifier inpur for reference.
Input RC: 1 megohm shunted by approx 45 pF .
Maximum input: $\pm 400 \mathrm{~V}$ (dc + peak acc).
Input isolation: $\geq 80 \mathrm{~dB}$ between channels at 500 kHz with shielded input connectors.
Nolse: $20 \mu \mathrm{~V}$, measured tangentially at full bandwidth.
Common mode
Frequency; dc to 10 kHz on all ranges.
Rejection ratio: $\geq 100 \mathrm{~dB}(100,000$ to 1$)$ with dc.coupled input on $100 \mu \mathrm{~V} /$ div sange, decreasing 20 dB per decade of deflection factor to $\geq 40 \mathrm{~dB}$ on the $200 \mathrm{mV} /$ div range; CMRR is $\geq 30$ dB on the $500 \mathrm{mV} /$ div to $20 \mathrm{~V} /$ div ranges.
Maximum signal: $\pm 10 \mathrm{~V}$ (dc + peak ac) on $100 \mu \mathrm{~V} / \mathrm{div}$ to $200 \mathrm{mV} / \mathrm{div}$ ranges; $\pm 400 \mathrm{~V}$ ( $\mathrm{dc}+$ peak ac) on all other ranges.

## Triggering

Source: for channel $A$ and $B$ on the signal displayed; chop selectable for channel $A$ or $B$; Alc sclectable from channel $A, B$, or Comp (channel A and B switched).
Frequency: dc to $>500 \mathrm{kHz}$ on signals causing 0.5 div or more vertical deflection in all display modes except Chop. DC to 100 kHz in Chop.

## General

Weight: ner, $31 / 2 \mathrm{lbs}(1,6 \mathrm{~kg}$ ); shipping, $61 / 2 \mathrm{lbs}(3,0 \mathrm{~kg})$.
Environment: same as Model 180C/D mainframe.
Price: Model 1806A Dual Differential Vertical Amplifier, $\$ 675$. Accessories furmished: tro BNC to dual banana plug biading post adaprers. HP Part No. 1250-1264.
Fecommended probes (not supplied with Model 1806A) : Models $10001 \mathrm{~A} / \mathrm{B}, 10002 \mathrm{~A} / \mathrm{B}, 10003 \mathrm{~A}, 10007 \mathrm{~B} ; 10008 \mathrm{~B}$, and 10012 B . Refer to oscilloscope accessories for more information.

# 100 MHz , DUAL CHANNEL <br> 5 mV /div, High Z or 50 ohm inputs 



Model $1805 \mathrm{~A}, 100 \mathrm{MHz}$ vertical amplifier provides accurate measurements for both digital and analog design and troubleshooring. A selectable high impedance with low inpur capacitance or 50 ohm input provides accurate pulse and CW measurements. Other features that provide accurate, convenient measurements are: fexible triggering, $5 \mathrm{mV} /$ div to $10 \mathrm{~V} /$ div deflection factors from de to 100 MHz on all ranges, selectable display polarity on each channel, and up to $\pm 200$ divisions of offset.

A new planar attenuator of thick film design now makes it posside to have both a low capacitance, high impedance input for probing and a precision 50 ohm input for transmission line measurements. In the high $Z$ position (ac/dc) a 1 megohm input with only 13 pF shunt capacitance is established. This extcemely low capacitance provides minimal loading in all probing applications, which can be reduced even further by using 10:1 divider probes. For precision 50 ohm measurements, a terminated 50 ohm input may be selected with a front panel switch. The internal termination is maintained at a high degree of quality by compensating for the normal stope input capacitance, which cannot be accomplished with an external cermination. The internal termination also makes possible the high 10 volr maximum input capability.

Active probes are also available ro reduce circuit loading while retaining the precision 50 ohm input measurement capa. bility. Probe capacitance with the 1120 A and its divider rips is less than 1 pF and with the 10020 A passive resistive divider is less than 0.7 pF .

The do offset capability of $\pm 200$ div makes measurements easy with low level non-symerrical logic. This dc offset allows do offset on logic puises to be restored while maintaining the low frequency pulse characteristics necessary in most logic measurements.

Timing measurements are fast and easy with the selection of trigger source from channel $A$ or $B$ or composite of $A$ and B. This allows you to trigger on either channel while viewing the time relationship with the other channel or by selecting composite triggering each channel is individually triggered.

## Specifications, 1805A

Modes of operation; channel A; channel B; channels A and B displayed alternately on successive sweeps (ALT); channels A and $B$ displayed by switching between channels at approx 600 kHz rate (CHOP), with blanking during switching channel A plus channel $B$ (algebraic addirion).

## Each channel (2)

Bandwidth: (measured with or withour 10014 A probe, 3 dB down from 8 div reference signal from a terminated 50 ohm source). DC-coupled; do to $100 \mathrm{MHz}_{\mathrm{z}}$; ac-coupled; approx 10 Hz to 100 MHz (lower limit is approx 1 Hz with 10014 A probe).
Rise time: <3.5 ns (measured with or without 10014A probe from $10 \%$ to $90 \%$ points of 6 div input step from a terminated 50 ohm source).

## Deflection factor

Renges: $5 \mathrm{mV} /$ div to $\mathrm{s} \mathrm{V} / \mathrm{div}$ ( 10 calibrated positions) in l. 2,5 sequence. $=2 \%$ attenuator accuracy.

Vernier: provides continuous adjustment between deflection factor settings and extends maximum deflection factor to at least $12.5 \mathrm{~V} / \mathrm{div}$. Uncalibrated light indicates when vernier is not in CAL position.
Dynarnic range: 6 div at 100 M Hz increasing to 16 div at $\leq 15 \mathrm{MHz}$.
Positioning range: 16 div.
Offset: $\pm 200$ div; maximum offset on 2 voit range and above is limited by 300 volt maximum input voltage specification.
Polarity: + up or -up, selectable.
Slgnal delay: input signals are delayed sufficiently to view leading edge of input pulse withour advanced trigger.
Input coupling: ac, dc, so ohms (dc), or ground. Ground position disconnects input connector and grounds amplifier input. Input RC
AC and dc: 1 megohm $\pm 1 \%$ shumed by approx 12 pF .
50 ohm : 50 obms $\pm 1 \%$. VSWR, <1.2:1 at 100 MHz on all ranges.
Maximum input
AC and $\mathrm{dc}: \pm 300 \mathrm{~V}(\mathrm{dc}+$ peak ac) at 1 kHz or less; $\pm 150 \mathrm{~V}(\mathrm{dc}+$ peak ac ) on $5 \mathrm{mV} /$ div range al 1 kHz or less.
50 ohm: 10 V rms (dc-coupled input).
A + B operatlon
Amplifier: bandwideh and deflection factors are unchanged: either channel may be inverted for $\pm \mathrm{A} \pm \mathrm{B}$ operation.
Ditterential input (A-B) comman mode: for frequencies from dc to 1 MHz , CMRR is $>40 \mathrm{~dB}$ for common mode signals up to 16 div. CNMR is at least. 20 dB at 50 MHz for common mode signals of 6 div or less.

## Trlggering

Source: selectable from channel A, channel B, or composite $(A+B)$ signal in any display mode.
Frequency: de to 50 MHz on signals causing 0.5 div p-p increasing to 1 div ( 2 div for 1822 A ) at 100 MHz , or more vertical defection in all display modes except ds to 100 kHz in chop mode.
Verrical signal output
Source: channel A, channel B, or channels A +B selected by Trigger Source.
Amplitude: approx $50 \mathrm{mV} /$ div of display into 50 ohms with useable amplitudes up to 500 mV p-p.
Bandwidth: de to approx 50 MHz into 50 ohms.

## General

Welght: net, 5 lbs ( $2,3 \mathrm{~kg}$ ); shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Operating environment: same as Models $180 \mathrm{C} / \mathrm{D}$.
Accessories furnished: two 10014A 10:1 voltage divider probes.
Price: Model 1805A Dual Channel Vertical Amplifier $\$ 1400$
Model 1805A Option 003. less probes $\$ 1300$

## 250 to 600 MHz VERTICALS $10 \mathrm{mV} /$ div to 250 MHz , large signal to $>600 \mathrm{MHz}$ Models 1830A, 1831A, 1831B

## OSCILLOSCOPES



## Specifications, 1830A

Modes of operation: channel A alone, channel B alone, channels A and B displayed alternately on successive sweeps (ALT), channels A and B displayed by switching (time shared) between channels, chop frequency of approx 250 kHz , channel A plus channel $B$, and by inverting channel $B$, channel $A$ minus channel B.
Each channel (2)
Bandwidth: de to 250 MHz 3 dB down from 6 div reference signal at 10 MHz from a so ohm source.
Risetime: $\leq 1.5$ ns. $10 \%$ to $90 \%$ with 6 div inpur step with a risetime of $\leq 200 \mathrm{ps}$ ! rom a 50 ohm source.
Pulse response: overshoot, ringing, flatness (combined), $< \pm 4 \%$ : preshoot, $<0.5 \%$.

## Deflection factor

Ranges: fram $0.01 \mathrm{~V} /$ div to $1 \mathrm{~V} /$ div ( 7 positions) in $1,2,5$ sequence. $\pm 3 \%$ attenuator accuracy (front panel Cal adjust).
Vernier: conünuous!y variable between all ranges, extends maximum deflection: (actor to approx $2.5 \mathrm{~V} / \mathrm{div}$. Vernier UNCAL (uncalibrated) light indicates when vemier is not in the calibrated position.
Polarity: + up or - up selectable on channel B.
Signal delay: >SS ns, which allows viewing the leading edge of a pulse without extemal delay or advanced trigger.
Drift: short term drife/min. and Jong term deift/fr, $\leq 0.05$ div atter $1 / 2 \mathrm{hr}$ from turn-on and at constant ambient temperacure. Input R: 50 ohms.
Maximum Input: 5 V ums or $\pm 500$ div peak, whichever is less.
VSWR: $\leq 1.30$ on $10 \mathrm{mV} /$ div and $\leq 1.20$ from $20 \mathrm{mV} / \mathrm{div}$ to $1.0 \mathrm{~V} / \mathrm{div}$ at 250 MHz .
Reflection coefflelent: $<10 \%$ on $10 \mathrm{mV} /$ div and $\leq 5 \%$ from $20 \mathrm{mV} / \mathrm{div}$ to $1.0 \mathrm{~V} / \mathrm{div}$. Measured with 1 ns risetime TDR.
$A+8$ operation ( $A-B$ with channel $B$ inverted)
Bandwidth: de so $150 \mathrm{MHz}, 3 \mathrm{~dB}$ down from 6 div reference signal from a terminated $50-0 \mathrm{hm}$ source.
Risatime: $\leq 2.4$ ns, $10 \%$ to $90 \%$ with 6 div input step from a terminated 50 -ohon source.
Triggering
Source: channel A or composite (on displayed signal) in all display modes.
Frequency: de to $>250 \mathrm{MHz}$ on signals causing 1 div or more vertical deflecrion in all modes (with Model 1840A and 1841A Time Bases).

## General

Probe power: provides power for operating two Hewlect-Packard probes.
Welght: net, $5 \mathrm{lbs}(2,3 \mathrm{~kg})$; shipping, $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Operating environment: same as 183 rainframe.

Price: Model 1830A, 250 MHz Vertical Amplifier
$\$ 950$

## Specifications, 1831A and 1831B

## Note

These plug-ins require Option 035 to the 183 mainframes and the 1850A time base.
Vertcal
Bandwldth: $<20 \mathrm{kHz}$ to $>600 \mathrm{MHz}$ ( 1831 A ), $>500 \mathrm{MHz}$ (1831B).
Rise time: <600 ps (1831A), <700 ps (1831B).
Puise response: $<5 \%$ overshoor: $< \pm 5 \%$ perturbations with 350 ps rise time step input from a 50 ohm source; $<6 \%$ tilt for a $1 \mu$ s wide pulse at $25^{\circ} \mathrm{C}$ and $<10 \%$ tilt from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Deflection factor: $5.75 \mathrm{~V} / \mathrm{div}, \pm 10 \%$.

## Input characteristics

input R: 50 ohms, single-ended or differential (1831A): singleended (1831B).
Maximum ac input: $=100 \mathrm{~V}$ dc.
Maximum ac input: 2.0 watts, 4 die p-p CW.
VSWR: <1.3:1 to 750 MHz .
Input raflections: $< \pm 10 \%$, measured with 150 ps TDR.
Signal delay (18318): approx 60 ns which allows viewing leading edge of a pulse without external delay.
internal triggering (18318): stable to 500 MHz with signals producing $1 / 2$ div or more vertical deflection.

## Genera!

Weight: 1831 A ner, 2 lbs ( $0,91 \mathrm{~kg}$ ) shipping, $5 \mathrm{lbs}(2,27 \mathrm{~kg}$ ). 1831 B net, $4 \mathrm{lbs}\{1,81 \mathrm{~kg}$ ); shipping, $7 \mathrm{lbs}(3,18 \mathrm{~kg})$.
Operating environment: same as Model 183 mainframe.
Accessorles furnished: one 50 ohm load, HP Part No. 0950.0090
(2831A only). Two mainframe termination resistors, HP Part
No. 01831.61501.
Price
Model 1831A Direcr Access Plug-in $\$ 375$
Model 1831B Direat Access Plug.in \$42s

## Options

001: 100 ohm input for 1831A. Specifications for model 1831A Option 001 are the same as Model 1831A except as follows: Bandwidth: $<10 \mathrm{kHz}$ to $>600 \mathrm{MHz}$.
Defection factor: $5 \mathrm{~V} / \mathrm{div}, \pm 10 \%$.
Input R: 100 ohms, single.ended or differential.
Tilt: $<3 \%$ for a $1 \mu s$ wide puise at $25^{\circ} \mathrm{C} ;<5 \%\left(0^{\circ}\right.$ to $55^{\circ} \mathrm{C}$ ).
Maximum ac input: 2 watts, i.e. 8 div p-p CW .
Price: Model 1831A Option 001

# 200 MHz, 4 CHANNELS <br> $10 \mathrm{mV} / \mathrm{div}$, High Z or 50 ohm, inputs <br> Model 1834A 



## Description, 1834A

Model $1834 \mathrm{~A}, 200 \mathrm{MHz}$ four channel vertical amplifier provides accurate measurements for both digital and analog design and troubleshooting. With the 1834A, you can make four channel measurements in systems designed with ECL logic. This coupled with the $1 \mathrm{~ns} /$ div sweep speeds available with the 1840 A or 1841 A time bases allows accurate timing measurements in complex logic circuits.

A thick film, planar attenuator allows both a high impedance input, with very low shunt capacitance, for general purpose probing and a precision 50 ohm inpur for transmission line measurements. In the high impedance position ( $\mathrm{ac} / \mathrm{dc}$ ) a 1 megohm input with only 12 pF shunt capacitance is established. This extremely low capacitance provides minimal loading in probing applications, which can be further reduced by using 10:1 divider probes. For precision 50 ohm measurements, a precision internal 50 ohm input termination may be selected with a front panel switch. The internal termination is maintained at a high degree of quality by compensating for the normal scope input capacitance, which is not possible with external terminations. The internal termination also makes possible the high 10 volt maximum input capability.

Active probes are available to reduce circuit loading while retaining the precision 50 ohm input measurement capability.

Timing measurements are fast and easy with the selection of trigger source from channel $A, B, C$, or $D$ or composite in all displays modes. This allows you to trigger on any channel while retaining the time relationship with the other three channels. By selecting composite triggering each channel is individually triggered.

## Specifications

Modes of operation: channel A, B, C, or D or any combination displayed alternately on successive sweeps (ALT): channels A. $B$. C. or D or any combination displayed by switching between channels at approx 750 kHz rate (CHOP) with blanking during switching; channels $\pm \mathrm{A} \pm \mathrm{B}$ displayed in ALT or CHOP with $\pm C \pm D$, chop frequency is approx 1.5 MHz .

Each channel (4)
Bandwidth: (measured with or without 10014 A probe, 3 dB down from a 6 div reference signal from a terminated 50 ohm source). DC-coupled, de to 200 MHz ; ac-coupled, approx 10 Hz to 200 MHz . Lower limit is approx 1 Hz with 10014 A probe when ac-coupled.
Rise time: <1.8 ns (rueasured with or without 10014A probe: $10 \%$ to $90 \%$ of 6 div input step from a terminated 50 ohm source).
Deflection factor
Ranges: from $0.01 \mathrm{~V} /$ div to $5 \mathrm{~V} / \mathrm{div}$ (9 calibrated positions) in $1,2,5$ sequence. $\pm 2 \%$ attenuator accuracy.
Varniar: provides continuous adjustment between all deflection factor ranges; extends maximum defiection factor to at least $12.5 \mathrm{~V} / \mathrm{div}$.
Signal delay: input signals are delayed sufficiently to view Jeading edge of input pulse without advanced external trigger.
Input coupling: ac, $d c$, 50 ohms (dc), or ground. Ground position disconnects input connecior and grounds amplifier input.
Input (solectable)
AC and dc: : megohm $\pm 1 \%$ shunted by approx 12 pF . 50 ohm: 50 ohms $\pm 1 \%$. VSW/R, 1.2:1 at 200 MHz on all ranges.
Maximum Input
AC and dc: $\pm 300 \mathrm{~V}$ (dc + peak ac) at 1 kHz or less; $\pm 150 \mathrm{~V}(\mathrm{dc}+$ peak ac$)$ on $10 \mathrm{mV} /$ div range at $: \mathrm{kHz}$ or less.
50 ohm: 10 V rms (dc.coupled input)

## A + B operation

Amplifier: bandwidth and dedection factors are unchanged; any channel may be inverted for $\pm \mathrm{A} \pm \mathrm{B}$ or $\pm \mathrm{C} \pm \mathrm{D}$ operation.
Differential input ( $A-B$ or C-D) common mode; CMRR is at least 20 dB from de to 80 MHz on $10 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$ ranges.

## Triggering

Source: selectable from channal $A, B, C, D$, or composite (on displayed signal) in all display modes.
Frequency: de to 50 MHz on signals causing 0.5 div or more vertical deflection increasing to 1 div at 200 MHz in all display modes.

## General

Weight: net, $7 \mathrm{lb}(3,2 \mathrm{~kg})$; shipping, $10 \mathrm{lb}(4,5 \mathrm{~kg})$.
Envlronment: same as 183 mainframe.
Price: Model 1834 A 200 MHz 4 channel amplifier



1821A

## Specifications, 1820C Tlme base

## Sweep

Ranges: $50 \mathrm{~ns} / \mathrm{div}$ to $1 \mathrm{~s} / \mathrm{div}$ ( 23 positions) in $1,2,5$ sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Vemler: continuously variable between ranges, extends slowest sweep to at least $2.5 \mathrm{~s} /$ div. Uncalibrated light indicates when vernier is not in CAL position.
Magnifier: (on mainframe) expands fastest sweep to $5 \mathrm{~ns} / \mathrm{div}$.
Sweep mode
Normal; triggered by an int, ext or power line signal.
Automatic: bright baseline displayed in absence of trigger signal. Triggering is same as Normal except low frequency limit is 40 Hz .
Single: in Normal, sweep occurs once with same triggering as Normal; reset pushbutton arms sweep and lights indicator; in
Auto, sweep occurs once each time reset pushbutton is pressed.

## Triggering

Intemal: refer to vertical amplifier plug-in specifcations.
External: de to 50 MHz on signals 50 mV p-p or more increasing to 100 mV at 100 MHz and 150 mV at 150 MHz ,
Line: power line frequency signal.
Level
Internal: at any point on the vertical waveform displayed.
External: continuously variable from $\div 2 \mathrm{~V}$ to -2 V on cither slope of trigger signal, from +20 V to $-20 \mathrm{~V} \div 10$ setting.
Slope: pushbutton selects + or - slope of trigger signal.
Coupling: front panel selection of $A C$, DC, HF Reject, or LF Reject. AC attenuates signals below approx 20 Hz , LF Reject attenuates signals below approx 15 kHz , HF Reject attenuates signals above approx 15 kHz .
Trlgger holdaff: time between sweeps continuously variable, ex. ceeding on full sweep on all ranges.

## General

Operating environment: same as 180C/D mainframes.
Wolght: net, $3 \mathrm{lbs}(1,4 \mathrm{~kg}$ ); shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg}$ ).
Price: Model 1820C Time Base, $\$ 400$.

## Specifications, 1821A Delayed Time Base Maln time base

## Sweep

Ranges: $0.1 \mu \mathrm{~s} /$ div to $1 \mathrm{~s} /$ div ( 22 positions) in $1,2,5$ sequence. $\pm 3 \%$ acsracy with vernier in CAL position.
Varnier: continuously variable between all ranges; extends slowest sweep to at least $2.5 \mathrm{~s} / \mathrm{div}$.
Magnifier: (on mainframe) expands fastest sweep to $10 \mathrm{~ns} / \mathrm{div}$.

## Sweep mode

Normal: triggered by an int, ext, or power line signal.

Automatic: bright baseline displayed in absence of input signal. Tziggering same as norma! except low frequency limit is 40 Hz for internal or external modes.
Single: sweep occurs once with same ariggering as normal: reset pushbutton with amed indicalor light.
Triggering
Internal: refer to vertical amplifier plug-in specifications.
External: from de to $50 \mathrm{~N} / \mathrm{Hz}$ on signals 0.5 V p-p or more, increasing to 1 V p-p at 100 MHz .
Lne: power line frequency signal.
Level and slope; internal, at any point on the vertical waveform displayed; external, variable from +3 V to -3 V on either slope of the sync signal; from +30 V to -30 V in $\div 10$ setting.
Coupling: ( $A C, D C, A C F$, or $A C S$ ). $A C$ attenuares signals belon$\approx 20 \mathrm{kHz}, \mathrm{ACF}$ (ac-fast) attenuates signals below $\approx 15 \mathrm{kHz}$. ACS (ac-slow) attenuates signals above $\approx 30 \mathrm{kHz}$.
Trace intensification: intensifes thar part of Main time base to be expanded to full screen on Delayed time base. Rotating Delayed time base sweep switch from Off position activates intensified mode. Front panel screwdriver adjust sets relative incensity of brightened segment.

## Sweep

Ranges: $0.1 \mu \mathrm{~s} / \mathrm{div}$ to $50 \mathrm{~ms} / \mathrm{div}$ ( 18 positions) in $1.2, \mathrm{~s}$ sequence. $\pm 3 \%$ accuracy with vernier in CAL position.
Vernier: continuously variable berween all ranges: extends slowest sweep to at least $12.5 \mathrm{~ms} / \mathrm{div}$.
Trlggering: applies to iatensifed Main, Delayed, and Mixed time base triggering.
Internal: refer to vertical amplifier plug.in specifications.
Automatic: triggers at end of set time delay.
Extemal: same as main time base.
Level and slope: same as main time base.
Coupilng: same as main time base.
Delay (before start of Delayed sweep)
Time: continuously variable from $0.1 \mu 5$ to 10 s .
Accuracy: $\pm 1 \%$. Lineariry, $\pm 0.2 \%$. Time jitter, $<0.005 \%$ ( 1 part in 20,000 ) of maximum delay of each step.
Trigger output: (at end of Delay time) approx 1.5 V with $<50$ ns risetime from 1000 ohm source resistance.
Mixed time base: dual time base in which Main time base drives first portion of swreep and delayed time base completes sweep at up to 1000 times faster. Also operates in single sweep mode.

## General

Operating envlronment: same as $180 \mathrm{C} / \mathrm{D}$ mainframes.
Weight: nec, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping, $7 \mathrm{lbs}(3,1 \mathrm{~kg})$.
Price: Model 1821A Time Base and Delay Generator, $\$ 700$.


## Description, 1824A

Model 1824A time base and sweep expander plug-in is designed for use in all 180 series mainframes including the 183 wide band mainfeames. This plug.in allows sweep expansions up to 100 times with $3 \%$ accuracy, 5 ns sweep speeds, and triggering to 150 MHz .

The expanded sweep feature allows detailed examination of selected portions of a display where time delay measurements are not of importance. This provides sweep expansion measure. ment capability without the expensive delay generator features for your applications. Expansions of 100 times are available and the time/div dial gives a direct readout of the expanded time/div, preventing many measurement errors. Convenient setup is provided by a trace intensification feature that selects the starting point of the portion of a sweep that will be expanded ro full screen. Expanded sweep position is continuously variable over the center 9 divisions of the main sweep.

Pushbutton controls make operation easy with a minimum chance for error and an automatic trigger mode displays a baseline in absence of a trigger signal. A trigger hold off control provides for stable triggering on complex waveforms or a particular pulse in a digital word may be selected to trigger a display. Additional trigger flexibility is provided by complete selection of the trigger parameters which includes: ac or de coupling, low or high frequency rejection, positive or negative slope, and a $\div 10$ mode that provides wider dynamic range of input signals. A trigges level conirol allows selection of the trigger signal at any point on the displayed signal or a $\pm 2$ volt external signal.

An external trigger input sensitivity of 50 mV adds to the versatility of this plug.in by allowing $10: 1$ divider probe to be used with 0.5 V logic circuits. This allows standard probes to be used to reduce ciccuit loading at trigger pick-off points and reduces the possibility of circuit malfunction caused by the measuring instrument.

## Specifications, 1824A

Time base

## Sweep

Ranges: $50 \mathrm{~ns} /$ div $t 01 \mathrm{~s} /$ div ( 23 calibrated positions) in $1,2,5$ sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.


Multiple exposure shows added detail of expanded oulse.

Vernier: continuously variable between ranges, extends slowest 5 weep to at least $2.5 \mathrm{~s} /$ div. Uncalibrated light indicates when vernier is not in calibrated position.
Magnifier: (on mainframe) expands fastest sweep ro $5 \mathrm{~ns} /$ div.
Expanded sweep
Expander: direct reading expander control provides up to 100 times sweep expansion, accuracy $\mathbf{\pm} 3 \%$. Expand position control selects part of basic time scale to be expanded, continuously variable from $<0.5$ div of sweep start to $>8.5$ div of basic time scale.
Trace intensiflcation: front panel switch selects intensifed mode for use in establishing start of expanded display. A front panel adjustment sets relative intensity of brightened segment.

## Sweep mode

Normal: sweep is triggered by an internal, external, or power line signal.
Automatic: bright baseline displaged in absence of iaput sigoal. Triggering same as Normal exccpt low frequency limit is 40 Hz .
Single: in normal, sweep occurs once with same triggering as Normal; seser pushbutton arms sweep and lights indicator; in Auto, sweep occurs once each time reset pushbutton is pressed.

## Triggerling

Internali: refer to vertical amplifer plug-in specifications.
Externat: dc to 50 MHz on signals of 50 mV p-p or more, increasing to $100 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$ at 100 MHz and $150 \mathrm{mV} \mathrm{p}-\mathrm{p}$ at 150 MHz .
Line: power line frequency signal.
Level
Internal: at any point on the vertical waveform displayed.
External: continuously variable from +2 V to -2 V on either slope of trigger signal; from +20 V to -20 V in $\div 10$ setting.
Slope: pushbutton selects eitber positive or negative slope of irigger signal.
Coupling: froat panel selection of $A C, D C$, HF Reject or LF Reject. AC: attenuates signals below approx 20 Hz .
LF Relect; atrenuates signals below approx is kHz . HF Reject: attenuates signals above approx 15 kHz .
Trigger holdoff: time between sweeps continuously variable. Exceeds one full sweep on all ranges.

## General

Oparating environment: same as $180 \mathrm{C} / \mathrm{D}$ mainframes.
Weight: net, $3 \mathrm{lb}(1,4 \mathrm{~kg}$ ) ; shipping, 7 lb ( $3,2 \mathrm{~kg}$ ).
Price: Model 1824A Time Base and Sweep Expander, $\$ 550$.

## OSCILLOSCOPES



## Description, 1825A

Model 1825A time base and delay generator provides sweep speeds ranging from $0.05 \mu 5 / \mathrm{div}$ to $1 \mathrm{~s} / \mathrm{div}$ in 23 positions. Delay times are continuously variable from 50 ns to 10 s and are accurate to $\pm 1 \%$ also a calibrated mixed sweep mode is provided. A mainframe X10 magnifier provides sweep.speeds to $5 \mathrm{~ns} /$ div with $5 \%$ accuracy.

One knob control makes stable triggering on signals easy in main, delayed, and mived modes. Stable, accurare time displays are provided in main, delayed, and mixed modes with the highly sensitive 50 mV trigger capability at 50 MHz which increases to only 150 mV at 150 MHz . Trigger synchronization is maintained when switching between main, delayed, and mixed modes further simplifying use.

Front panel controls are logically arcanged for quick familiarization and easy use. Pushbuttons eliminate front panel clutter and reduce the possibility of errors. Sweep mode pushbuttons make it easy to establish main. delayed, and mived modes.

Trigger level controls on main and delayed sweeps allow selection on the desired portion of the signal for almost every measurement application. Also, the $\div 10$ function provides a wide dyramic range of triggering in both external and internal modes of operation.

External trigger sensitivity of 50 mV on both main and delayed sweeps allows a $10: 1$ divider probe to be used with 0.5 volt logic circuits. This allows probes to be used to reduce circuit loading at trigger pickoff points and reduces the possi. bility of circuit malfunction caused by the measuring instru. ments.

## Specifications, 1825A <br> Main time base

## Sweep

Ranges: $0.05 \mu \mathrm{~s} / \mathrm{div}$ to $\mathrm{J} \mathrm{s} / \mathrm{div}$ ( 23 positions) in $1,2,5 \mathrm{se}$ quence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Vernler: continuously variable between ranges, extends slowest sweep to at least $2.5 \mathrm{~s} /$ div. Uncalibrated light indicates when vernier is not in CAL position.
Magnifler: (on mainframe) expands fastest sweep to $\mathrm{s} \mathrm{ns} / \mathrm{div}$. Sweep mode

Normal: sweep is triggered by an intermal, extemal, or power line signal.
Automatlc: bright baseline displayed in absence of trigger signal. Triggering is same as Norraal except low frequency limit is 40 Hz .

Singte: in Normal, sweep occurs once with same riggering as Normal; reset pushbutton arms sweep and lights indicator; in Auto, sweep occurs once each time reset pushbution is pressed.
Delayed time base: delayed time base sweeps after a time delay set by Main time base and Delay controls. Delayed time base is triggered on first triggering pulse after set delay or automatically uriggers after set delay when delayed level control is in detent position.

## Sweep

Ranges: $0.05 \mu \mathrm{~s} / \mathrm{div}$ to $20 \mathrm{~ms} / \mathrm{div}$ ( 18 positions) in $1,2,5$ sequence. $\pm 3 \%$ accuracy.
Magnifier: (on mainframe) expands fastest sweep to $5 \mathrm{~ns} / \mathrm{div}$. Triggering: Main or Delayed time base.
Internal: refer to verical amplifier plug-in specifications.
External: dc ro 50 MHz on signals $50 \mathrm{mV} p-\mathrm{p}$ or more increasing
to $100 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$ at 100 MHz and $550 \mathrm{mV} \mathrm{p}-\mathrm{p}$ at 150 MHz .
Line: power line frequency signal. (Main only.)
Level
Internal: at any point on the vertical waveform displayed.
External: continuously variable from +2 V to -2 V on either slope of trigger signal, from +20 V to -20 V in $\div 10$ setcing,
Slope: pushbution selects cither positive or negative slope of trigger signal.
Coupling: front panel selection of $A C, D C$, HF Reject, of $L F$ Reject.
AC: attenuates signals below approx 20 Hz .
LF Reject: attertuates signals below approx 15 kHz .
HF Reject: attenuates signals above approx 15 kHz .
Trigger holdoff: cime between sweeps continuously variable, exceeding one full sweep on all ranges. (Main only.)
Delay (before start of delayed sweep)
Time: continuously variable from 50 as to 10 s .
Accuracy: $\pm 0.75 \%$ of differential delay, $\pm 2$ div of delay dial.
Time jitter: $0.002 \%$ ( 1 part in 50,000 ) of maximum delay on each range.
Trace Intensiflcation; in Main sweep mode, intensifies that part of main time base to be expanded to full screen in delayed time base mode. In Mixed mode, intensifies that part of Main time base to be completed by Delayed time base. Rotating time base switch from OFF position activates intensified mode.
Callbrated mixed sweep: combines Main and Delayed sweeps into one display. Sweep is started by the Main time base and is completed by the faster Delayed cime base. Delayed sweep seart is aligned with start of intensified marker.

## General

Operating environment: same as $180 \mathrm{C} / \mathrm{D}$ mainframes.
Weight: ner, 4 lbs ( $1,3 \mathrm{~kg}$ ); shipping, $7 \mathrm{lbs}(3,1 \mathrm{~kg}$ ).
Price: Model 1825A Time Base and Delay Generator, $\$ 800$.


## Description, 1840A

The 1840A Time Base provides stable one knob internal triggering from an 1830 A to 250 MHz or from an 1831 B to 500 MHz . External rriggering to 250 MHz is provided with 20 mV input and increases to 500 MHz with 50 mV input signals. Trigger functions are controlied with convenient push. buttons which simplify panel layout and operation. A variable hold off control achieves a stable display of pulse groups by allowing triggering on a particular pulse in a group.
Sweep times are selectable from $10 \mathrm{as} /$ div to $0.1 \mathrm{sec} / \mathrm{div}$ and with the mainframe X10 magnifier a sweep speed of 1 ns/div is available. The single sweep mode of operation in
the 1840A is fully compatible with the 183 pulsed food gun mode of operation which increases photographic writing speed. Fast single-shot events can be photographed and the film "post fogged" by synchronizing flood gun operation with the single sweep, which allows the camera shutrer to be left open for the event.

Option 001 for the 1840 A is available for applications in. volving high amplitude external trigger signals. This option provides selecrable trigger levels of $\pm 5$ volts or $\pm 25$ volts and will arithstand peak input pulses of 100 volts with $10 \mu \mathrm{~s}$ duration.

## Specifications, 1840A

## Time base

## Sweep

Ranges: from $10 \mathrm{~ns} /$ div to $0.1 \mathrm{~s} /$ div in 1.2 .5 sequence. $\pm 3 \%$ accuracy with remier in calibrated position.
Vernier: continuousiy variable between all tanges, extends slowest sweep to at least $0.25 \mathrm{~s} / \mathrm{div}$.
Magnifier (on mainframe): extends fastest sweep to 1 ns/div with $\pm 5 \%$ accuracy.

## Sweep mode

Normal: sweep is triggered by an internal. external, or power line signal.
Automatic: bright bascline displayed in absence of trigger signal.
Single: sweep occurs once with Normal trigger conditions. Sreep may be resec with front panel pushbutton or electrically with rear panel input signal. Front panel light indicates when sweep is reset.
Triggering
Internal: refer to vertical amplifer plug.in specifications.
External: $\mathrm{dc}^{*}$ to $>250 \mathrm{MHz}$ with signals of 20 mV p-p or more increasing to 50 mV , at 500 MHz . Input R , 50 ohms. $\div 10$ trigger attenuator allows wider dynamic range of Ext trigger input.

* (Automatic triggering is same as normal except low frequency limit is 5 Hz for incemal and external trigering.)
Line: power line frequency trigger signal.
Level and slope
Internal: at any point on the displayed vertical waveform.
External: continuously variable from -100 mV to +100 mV in $\div 1$ and $\div 1.0 \mathrm{~V}$ to -1.0 V in $\div 10$. Input $\mathrm{R}, 50$ ohms nominal. OSCILLOSCOPES
- 1 knob triggering to 500 MHz
- 1 ns/div main and delayed sweeps
- Simplified front panel controls
- Indicator lights for sweep modes



## Description, 1841A

Mode 1841A Time Base and Delay Generator provides 21 spreep times ranging from $10 \mathrm{~ns} / \mathrm{div}$ to $0.1 \mathrm{~s} /$ div. Delay times are selected by a calibrated 10 -turn control across the time range set by the sweep time switch. A mainframe x 10 magnifier provides $1 \mathrm{~ns} /$ div sweep times for both main and delayed sweeps to match the CRT writing speed.

One knob control makes triggering on rf carriers and signals even higher than the VHF range very easy. Both main and delayed sweep circuits trigger directly on 50 mV signals to 500 MHz without countdown procedures. Trigger synchroni-
zation is also maintained when switching from main to delayed or delayed to main sweeps.

Front panel controls are logically arranged for quick familiarization and easy use. Pushbutton conrols for trigger functions eliminate front-panel clutter and reduce the chance for error. Sweep time controls are arranged to make it easy to read main and delayed sweep times at a glance and color coding on main and delayed controls clearly differentiate one sweep from the other. Also, front panel lights indicate the main or delayed mode of operation.

## Specifications, 1841A

## Sweep

Ranges: (from $10 \mathrm{~ns} /$ div $100.1 \mathrm{~s} / \mathrm{div}$ ( 22 positions) in $1,2,5$ sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Vernier: continuously variable between all ranges, extends slowest sweep to at least $0.25 \mathrm{~s} / \mathrm{div}$.
Magnlfier (on mainframe): extends fastest sweep to $1 \mathrm{~ns} /$ div, $\pm 5 \%$.
Sweep mode

* Normal: sweep is triggered by an internal, external, of power-line signal.
Automatic: bright baseline displayed in absence of a trigger signal.
Single: sweep occurs once with same triggering as normal; reset pushbutton with armed indicator light. Rear panel inpur (on maintrame) provides remote arming capability.
Triggering
Internal: refer to vertical amplifer plug-in specifications.
External: dc* to $>250 \mathrm{MHz}$ with signals of 20 mV P.p or more, increasing to 500 MHz with signals of 50 mV p-p or more. Input $\mathrm{R}, 50$ ohms. Input in $\div-10$, from +1 V to -l V . * (Triggering in AUTO is same as normal Except low frequency limit is $S \mathrm{~Hz}$.)
Line: power line frequency trigger signal.
Level and slope
Internal: at any point on the displayed verical waveform.
Externaf: continuously variable from -100 mV to +100 mV in $\div 1$ and 1.0 V to -1.0 V in $\div 10$. Input $R$, 50 ohms nominal.
Coupling: front panel selection of ac or dc. $A C$ attenuates sig. nals below approx 5 Hz .
Trigger hold off: time between sweeps continuously variable, exceeding one full sweep on all ranges.

Trace Intensification: used to set up delayed time base. Intensifies that part of main time base to be expanded to (ull screen on delayed time base. Moving delayed sweep switch from off position activates intensifed mode. Front panel adjustment sets relative intensity of brightened segment.

## Delayed time base

Delayed time base sweeps after the cime delay set by main time base and delay controls.

## Sweep

Ranges: $10 \mathrm{~ns} /$ div to $1 \mathrm{~ms} / \mathrm{div}$ in $1,2,5$ sequence ( 16 positions). $\pm 3 \%$ accuracy.
Triggering
Internal: sefer to vertical amplifer plug-in specifications.
Automatic: delayed sweep is automatically triggered at end of set delay time.
External: de to $>250 \mathrm{MHz}$ with signals of 20 mV p-p or more, increasing to 500 MHz on signals of 50 mV p-p or more. Input R, 50 ohms.
Coupling: front panel selection of ac or dc. AC attenuates signals below approx 3 kHz .
Delay (beioce start of delayed sweep)
Time: concinuousip variable from 50 ns to 1 s .
Accuracy: $\pm 1 \%$ on 50 ms to $0.1 \mu \mathrm{~s}$, main sweep linearity $\pm 2 \%$, time jitter is $0.005 \%$ ( 1 part in 20,000 ) of maximum delay of each step.

## General

Probe power: supplies power to operate one Hewlett-Packard active probe.
Welght: nel, $3.6 \mathrm{lbs}(1,6 \mathrm{~kg}$ ) ; shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Oparating environment: same as Model 183 mainf rame.
Price: Model 1841A Time Base/Delay Generator, $\$ 1150$.

# 2 CHANNEL/1 GHZ SAMPLER Easy-to-use, internal triggering Model 1810A 

## Description, 1810A

Mode! 1810 A is a 1 GHz , dual channel double-size sampling plug.in for use in all 180 series oscilloscope mainframes. Easy-to-use controls, operate and look like real-time plug-ins which reduces familiarization time and possible measurement errors. You can make accurate measurements of repetitive signals from dc to greater than 1 GHz with deflection factors of $2 \mathrm{mV} / \mathrm{div}$ to $200 \mathrm{mV} /$ div without the problems encountered with previous, specialized sampling controls.

A unique sampling circuit maintains a sampling efficiency at $100 \%$ for all input signal levels, which eliminates time consuming external adjustments and false triggering. Other internal circuit improvements reduce internal adjustments to a minimum, and they are non-interacting, for fast calibration. Internal delay lines allow teiggering on the displayed waveform reishour requiring an external pretrigger. By adding so ohm impedance converter probes, 1120 A , the 1810 A can be used for general purpose probing with minimum circuit loading with very low probe shunt capacitance. Power for two Herrlett-Packard active probes is provided through the front panel powes jacks or an 1122A probe power supply may be used for up to four probes.

## Specifications, 1810A

Modes of operation: channel A; chamel B; channels A and B displayed on alternate samples (ALT) : channel A plus channel B (algebraic addition): and channel A versus channel B.

## Vertical channels

Bandwidth: dc to 1 GHz .
Rise time: < 350 ps .
Pulse response: $<3 \%$ (overshoor and perturbations).
Defiection factor
Ranges: 2 mV /div $10200 \mathrm{mV} / \mathrm{div}$ (7 calibrared positions) in $1,2,5$ sequence.
Accuracy: $\pm 3 \%$.
Vernler: provides continoous adjustment between all defiection factor ranges; extends minimum defertion factor to $<1 \mathrm{mV} /$ div.

Polarity: + UP or - UP.
Dynamic range: $>1.6 \mathrm{~V}$.
Posftioning range: > $>\mathrm{i}$ V on all deflection factors.
Input R: 50 ohms, $\pm 2 \%$.
Maximum input: $\pm 5 \mathrm{~V}$ (dc + peak 2 c ).
VSWR: <1.1:1 to 300 MHz , increasing to <1.5:1 at 1 GHz .
Reflection coelficient: $<6 \%$, measured with HP Model 1f19A TDR.
Noise
Normal: $<2 \mathrm{mV}$, obsefved from center $80 \%$ of dots.
Filtered: <1 mV.
Isolation between channels: $\geq 40 \mathrm{~dB}$ with 350 ps rise time inpur. Time difference between channels: $<100 \mathrm{ps}$.
$A+\mathbf{8}$ operation: bandwidth and defection factors are unchanged: either channel may be invered for $\pm \mathrm{A} \pm \mathrm{B}$ operation.
Vertical outputs: an uncalibrated, i V vertical ourpuisignal from each channel is provided at the rear panel of 180 system mainframes.

## TIme base

## Ranges

Normal: $10 \mathrm{~ns} /$ div $1050 \mu \mathrm{~s} /$ div ( 12 calibrated positions) in a 1,2 , 5 sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Expanded: direct reading expansion up to X100 in seven calibrated steps on all normal time scales, extends the range to $100 \mathrm{ps} /$ div. Accuracy is $\pm 4 \%$ ( $10 \mathrm{ps} / \mathrm{div}$, $10 \%$ using the mainframe magnifier).
Vernier: continuously variable between ranges: increases fasrest sweep to $<10 \mathrm{ps} / \mathrm{dit}$.


## Triggering <br> Mado

Normal: rigger level control can be adjusted to trigger on a wide variety of signals.
Automatic: triggers automatically on most signals with a minimum of adjustment of the level control. A baseline is displayed in the absence of an input signal.
Source: selectable; channel A rriggers channel A or alternate: channel B triggers channel B , alternate, $\mathrm{A}+\mathrm{B}$, or A is B .

## Interna!

Sine wave: 30 mV p-p for signals from 1 kHz to 200 MHz , 100 mV p-p for signals from 200 MHz to 1 GHz for jitter of $<30$ ps plus $1 \%$ of 1 period. Useful riggering can be obtained with S mV signais.
Pulse: 30 mV peak, 3 ns wide pulses for $<30$ ps jitter. Useful triggering can be obtained with 5 mV signals.

## External

Sine wave: 30 mV p.p for signals from 1 kHz to 1 GHz for jitter of $<30$ ps plus $1 \%$ of 1 period. Useful triggering can be obtained with 5 mV signals.
Pulse: 30 mV peak, 3 ns wide pulses for $<30 \mathrm{ps}$ jitter. Useful triggering can be obtained with 5 mV signals.

## Either internal or external

Auto: 50 mV p.p for CW sigoals from 10 kHz to 200 MHz for $<30$ ps jitter plus $2 \%$ of 1 period (may be used to 1 GHz with increased jitter). Puise triggering requires 50 mV peak, 3 ns wide pulses for $<30$ ps jitter.
Level and slope: level control which minimizes jitter is variable over $\pm 800 \mathrm{mV}$ range on either slope of sync signal.
Coupling: ac coupling attenuates signals below approx 1 kHz .
Variable holdott: variable over ac least a $3: 1$ range in ail swecp modes.
Marker position: intensified market segment indicates point about which the sweep is to be expanded (automatically dimmed with increasing persistence in 181 and 184 mainframes).
Scaп
Internal: dot density, continuously variable from $<100$ to $>1000$ dots full screen or from approx 500 to $>2000$ dots in filtered mode.
Manual: scan is positioned manually by front panel control.
Horizontal output: an uncalibrated approx 0.75 V amplicude signal is provided at the rear panel of a 180,181 or 184 mainframe.

## General

Probe power: supplies power to operate two Hewletr-Packard active probes.
Weight: net, 7 lbs ( $3,2 \mathrm{~kg}$ ); shipping, 12 (bs ( $5,4 \mathrm{~kg}$ ).
Operating environment: ssme as Model $181 \mathrm{~A} / \mathrm{AR}$ mainframes.
Price: Model 1810A 1 GHz Sampling, \$1750.

# 2 CHANNEL/18 GHz SAMPLER Easy-to-use, 10 ps time scale Model 1811A 

OSCILLOSCOPES

## Description, 1811A

The Model 1811 A sampling plog-in provides 18 GHz , dualcharnel, feedthru sampling in the versatile 180 oscilloscope system. The logical arrangement of front panel controls reduces familiacization time and measucement efrors and the feedthre remote sampling heads allow measurements of operating systems. Flexibility and economy is assured with this double-size plug-in since it will operate in all 180 series mainframes with a selection of standard CRTs ( 5 -inch). large screen, vatiable persistence and storage, and the wideband 183 mainframes. A selection of remote sampling heads allows you to match a sampling system to a measurement problem at minimum cost.
The bridged method of extracting a signal used in this sampling system provides the optimum method of measure. ment since it extracts only a small amount of the waveform rather than terminating the signal in the measuring system. By using remote sampling heads connected in series with the system under test, the signal displayed is the signal that is passed through the sampler to the rext stage of a system. Any problems are then displayed as they exist in the system.

The tro sampling heads available are: $1430 \mathrm{C}, 1432 \mathrm{~A}$. Model 1432A provides 90 ps risetime capability while 18 GHz mea. surements are supplied by the 1430 C which has a 20 ps cise. time. Specifications for these sampling heads are on the follow. ing page.

18 GHz triggering with a displayed jitter of 10 ps or less is provided by a 1104 A trigger countdown, 1106 B tunnel diode. and 1109 B high-pass filter. To allow viewing a signal without using a delay line, a trigger output is available as a signal source trigger which starts the sweep prior to display of the vertical signal.

## Specifications, 1811A

Modes of operation: channel $A$; channel $B$, channels $A$ and $B$ displayed on alernate samples (ALT) ; channel A plus channel B (algebraic addition): and channel A versus channel $B$.

## Deflection factor

Ranges: $2 \mathrm{mV} /$ div to $200 \mathrm{mV} /$ div ( 6 calibrated positions) in 1, 2, 5 sequence.
Accuracy: $\pm 3 \%$.
Vernier: provides continuous adjustment between all defiction factor ranges; extends min deRection factor to $<1 \mathrm{mV} /$ div.
Polarity: + UP or - Up.
Positioning range: $> \pm 1$ V on all detection factors.
$A+B$ operation: bandwidth and defecrion factors are unchanged; either channel may be inverted for $\pm \mathrm{A} \pm \mathrm{B}$ operation.

## Time base

## Ranges

Normal: $1 \mathrm{~ns} / \mathrm{div}$ to $\mathrm{S} \mu \mathrm{s} /$ div ( 12 calibrated positions) in a 1, 2, 5 sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Expanded: direct reading expansion up to X100 in seven calibrated steps on all normal time scales, exrends the range to $10 \mathrm{ps} / \mathrm{div}$. Accuracy is $\pm 4 \%$ ( $1 \mathrm{ps} /$ div, $\pm 10 \%$ using the mainframe magnifer).
Vernier: continuously variable between ranges; increases fastest unmagnified sweep to < 4 ps/dix:

## Triggering

## Mode

Automatic: triggers automatically on most signals with a minimum of adjustment of the level control. A baseline is displayed in the absence of an input signal.


Normal: trigger level control can be adjusted to trigger on a wide variety of signals.
CW: 80 mV p -p for signals from 1 kHz to 1 GHz for jituer of < 10 ps plus $1 \%$ of 1 period. Useful triggering can be obtained with 5 mV signals. Triggering may be extended to 18 GHz with HP Models $1104 \mathrm{~A} / 1106 \mathrm{~B}$ trigger countdown.
Pulse: 30 mV peak, 3 ns wide pulses for $<30$ ps fitter. Uscful ruiggering can be obtained with 5 mV signals.
Auto: 50 mV p-p for CW signals from 10 kHz to 200 MHz for $<30$ ps jitter plus $2 \%$ of 1 period (may be used to 1 GH 2 with increased jitter). Pulse triggering requires 50 mV peak, 3 ns wide pulses for $<30 \mathrm{ps}$ jitter.
Level and slope: continuously variable from +800 mV to -800 mV on either slope of sync signal.
Coupling: ac coupling attenuates signals below approx 1 kHz .
Varlable holdoff: variable over at least a $3: 1$ range in all sweep modes.
Marker position: intensified market segment indicates point about which the sweep is to be expanded (automatically dimmed with increasing persistence in 181 and 184 mainframes).
Scan
Internal: dot density; continuously variable from <100 to >1000 dots full screen or from approx 900 to $>2000$ dots in filered mode.
Manual: scan is positioned manually by front panel control.
Trigger output; $1 \mathrm{~ns}, 1.5 \mathrm{~V}$ into 50 ohms.

## General

## Recorder outputs

Vertical: an uncalibrated, 1 V vertical oueput signal from each channel is provided at the rear panel of 180 series mainframes.
Horizontal: an uncalibrated approx 0.75 V amplitude signal is provided at the rear panel of 180,181 , of 184 mainframes.
Probe power: supplies power to operate one Hewlett.Packard active probe.
Environment: same as Models 180C/D mainframes.
Welght: net, $5 \mathrm{lbs}(2,3 \mathrm{~kg})$; shipping, $10 \mathrm{lbs}(4,5 \mathrm{~kg})$.
Price: Model 1811 A Sampler, $\$ 1700$.

## OSCILLOSCOPES

# FEED THRU SAMPLING HEADS <br> 4 or 18 GHz , Low reflection coefficients <br> Models 1430C, 1432A 

## Description, sampling heads

Models 1430 C and 1432A provide accurate measurements of CW, and fast ise pulses. The sampler is of feedthru design allowing measurements to be made using the system as a load rather than using an artificial internal termination. These remote sampless are connected to the scope by a five.foot cable which allows the head to be placed at the signal source to eliminate high frequency lossy lines.

Model 1430 C provides 20 ps rise time with low overshoot for accurate measurements of fast rise pulses and CW signals to 18 GHz . While the feedthru measurement technique allows measuremenrs of an operating system, terminated measurements can also be made with the 50 ohm loads (Model 909A Option 012) that are supplied.

The 1432A provides 90 ps risetime ( 4 GHz ) measurements for lower frequency measurements than the 1430 C . Feedthru of terminated measurement may also be obtained with this sampler and the two 50 ohm loads that are supplied.


Rise time: approx 20 ps ( $<28$ ps observed with 1105A/1106B pulse generator and 909A Option 01250 obm load).
Bandwidth: dc to 18 GHz .
Overshoot: < $7.5 \%$.
Noise; 10 mV unsmoothed; 2.5 mV smoothed. Both measured tangencially.
Dynamic range: $\pm 1$ volt.
Low frequency distortion: $< \pm 5 \%$.
Maximum safe lnput: $\pm 3$ volts.
Input characteristles
Mechanleal: rype N connectors on input and output ports.
Electrical: 50 ohm feedrhrough, dc-coupled. Refiection from sampler is approx $10 \%$, measured with a 40 ps TDR system. Pulses emitred from sampler input are approx 10 mV amplirude and 5 ns duration.
Time difference between channels: <5ps.
Isolation between channels; $\geq 40 \mathrm{~dB}$ over sampler bandwidth.
Connecting cable lengths: s fr.

## General

Welght: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping, $9 \mathrm{lbs}(4,1 \mathrm{~kg})$.
Accessories provlded: two 50 ohm loads (HP Model 909A Op. tion 012).
Price: Model 1430 C Sampling Head, $\$ 2800$.

Specifications, 1432A
Rlse time: <90 ps.
Bandwidth: de to 4 GHz .
Overshoot: $< \pm 5 \%$.
Noise: approx 8 mV observed noise on CRT excluding $10 \%$ of random dots. Noise decreases on automarically filtered ranges of 5 and $2 \mathrm{mV} /$ div. Smoothed position of smoorhing switch reduces noise and jitter approx 4:1. Response provides continuous adjustment between normal and filtered modes.
Dymamic range: 1 V p-p.
Low trequency distortion: $<3 \%$.
Maximum safe Input: $\pm 5 \mathrm{~V}$.
Input characteristics
Mechanical: GR type 874 connectors on input and output ports.
Electrical: 50 ohw feedehrough, dc-coupled. Reflection from sampler is approx $15 \%$ measured with a 90 ps TDR system. Pulse emitted from sampler input are approx 50 mV in amplitude and 10 ns wide.
Time difference between channels: <2sps,
Isolation between channels: $\geq 40 \mathrm{~dB}$ oves sampler bandwidih.

## General

Weight: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping, $9 \mathrm{lbs}(4,1 \mathrm{~kg})$.
Accessories provided: two 50 ohm loads with GR rype 874 con. nectors.
Price: Model 1432A Sampling Head, \$1185.


> Specifications, $1104 \mathrm{~A} / 1106 \mathrm{~B} / 1108 \mathrm{~A}$ 1104A/1106B/18 GHz Trigger Countdown 1104A/1108A/10 GHz Trigger Countdown Input

Frequency range: (1106B) 1 GHz to 18 GHz . (1108A) 1 GHz to 10 GHz .
Sensitivity: (1106B) signals 100 mV or larger and up to 12.4 GHz , produce $<20 \mathrm{ps}$ of jitter ( 200 mV required to 18 GHz ). ( 1108 A ) signals up to 50 mV or larger and up to 10 GHz , produce $<20$ ps of jitter.
Maximum safe Input: $\pm 1 \mathrm{~V}$.
Input impedance: ( 1106 B ) $50-\mathrm{ohm}$ Type N input connector. (1108A) 50 -ohm GR- 874 input connector. Reflection from input connector is $<10 \%$ using a 40 Ps TDR system.
Signal appearing at input connector: approximately 250 mV .

## Output

Center frequency: approximarely 100 MHz .
Amplltude: typically 150 mV .

## General

## Weight

1104A: net, $2 \mathrm{lbs}(0,9 \mathrm{~kg}$ ); shipping, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$.
11068 or 1108 A : net, $1 \mathrm{lb}(0,5 \mathrm{~kg})$; shipping, $2 \mathrm{lbs}(0,9 \mathrm{~kg})$.
Price: HP Model 1104A, \$200. HP Model 1106B, \$550. HP Model $1108 \mathrm{~A}, \$ 215$.
Recommended accossory; HP Model 1109B High Pass Filter.


1818A

Description, 1818A
The 1818A TDR plug-in provides low cost, 170 ps TDR in the 180 oscilloscope system for the investigation of transmission systems, terminations, and components. The easy-to-use front panel controls provide quick, accurate displays with direct distance calibration of up to 1000 feet or 300 meters and dielectric materials from $\varepsilon=1,0$ (air) to $\varepsilon=4.0$. This doublesize plug-in provides a lightweight, wideband TDR system for checkout of shipboard, airborne, and remote communications equipment.
Using a "closed loop radat" approach for investigation of a transmission system's fidelity, this system directly displays the location and magnitude of discontinuities in an analog or digital communication system. Information is lost when a sig. nal encounters a discontinuity that causes energy to be reflected to the source. These reflections nor only cause loss of amplitude in the received information but the re-refection from dis. continuities also appear as noise that is in the same format as the original signal which, if carried to extremes, could completely garble the information. This demonstrates the need for test equipment that can locate and display individual discontiuities in distance (time) and amplitude (Rho) for fast system serup or repair. While there are many instruments that can derect the presence of discontinuities, only TDR can quickly display them to allow a technician to repair them with minimum system downtime. TDR can also be used to determine the fidelity of a termination and can also be used, in the transmission mode, to determine the rransmission quality of an amplifiè or attenuator. In this mode of operation, the step generator signal source is applied to the device under test and the output is detected by the sampling portion of the plug-in. In the stimulous response mode, the 1818 A use the 50 ps step generator as a stimulous and the 150 ps sampling section displays the device response. This allows a waveform to be examined for risetime, delay, and pulse top abberations. The 1818A TDR plug.in is designed for use in troubleshooting systerns to provide quick, easy location of discontinuities that degrade system operation.

## Specifícations, I818A

## System (In reflectometer conflguration)

Risetlme: < 170 ps
Overshoot: $\leq 5 \%$ overshoot and ringing (down to $1 / 2 \%$ in $3 n s$ ).
Intarnal raflections: $<10 \%$ (does not limit resolution)
Reflectometer sensitivity: reflection coefficients as small as 0.001 can be observed.

## Slgnal channel

Rise time: approx. 1 so ps.
Retlection coefficient: 0.5 div to $0.005 /$ div in a $1.2,5$ sequence. Input: 50 ohms, feedthrough type.
Naise: $0.1 \%$ of step (terminated in 50 ohms ).
Dynamic range: $\pm 0.5$ volt.
External signal level; up to I V peak may be safely applied to the SAMPLER OUTPUT connector.
Attenuator accuracy: $\pm 3 \%$.
Step generator
Amplitude: approx 0.25 V into 50 ohms ( 0.5 V into open circuit) Rlsetime: approx 50 ps.
Output impedance: so ohrms $i=1 \mathrm{ohm}$ (dc-coupled)
Droop: $<1 \%$ in $1 \mu \mathrm{~s}$.
Distance/time
Distance scale: $10 \mathrm{fr} / \mathrm{div}$ and $100 \mathrm{ft} / \mathrm{div} ; 3$ meters/div and 30 meters/div. Accuracy, $\pm 3 \%$.
Variable dielectric: $\varepsilon=1$ to $\varepsilon=4$.
Time scale: $10 \mathrm{~ns} /$ div to $100 \mathrm{~ns} /$ div. Accuracy, $\pm 3 \%$.
Magnification: X 1 to X 100 in a $1,2,3$ sequence provides time scales down to $0.1 \mathrm{~ns} /$ div and distance scales to $0.1 \mathrm{ft} /$ div or 0.03 meters/div. Accuracy of the basic sweep is maintained at all magnifier settings.
Delay control: 0 to 10 div of unmagnified sweep. Accuracy $\doteq 3 \%$.
Jitter: <20 ps.

## General

Operating environment: same as Models $180 \mathrm{C} / \mathrm{D}$ mainirames, with exception of temperature, $0^{\circ} \mathrm{C}$ ro $35^{\circ} \mathrm{C}\left(35^{\circ} \mathrm{C}\right.$ to $55^{\circ} \mathrm{C}$ with small increase in system risctime).
Weight; ner, $3 \mathrm{lbs}(1,4 \mathrm{~kg})$; shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: Model 1818A Titre Domain Reflectometer
$\$ 1200$
Accessories supplled: Type N connector assembly. One 50 ohm load with Type N connector.


1815A

## Descriptions, 1815A,B; 1816A; 1817A

Calibrated 35 ps risetime time domain reflectometery and 12.4 GHz ( 28 ps risetime) sampling capabilities are available as part of the versatile 180 system oscilloscope.

The Model 1815A TDR/Sampler plug-in, a double-sized plug. in for the 180 system, can be combined with appropriate remore sampler head and tunnel diode mount to obtain a calibrated TDR system with a system risetime of 35 ps for high. resolution displays. Direct readout in feet along the line is obrained from the 1815A or in meters from the Model 1815B. Either an $1106 \mathrm{~B}(20 \mathrm{ps}$ ) or $1108 \mathrm{~A}(60 \mathrm{ps})$ tunnel diode mount is compatible for TDR with the pluge in and samplers.

The same plug-in and sampler heads used for TDR measure. ments also serve as either a 4 GHz or 12.4 GHz sampling system with a direct readout in time. For sampling use, there is direct triggering to 500 MHz and to 18 GHz with the Model 1104A/1106B trigger countdown.

Sampling heads, Model 1816A ( 90 ps risetime) and Model 1817 A ( 28 ps risetime), are detachable, remote, single channel, feed-through samplers for convenient use in 50.0 hm trans. mission systems. The plug in and sampler heads provide the circuits for operating the tunnel diode pulse generators.

This calibrated TDR system allows analysis of coaxial microwave components, identifying discontinuities on the order of 0.25 inch apart. Typical components that can be analyzed are connectors, adapters, coaxial-to-circuit board transitions, loads, etc. Direct read-out in reflection coefficient, feet, or meters (optional) makes measurements faster and easier to interpret. Front panel calibration for air and polyethylene dielectrics is standard. In addition, the control allows variable calibration for different dielectrics from $\varepsilon=1$ to $\varepsilon=$ approx 4 .

## Specifications, 1815A/B

Uniess otherwise indicated, TDR and sampling performance specifications are the same. Where applicable, TDR specification is given first, followed by Sampler specification in parencheses, Model 1815A is calibrated in feet and 1815B is calibrated in meters.

## Vertical

Scale: reflection coefficient $\rho$ (volts) from $0.005 /$ div to $0.3 /$ div in 7 calibrated ranges; 1,2 , 5 sequence.

Accuracy: $\pm 3 \%$; TDR only, $\pm 5 \%$ on $0.01 / \mathrm{div}$ and $0.005 / \mathrm{div}$ in signal average mode.
Vernler: provides continuous adjustment berreen ranges; extends scale to $>0.002 / \mathrm{div}$.
Signal average: reduces noise and jitter approx 2:1.

## Horizontal

Scale: provides up to a 10,000 foot or meter display window with round-trip time or distance (time) in four calibrated decade ranges of $1 / \mathrm{div}, 10 / \mathrm{div}, 100 / \mathrm{div}$, and $1000 /$ div. Concentric expand control provides direct read-out in 28 calibrated steps in 1. 2, 5 sequence from $0.01 \mathrm{~ns} /$ div to $1000 \mathrm{~ns} / \mathrm{div}$ or from 0.01 foot or meter/div to 1000 feer or meters/div ( $0.1 \mathrm{~ns} / \mathrm{div}$ to 1000 ns/div).
Accuracy: time, $\pm 3 \%$; distance, TDR only, $\pm 3 \% \pm$ variations in propagation velociry.
Marker position: indicator, calibrated in divisions; provides direat resd-out of round-trip time or distance (time), number of divisions x decade range in units/div.
Marker zero; ten-turn control provides variable reference for marker position dial; allows direct read-out of round-rip time or distance (rime) between tro or more displayed events.
Zero finder: permits instant location of marker reference.
Dlelectric, TDR only: calibrated for air, $\varepsilon=1$, and for polyethy. lene, $\varepsilon=2.25$. Also provides variable settings for diejectric constants $\varepsilon=1$ to $\varepsilon=$ approx 4 .
Triggering sampling only
Pulses: < 50 mV for pulses 5 as or wider for jitter <20 ps.
CW: signals from 500 kHz to 500 MHz require ar least 80 mV for jitter $<2 \%$ of signal period plus 10 ps ; usable to 1 GHz . CW uriggering may be extended to 18 GHz with HP Models 1104A/1106B trigger countdown.

## General

Recorder outputs: approx $100 \mathrm{mV} / \mathrm{div}$; vertical and horizonal outputs ar BNC connectors on rear panel of mainframe.
Display modes: repetitive scan, normal or detail; single scan; manual scan; record.
Environment: same as Model 181A/AR mainframes.
Weight: net, $5 \mathrm{lbs}(2,3 \mathrm{~kg}$ ); shipping, $10 \mathrm{lbs}(4,5 \mathrm{~kg})$.

## Price

Model 1815A TDR/Sampler (calibrated in feet) $\$ 1250$
Model 1815 B TDR/Sampler (calibrated in meters) $\$ 1250$


Unless otherwise indicated, Model 1817A and 1816A specifications are the same. Where applicable, Model 1817A specifcations with an 1106 B tunnel diode mount are given first followed by Model 1816A specifications (in parentheses) with an I108A tunnel diode mount.

## TDR system (requires 1106B or 1108A)

System risetime: <35 ps (110 ps) incident as measured with Model 1106 (Model 1108A).
Overshoot: < $\pm 5 \%$.
Internal reflections: $<10 \%$ with 45 ps ( 145 ps) TDR; use seflecred pulse from shorred output.
Jitter: <15 ps; with signal averaging, typically 5 ps.
Intemal plckup: $\mathrm{\rho} \leq 0.01$.
Noise: measured tangentially as a percentage of the incident pulse when terminated in 50 ohms and operated in signal averaging mode. $<1 \%(0.5 \%)$ on $0.005 /$ div $100.02 /$ div: $<3 \%$ ( $1 \%$ ) on $0.05 /$ div to $0.5 / \mathrm{div}$.
Low frequency distortion: $\leq=3 \%$.
Maximum safe input: 1 volt.
Tunnel diode mount: direct connecrion of 1108A to 1816A; 1106 B requires an adapter, type N male to APC.7 (HP P/N 1250.0749 ), to connect 1106 B to 1817 A .

## Sampler system

Riset/me: <28 ps (90 ps).
Input: 50 ohm feedthrough.

Dynamic range: 1 V p.p.
Maximum safe Input: 3 volts ( $s$ volts).
Low frequency distortion: $\leq \pm 3 \%$.
Noise
Normal: $<8 \mathrm{mV}(3 \mathrm{mV})$ tangential noise on $0.01 \mathrm{~V} /$ div to $0.5 \mathrm{~V} /$ div. Noise decresses automatically on $0.005 \mathrm{~V} / \mathrm{div}$ range.
Signal average: reduces noise and jitter approx 2:1.

## Accessorles supplied

Cable, plug-In to sampler: connects sampler (1816A or 1817A) to plug in (1815A or B). HP Part No. 5060.04 ili ; replacement price, $\$ 75$.
Cable, tunnel diode to sampler: conncets tunnel diode ( 1106 B or 1108 A ) to sampler, HP Part No. 01817.61603.

Replacement price $\$ 18$.

## General

Weight: nex, $3 \mathrm{lb}(1,4 \mathrm{~kg})$; shipping, $11 \mathrm{lb}(5 \mathrm{~kg})$,
Price
Model 1817A 28 ps Rise Time Sampling Head $\$ 1500$ Model 1816A 90 ps Rise Time Sampling Head \$850

## Recommended accessories

Type N male to APC-7 adapter to connecr 1106 B to 1817A for TDR system, price $\$ 75$.
External trigger source for sampling system for triggering above 500 MHz . 10 GHz trigger countdown, $1104 \mathrm{~A} / 1108 \mathrm{~A}$
price $\$ 11 \mathrm{~s}$. 18 GHz trigger countdown, $1104 \mathrm{~A} / 1106 \mathrm{~B}$ price $\$ 750$.

## Tunnel diode mounts

 Specifications, 1106B and 1108ATunnel diode is required for a TDR system. Refer to sampling head specifications for mounting requirements.
Amplitude (both): $>200 \mathrm{mV}$ into 50 ohms.
Risetime: Model 1106B approx 20 ps; Model 1108A, <60 ps.
Output Impedance: 50 ohms $\pm 2 \%$.
Source reflection: Model $1106 \mathrm{~B}<10 \%$ with 4 s ps TDR: Model 1108A, <10\% with 150 ps TDR.
Weight (both): net. $1 \mathrm{lb}(0,5 \mathrm{~kg})$ : shipping, $3 \mathrm{lbs}(1,4 \mathrm{~kg})$.
Price: Model 1106B, 5550 : Model 1108A,
$\$ 215$.


TDR/Sampling System Equipment* TOR SYSTEM	
35 ps tr	1815A/8, 1817A, 11058**
110 ps $\mathrm{tr}_{5}$	1815A/B, 1816A, 108A
SAMPLING SYSTEM	
$12.4 \mathrm{GHz}^{* * *}$	1815A/B, 1817A
$4 \mathrm{GHz}^{* *}$	1815A/B, 1816A

-Use any 180, 181, 182, 183, 184 malaliame.

- Requires type $N$ male to APG 7 adapler (HP P/R 1200-0749) to connect to 1817A.
- .axternal trigger countdown, 15 required above 500 kHz . Recommended lliger countdowns ares 1104 A 1108 A to 10 GHz , $1204 \mathrm{~A} / 1068$ to 18 GHz . a Model lioge hlahpass filter is recommences for CW sampling. refer to sampling accessorles.


Specifications 1104A/1106B/1108A
18 GHz Trigger Countdown
10 GHz Trigger Countdown
Input
Frequency range: (1106B) 1 GHz to 18 GHz . (1108A) 1 GHz 1010 GHz .
Sensitivity: ( 11008 ) signals 100 mV or larger up to 12.4 GHz , produce $<20 \mathrm{ps}$ of jitter ( 200 mV required to 18 GFz ). (1108A) signals up to 50 mV or larger up to 10 GHz produce $<20$ ps jitter.
Maximum sate Input: $\pm 1 \mathrm{~V}$.
Input Impedance: (11068) 50 ohhm, type N inpur connector. (1108A) 50-ohm, GR-874 input connector. Reflection from inpur connector is $<10 \%$ using a 40 PS TDR system.
Signal appearing at input connector: approximately 230 mV . Output
Center Irequency: approxinately 100 MHz .
Amplitude: typically 150 mV .
General
Welght: 1104 A : net, $2 \mathrm{lb}(0,9 \mathrm{~kg}$ ); shipping, $4 \mathrm{lb}(1,8 \mathrm{~kg})$; 1106 B or 1108 A : net, $1 \mathrm{lb}(0,5 \mathrm{~kg})$ : shipping, $2 \mathrm{lb}(0,9 \mathrm{~kg})$.
Price: HP Model 1104A. $\$ 200$. HP Model 1106B. $\$ 550$. HP M M del 1108A, \$215.
Recommended accessory: HP Model 1109 B High Pass Filter.


Specifications 1105A/1106B/1108A

> 20 ps Pulse Cenerator
> SO Ps Putse Generator
> Output

Risetime: approx 20 ps with 1106 B , ( $<60$ ps with 1108A), <25 ps observed with HP Model 1411A/1430A 28 ps Sampler and HP Model 909A Option 012, 30 ohm rermination.
Overshoot: $\pm 7.5 \%$ as observed on 1411A/1430C with 909A Option 012.
Droop: $<3 \%$ in first 100 ns .
Width: approximately $3 \mu \mathrm{~s}$.
Amplitude: $> \pm 200 \mathrm{mV}$ into 50 ohms.
Output characteristics (1106B/1108A)
Mechanlcal: (1106B) Type $\mathbf{N}$ connector. (1108A) GR. 874 connector.
Electrical: de resistance; $50 \mathrm{ohm} \pm 2 \%$. Source reBection: $<10 \%$, using a 40 ps TDR system. DC offset voltage, approximately 0.1 V .

## Triggering

Amplitude: at least $\pm 0.5 \mathrm{~V}$ peak required.
Risetime: <20 ns required. Jitter <15 ps when uiggered by 1 as risetime sync pulse from 1424 A or 1425 A Sampling Time base.
WIdth: $>2$ ns.

Maxlmum safe input: 10 volls.
Input impedance: 200 ohms ac-coupled through 20 pF .
Repetition rate: 0 to 100 kHz : free runs at 100 kHz .
Accessories provided (with Model 1105A): one $6-\mathrm{ft}$ so ohm cable with Type N connectors, HP Model 10132A.
Welght: 1106 B or 1108 A : net, $1 \mathrm{lb}(0,5 \mathrm{~kg})$; shipping, 2 lb $(0,9 \mathrm{~kg}) .1105 \mathrm{~A}:$ net, $2 \mathrm{lb}(0,9 \mathrm{~kg})$ : shipping, $4 \mathrm{lb}(1,8 \mathrm{~kg})$. Price: HP Model 1105A. 5200 . HP Mrodel 1106 B , $\$ 550$. HP Mridel 1108A. 5215.

## 1109B High Pass Filter

1109 B High Pass Filter transmits only frequencies above 1 GHz . It's useful for blocking the 100 MHz "kickout" encountered when using a tunnel diode coundown to view high frequency signals on a sampling oscilloscope.

## 1109B Specifications

Lower bandwidth limit: 3 dB down at GHz , nominal.
Input characteristics
Mechanlcal: Type N connector.
Electrical (with outpu: terminated in 30 ohms)
Reflection: < $10 \%$ using 40 ps TDR system.
VSWR: typically $1 \mathrm{l}: 1 \mathrm{l}$ up to 10 GHz increasing to $2: 1$ at 15 GHz .
DC resistance: 90 ohms $\pm 2 \%$ shunted across line.
Welght: net, 5 oz ( 0.14 kg ).
Price: 5200

## Other sampling accessories

$50 . \mathrm{hm}$ loads: Model 908A. Option 012, $\$ 70$.
$50 \cdot \mathrm{hm}$ adapter: Model 11524A; has Type N female and APC. 7 connectors. Price. $\$ 70$.
Air line extensions: Model 11566A; 10 cm, APC-7 connector. Model 11567A: 20 cm, APC. 7 connector. Price. $\$ 11$ each.

## Adapters GR Type 874

Part No. Description Price
0950.0090 GR Type 874 10 50 ohm Termination s 55.00
1250.0239
1250.0240
1250.0847
1250.0849
1250.0850
1250.1206
1250.1207
1250.1208
1250.1209
1250.1210

1250-1211

## Part No.

1250.0077
1250.0082
1250.0176
1250.0240

1250-0749
1250.0750
1250.0778
1250.0846
1250.0847

Part No.
1250.1007

1250-1012
SiMA female to APC. 7
SMA male to APC.
SMA male to SMA male
SMA remale to SN(A remale
Adapters APC 7
Description
Price
APC. 7 to Type N male $\$ 75.00$
$A P C .7$ to Type N female $\quad 75.00$
APC. 7 to SMA male
APC. 7 to SMA female

Part No.
1250.0749
1250.0750
1250.1007
$1250 \cdot 1012$

GR Type 8741050 ohm Termination	S 55.00
GR Type 874 to GR Type 874, $90^{\circ}$ elbow	42.00
GR Type 874 to Type N female	19.00
GR Type 874 to Type N male	15.00
GR Type 847 to BNC male	15.00
GR Type 874 to BNC female	15.00
GR Tjpe 874 to Type C male	24.00
GR Type 874 to Type HN female	26.00
GR Type 874 to Type $C$ lemale	26.00
GR Type 874 to TNC female	26.00
GR Type 874 to TNC male	35.00
GR Type 874 to Type HN male Adapters Type $\mathbf{N}$	30.00
Description	Price
Type N femate to BNC male	S 6.00
Type N male to BNC female	10.00
Type N male in Type N female right angle	650
Tspe N female to GR Type 874	15.00
Type N male to APC. 7	75.00
Type N female to APC. 7	75.00
Type N male to Type N male	2000
Type N female tee	5.00
Type N male to GR Type 874 Adapters SMA	15.00
Description	Price
SIMA female to APC. 7	\$120.00
SMA male to APC. 7	130.00
SMA male to SMA male	7.50
SMA remale to SM (A female Adapters APC 7	8.50
Description	Price
APC. 7 to Type N male	\$ 75.00
APC. 7 to Type N female	75.00
APC. 7 to SMA male	120.00
APC. 7 to SMA Female	130.00

## NARROWBAND TDR Test waveguide systems, compact, transportable



## 1250-1211



1250-0176


1250-0082
$1250 \cdot 1158$


1250-1007

1250.0749


1250-0239

1250.0849


1250-1206


1250-1208


1250-1210

1250.0077


1250-0778

1250.0846 부ㅇㅛㅡㅇ 1250-1159


1250-1012


1250-0750


## Description, 1580A

Model 1580A Narrow Band TDR System provides a quick, portable method of determining the location and magnitude of discontinuities in waveguide or bandpass coaxial transmission systems. Narrowband TDR clearly show's the magnitude of resistive or reactive discontinuities with the location directly calibrated in feet or meters from the source. This allows rapid system set-up or repair of faults caused by misaligned or corroded wraveguide flanges and coaxial cable connectors, foreign objects inside waveguides, and crushed or bent waveguide or coaxial cable.

Narrowband TDR is similar in concept to radar, in that an rf pulse burst is transmitted down a system and, if a discontinuity exists, energy is refiected back to the source and is detected and displayed by the 1580A system. The use of an if pulse burst allows the incident energy to be contained within the dominant mode of the naveguide or che passband of a narrowband system, which increases sensitivity and resolution of measurements ahen compared to a wideband TDR used for interrogation of a narrowband system.

Variable of burst widths, from $<5$ to $>100$ as, are provided by the 1580 A which allows the incident of burst bandwidth specticum to be matched to the characteristics of a system being tested. Variable burst widths are useful when evaluating wave. guide systems where the effects of dispersion, which causes a reflected of burst to widen in time and lase amplitude, must be considered. The 1580A allows return insses of -40 dB and greater to be resolved when at least 70 mW of re input power is a vailable.

The Narrow Band TDR System consists of a standard 180AR rack model oscilloscope mainframe, a 1815A Option 001 TDR/Sampler Plug.in, and the 1580A Narrow Band TDR if burst generator/sampler. The 1580 A may also be purchased calibrated in meters at no additional cost by ordering Model 1580A Option 010.
The Model 1580A also has all the features of the Model $1815 \mathrm{~A} / \mathrm{B}$, TDR/Sampling Plug-in and 1817A sampling head including de to 12.4 GHz sampling and wideband TDR (with the addition of an external 1106B Tunnel Diode Mount) in lines as long as 10,000 feec. Also, by changing plug-ins, the mainframe can be used as a standard oscilloscope for real time measurements to 100 MHz .

For more information, contact your local Hewlett-Packard field engineer

## OSCILLOSCOPES

# WAVEFORM ANALYZER <br> 1\% Calibration accuracy, programmable <br> Model 1150A 



Description, 1150A
Model 1150A Programmable waveform Processor is a oew tool for auromatically characterizing complicated waveforms. For the first time hardware has been designed to specifically complement easy-to-use BASIC language measurement programs.

Basically, the Model 1150A is a fully programmabie dual channel, 1 GHz sarapling oscilloscope like processor that digitizes incoming analog waveforms after counting the frequency down to 90 kHz or less. Sampler features include: 1, 2, 5 , sequence on attenuators and sweep times, internal triggering to 1 GHz , ohm inputs, and signal averaging.
The 1150 A operates in a remote mode under computer control or in local where the front panel controls function exactly like those on a real time oscilloscope. The number of displayed data points is programmable and can be set to 128, 256, s12, or 1024 points. Amplitude resolution is 10 bits or 1024 points.

A minicomputer or programmable calculator extends the 1150A progeammable waveform processor to a completely automated analyzer having the versatility to characterize most complex waveforms. The central processor programs the 1150 A ranges and setcings, controls the point along the waveform where samples are taken, corrects the measurement accuracy to $1 \%$, and calculates final results (such as: transition times, absolute voltages, propagation delays, and time intervals) specified in the users measurement program.

## Write tests in less time

BASIC language programming simplifies the writing of software for testing electronic circuits since engineers or technicians with little programming expericnce can easily communicate with the test equipment through a high-level computer language.

Model IISOA speeds BASIC language rest-writing by replacing keyboard entry of each control setting with LEARN, a pushbutton function located on the front panel. A single press
of LEARN teaches the CPU all of the 1105A front panel sertings. When writing a test, the programmer simply sets up the waveform to be analyzed as he would in making a manual measurement from a standard oscilloscope. All front panel functions become operable when LEARN is enabled and the 1150A operates exactly like a standard oscilloscope. When all controls are set to the desired ranges. pressing LEARN transfers these settings to the CPU where they become part of the measurement program. Since LEARN is enabled through a BASIC callable subroutine, all of the settings are stored and can be printed. After the application is aritten, the line conraining the LEARN call statement can be deleted, which protects the system from operator intervention during the run phase of a production test.

LEARN can be especially useful duriog the RUN phase of a test when the waveform characteristics are unknown. By combining the LEARN call with some test logic, all sectings can be automatically incremented to the proper value for analyzing the unknow'n waveform.

## Data registers

Front panel data input and data output registers offer the programmer, operator, or repair technician a visual means of identifying 16 -bir control words sent from a CPU to the 1150 A and data words transferred through the 1150A to the CPU.

The data input register can be manually loaded through 16 toggle switches located just below the lamp registers. Toggle switches remain unusable until the recessed Remote/Manual slide switch is set to manual. All programmable p.c. cards and functions can be addressed through the switch register, making this a valuable service tool and means of manually addressing the calibrator and specific points in the display.

For complete information, contact your local Hewlett. Pack. ard Field Engineer.


## 1200 Series Description

The 1200 series 500 kHz and 7 MHz oscilloscopes provide the most versatile, general purpose instruments for today's low frequency applications. These oscilloscopes are all solid-stare, light-weight, reliable, stable, which makes them ideal for a variety of applications. The many features of these scopes provide accurate, versatile, easy-to-obtain and read displays. Logical arrangement of controls, a beam finder to locate offscreen displays, and automatic triggering make operation easy, which is important to persons in production line testing, system applications, and classroom or laboratory instruction.
The wide variety of instruments assure an oscilloscope that will match your measurement requirement. Basic choices for specialized or general purpose, low frequency measurement ${ }^{2}$ pplications are: single or dual channel 500 kHz displays, 5 $\mathrm{mV} /$ div or $100 \mu \mathrm{~V} / \mathrm{div}$ defiection factors, standard or storage CRTs, and a 7 MHz , dual channel, $5 \mathrm{mV} /$ div model-all available in cabinet or rack configurations. In addition, these lightweight instruments allow measurements in remote or difficult access areas such as: aircraft flight lines, communica. tions field sites, or weapons test sites.
The 500 kHz models provide balanced inputs on all ranges and on each channel which is useful in low level audio applica. tions. An additional feature on the dual channel models is an A vs. B mode, which displays channel A signal versus channel $B$ signal through identical amplifiers with less than $1^{\circ}$ phase shift up to 100 kHz
Field effect transistors at the vertical amplifier inpur provide stable, low drifr operation virtually free of annoying trace shifts caused by temperature changes, shock, and vibration. Long term stability also means less frequent calibration and lower periodic maiotenance costs.

Rack versions (designated by a B, "1200B," following the model number) are only $s \frac{1}{4}$ inches high which saves valuable rack space and allows more instcuments to be included in a rack for a more versatile system. Since these instruments are complete oscilloscopes, they offer the system user a cead-out device and a convenient calibration and service tool.

In applications with displays that occur at slow rates, a storage/variable persistence CRT is available that will eliminate the annoying flicker or retain single occurcence traces. This longer persistence is useful when displaying slowly moving bio-medical phenomena and applications where the trace or dispiay information must persist after the exitation is removed. Improvements in target material and processing provide a very rugged storage surface. This highly burn resistant storage surface does not require special operating procedures which increases ease-of use in low frequency applications.

Single, normal, and free run modes of sweep operation are flexible enough for complex measurements, yet operation is simple and straight forward. The sweep time and magnifier controls provide a direct reading of a magnified sweep which reduces the chance of error and time for measurements.

## Specification grouping

Due to the similarity of these oscilloscopes, the specifications have been grouped to reduce redundancy and increase usability. The layout is as follows: Cathode-Ray Tube (standard and storage) : vertical amplifers in sequence of $500 \mathrm{kHz}, 100 \mu \mathrm{~V} /$ div and $5 \mathrm{mV} /$ div, and $7 \mathrm{MHz}, 5 \mathrm{mV} /$ div; Time Base, common to all 1200 oscilloscopes; followed by combined general information.

# STANDARD \& STORAGE CRT $500 \mathrm{kHz}, 100 \mu \mathrm{~V} / \mathrm{div}$ <br> 1200 Series 

1200 Series Oscilloscope Selection Chart

Feature	12004/E*	1201A/B*	12024/B*	1205A/B'	1206A/日 ${ }^{\text {c }}$	1217A/8"
Deflection Factor/div	0.1 mV to 20 V	0.1 mV 10 20 V	0.1 mV to 20 V	5 mV 1020 V	5 mV 1020 V	5 mV to 20 V
Bandwidth	500 kHz	7 MHz				
Number of Traces	2	2	1	2	1	2
Dilferential Input	all ranges ( $B-A$ )					
CMRR	100 dB	100 dB	100 dB	50 dB	50 dB	30 dB
Common-mode Signal Maximum	$=10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 3 \mathrm{~V}$	$\pm 3 \mathrm{~V}$	30 div
Phase Shilt (A vs B)	$1^{\circ}$ to 100 kHz	1010100 kHz	-	1010100 kHz	-	-
Sweep Speeds/div	$1 \mu s$ to 5 s	$1 \mu s t 05 \mathrm{~s}$	$1 \mu s t 05 s$	1 us 105 s	$1 \mu s$ to 5 s	$1 \mu s t 05 s$
Ext Horiz. Inpul	yes	yes	yes	yes	yes	yes
OC-coupled Z-axis	yes	yes	yes	yes	yes	yes
Variable Persistence and storage	no	yes	no	no	no	no
Price	\$1050	\$1900	\$815	$\$ 950$	\$765	\$1175

"'A" denolas standard dench model, e.g. 1200A. "B" denotes standard lack model a.g. 1200 B.

Speciflcations, 1200 Series
Cathode-ray tube and controls

## Standard CRT

Type: mono-accelerator, 3000 V accelerating potential; P31 phosphor standard (refer to eptions for oher phospbors)
Graticule: $8 \times 10$ div internal graticule, 0.2 subdivision markings on horizontal and vertical major axes. 1 div $=1 \mathrm{~cm}$.
Beam flnderi rcturns trace to CRT screen regardless of setring of horizontal, rertical, of intensity controls.
Intensity modulation: +2 V signal blanks trace of normal intensity; +8 V signal blanks any incensity trace, DC-coupled rear pancl inpur; amplifier risctime, approx 200 ns; input $R$, $s \mathrm{k}$ ohms.

## Variable persistence/storage CRT

1201A/B
Type: post-accelerator, variable persistence storage rube; 10.5 kV accelerating potential; aluminized P31 phosphor.
Gratleule: $8 \times 10$ div internal graticule. 0.2 subdivision markings on major axes. 1 div $=0.95 \mathrm{~cm}$. Frone panel recessed screw. driver adjustment aligns trace with graticule.

Intensity modulation: +2 vole signal blanks trace of normal intensity. +8 rolt signal blanks trace of any intensity. DC. coupled input on rear panel; amplifer risetime approx 200 ns ; input $R$ is approx 5 k ohms.
Beam finder: returns trace to CRT screen regardless of horizontal or vertical conteol sextings.

## Persistence/storage characteristics

(Referenced to a centered $7 \times 9$ div area in STD mode and to a centered $6 \times 8$ div area in FAST mode.)
Persistence: conventional, natural persistence of P31 phos. phor, approx $40 \mu \mathrm{~s}$. Variable, continuously variable from 0.2 s to $>1$ min. in STD mode; and from 0.2 s to 15 s in FAST mode.
Storage writing speed: STD mode, $20 \mathrm{div} / \mathrm{ms}$; FAST mode, $0.5 \mathrm{div} / \mu \mathrm{s}$.
Brightness: 100 foot lambers in write mode.
Storage time: STD writing speed, variable from approx 1 minute to $>2$ hours. Fast writing speed, variable from ap. prox is s to $>15 \mathrm{~min}$.
Erase: pushbutton erasure lakes approx 1.2 s . Write gun is blanked and sweep is reset until erasure is completed.


1217A


12178


Vertical amplifiers
$100 \mu \mathrm{~V}, 500 \mathrm{kHz}$
1200A/B, 1201A/B, 1202A/B
Bendwidth: de.coupled, dc to 500 kHz ; ac-coupled, 2 Hz to 500 kHz .
Bandwidth Ilmit switch: allows selection of upper bandwidih limit to approx 50 kHz or 500 kHz .
Risetime: $0.7 \mu \mathrm{~s}$ max.
Deflection factor
Ranges: from $0.1 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$ ( 17 positions) in 1,2 , s sequence.
Attenuator accuracy: $\pm 3 \%$ with vernier in calibrated position.
Vernier: continuously variable between all ranges; extends maxium defection factor to at least $50 \mathrm{~V} / \mathrm{div}$.
Noise: $<20 \mu \mathrm{~V}$ measured rangentially at foll bandwidth.
Input: differential or single-ended on all ranges, selectable.
Common mode
Frequency: dc to 10 kHz on all ranges.
Rejection ratio: 100 dB (100,000 to 1) with de-coupled input on 0.1 mV /div range, decreasing by $<20 \mathrm{~dB}$ per decade of deflection factor to ar least 40 dB on the $0.2 \mathrm{~V} / \mathrm{div}$ range; CMRR is at least 30 dB on the $0.5 \mathrm{~V} /$ div ranges.
Maximum signal; $\pm 10 \mathrm{~V}$ (dc + peak ac) on $0.1 \mathrm{mV} / \mathrm{div}$ to $0.2 \mathrm{~V} /$ div ranges; $\pm 400 \mathrm{~V}$ (dc + peak ac) on all other ranges.
Input coupling: selectable $A C, D C$, or OFF for both + and inputs.
Input RC: 1 megohm shunted by approx 45 pF ; constant on all ranges.
Maximum Input: $\pm 400 \mathrm{~V}(\mathrm{dc}+$ peak ac ).
Remaining vertical amplifier specificatlons apply only to dual channel models
Modes of operation: Channel A alone; Channel Balone; Chanaels $A$ and $B$ (either Chop or Alternate); Channels $A$ and $B$ vs. horizontal input (Chop only): Channel A vs. B (A-vertical, B-horizontal). Chop frequency is approx 100 kHz .
Intarnal trigger source: on Channel A signal for A, Chop, and Alternate displays: On Channel B signal for B display.
Isolation: $>80 \mathrm{~dB}$ between channels at 500 kHz , with shie!ded inpur connectors.
Phase shift: (Channel A vs. B) $<1^{\circ}$ to 100 kHz with verniers in calibrated position.

$5 \mathrm{mV} / \mathrm{div}, 500 \mathrm{kHz}$
1205A/B, 1206A/B
Bandwidth: de-coupled, dc to 500 kHz ; ac-coupled, 2 Hz to 500 kHz .
Risetime: $0.7 \mu \mathrm{~s}$ max.
Deflection factor
Ranges: froms $\mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} /$ div ( 12 positions) in 1,2 , 5 sequeace.
Attenvator accuracy: $\dot{ \pm} 3 \%$ with vernier in calibrated position.
Vernier: continuously variable between all ranges; extends max.
imum deflection factor to at least $50 \mathrm{~V} / \mathrm{div}$.
Input: differential or single-ended on all ranges, selectable.
Common mode
Frequency: de to 10 kHz on all ranges.
Rejection ratio: 50 dB with de-coupled input on $5 \mathrm{mV} / \mathrm{div}$ to $0.2 \mathrm{~V} / \mathrm{div}$ ranges; CMRR is at least 30 dB on the 0.5 $\mathrm{V} / \mathrm{div}$ to $20 \mathrm{~V} /$ div ranges.
Maximum signal: $\pm 3 \mathrm{~V}$ (dc + peak ac) on $5 \mathrm{mV} / \mathrm{div}$ to $0.2 \mathrm{~V} / \mathrm{div}$ ranges; $\pm 300 \mathrm{~V}$ ( $\mathrm{dc}+$ peak ac) on all other ranges.
Input coupling: selectable AC, DC or OFF for both + and inputs.
Input RC: 1 megohm shunsed by approx 45 pF ; constant on all ranges.
Maximum input: $\pm 400 \mathrm{~V}$ (dc + peak ac).
Remalning vertical amplifier specifications apply only to dual channel models
Modes of operation: Channel A alone; Channel B aione: Channels $A$ and $B$ (either Chop or Alternate); Channels $A$ and $B$ vs. horizontal input (Chop only): Channels $A$ ws. B (A-vertical, B-horizontal). Chop frequency is approx 100 kHz .
Internal trigger source: on Channel A signal for A, Chop, and Alternate displays. On Channel B signal for B display.
Isolation: $>80 \mathrm{~dB}$ between channels at 500 kHz , aith shielded input connectors.
Phase shitt: (Channel A vs. B) $<1^{\circ}$ to 100 kHz with verniers in calibrated position.

## OSCILLOSCOPES



1217A/8 Vertical Amplifier

## $5 \mathrm{mV} / \mathrm{div}, 7 \mathrm{MHz}$

 1217A/BBandwidth: de-coupled, dc to 7 MHz ; ac-coupled, 2 Hz to 7 MHz.
Risetime: so ns max.
Deflection factor
Ranges: from $5 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$ ( 12 positions) in 1,2 . $S$ sequence.
Attenuator aceuracy: $\pm 3 \%$ with vernier in calibrated posirion.
Vernier: continuously variable between all ranges; extends maximum deflection factor to at least $50 \mathrm{~V} /$ div.
Input RC: 1 megohm shunted by approx 35 pF ; constant on all ranges.
Input: single-ended on all ranges.
Input coupling: selectable AC, DC, or OFF.
Modes of operation: Channel A alone; Channel B alone; Chasnels A and B (either Chop or Alternate triggered by Channel A); Channels A + (eriggered by Channels $A+B$ ). Chop frequency is approx 100 kHz .
Differential input: Channel A may be inverted for differential operation. Bandwidith and defection factors remain unchagged.
Common mode
Frequency: dc to 100 kHz .
Rejection ratio: 30 dB on 5,10 , and $20 \mathrm{mV} /$ div ranges and 20 dB on all other ranges.
Maximum signal: 30 div.
Internal trigger source: on Channel $A$ signal for $A$, Chop, and Alternate displays; on Channel B signal for B display; on Channels $A+B$ signal for Channel $A+B$ display.


Typical Horizontal Time Base

Time Base

## All models

Sweep
Ranges: from $1 \mu \mathrm{~s} / \mathrm{div}$ to $\mathrm{S} \mathrm{s} /$ div ( 21 positions) in $1,2, \mathrm{~S}$ sequence. $\pm 3 \%$ accuracy with vermier in calibrated position.
Vernler: continuously variable between ranges; extends slowest sweep to at least $12.5 \mathrm{~s} /$ dir.
Magnifier: dizect reading $x 10$ magnifies expands fastest sweep to $100 \mathrm{~ns} / \mathrm{div}$ with $\pm 5 \%$ accuracy.
Automatic triggering
Baseline is displayed in absence of an inpur signal.
Internal: 50 Hz to above 500 kHz ( 2 MHz in 1217A/B) on most signals causing 0.5 division or more vertical detection, increasing to 1 div at 7 MHz in Models 1217A/B. Triggering on line frequency also selectable.
External: so Hz to above 1 MHz ( 2 MHz in 1217A/B) on most signals at least 0.2 V P-P, increasing to 0.5 V p-p at 7 MHz io Models $1217 \mathrm{~A} / \mathrm{B}$.
Trigger slope: positive or negative slope on internal, external, or line trigger signals.
Amplitude selaction triggering
Internal: dc to above 500 kHz on signals causing 0.9 division or more vertical deflection.
External: de to 1 MHz on signals at least 0.2 V p.p. Input impedance is 1 megohm shunted by approx 20 pF .
Yrigger level and slope: internal, at any point on vertical wareforn displayed; or continuously variable from +100 V to -100 V on either slope of the external triget signal.
Trigger coupling: dc or ac for external, line, or internal triggering. Lower ac cutoff is 2 Hz for external; 5 Hz for internal.
Internal low frequency trlggering (1217A/B only): internal trigger signal is attenuated at approx 6 dB per octave for frequencies above $s \mathrm{MHz}$.
Single sweep: selectable by front panel switch. Reset switch with armed indicator light.
Free run: selectable by front panel switch.
Maximum input: $\pm 350 \mathrm{~V}$ ( $\mathrm{dc}+$ peak ac).

## Horizontal amplifier

Bandwidth: dc-coupled, dc to 300 kHz ; ac-coupled, $2 \mathrm{~Hz}^{\text {to }}$ 300 kHz .
Deflection factor
Ranges: $0.1 \mathrm{~V} / \mathrm{div}, 0.2 \mathrm{~V} / \mathrm{div}, 0.5 \mathrm{~V} / \mathrm{div}$, and $1 \mathrm{~V} / \mathrm{div}$.
Vernier: continuously variable between ranges; extends maximum deflection factor to at least $2.5 \mathrm{~V} /$ div.
Maximum input $\pm 350 \mathrm{~V}$ ( $\mathrm{dc}+$ peak ac ).
Input RC: 1 megohm shunted by approx 20 pF .
Input: single-ended on all ranges.

## General

## Calibrator

Type: line frequency square wave.
Output: $1 \mathrm{~V} \pm 1.5 \%$.

## Dimensions

Cabinat models (designed by A suffix): 8.5/16" wide $x$ $119 / 4^{\prime \prime}$ high $\times 8.11 / 16^{\prime \prime}$ deep ( $211,2 \times 298,5 \times 474,7 \mathrm{~mm}$ ).
Rack models (designated by B suffix) : 19 " wide $x 51 / 4^{\prime \prime}$ high $x$ $171 / \mathrm{B}^{\prime \prime}$ deep over-2ll ( $483 \times 132,5 \times 435 \mathrm{~mm}$ ), $153 / \mathrm{g}^{\prime \prime}(390,5$ mm ) behind front panel.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to 440 Hz , approximate wats $1200 \mathrm{~A} / \mathrm{B}, 50 \mathrm{~W} ; 1201 \mathrm{~A} / \mathrm{B}, 60 \mathrm{~W} ; 1202 \mathrm{~A} / \mathrm{B}, 40 \mathrm{~W} ; 1205 \mathrm{~A} / \mathrm{B}$, $45 \mathrm{~W} ; 1206 \mathrm{~A} / \mathrm{B}, 40 \mathrm{~W} ; 1217 \mathrm{~A} / \mathrm{B}, 75 \mathrm{~W}$.

## Welght <br> 1200A: net, $25 \mathrm{lbs}(11,4 \mathrm{~kg}$ ) ; shipping, $341 / 2 \mathrm{lbs}(15,7 \mathrm{~kg}$ ). <br> $1200 \mathrm{~B}:$ net, $221 / 2 \mathrm{lbs}(10,2 \mathrm{~kg})$; shipping, $35 \mathrm{lbs}(15,9 \mathrm{~kg})$. <br> 1201A: net, $30 \mathrm{lbs}(13,6 \mathrm{~kg}$ ); shipping, $301 / 2 \mathrm{lb}(17,9 \mathrm{~kg}$ ). <br> 1201B: net, $27 / 1 / 2 \mathrm{lbs}(12,5 \mathrm{~kg})$; shipping, $40 \mathrm{lbs}(18,2 \mathrm{~kg})$. <br> 1202A: ner, $231 / 2 \mathrm{lbs}(10,6 \mathrm{~kg}$ ); shipping, 33 lbs ( 15 kg ). <br> 1202B: net, 21 lbs ( $9,5 \mathrm{~kg}$ ); shipping, $331 / 2 \mathrm{lbs}(15,2 \mathrm{~kg}$ ) <br> 1205A: net, $25 \mathrm{lbs}(11,4 \mathrm{~kg})$; shipping, $341 / 2 \mathrm{lbs}(15,7 \mathrm{~kg}$ ) <br> 1205B: net, $221 / 2 \mathrm{lbs}(10,2 \mathrm{~kg}$ ); shipping, $35 \mathrm{lbs}(15,9 \mathrm{~kg}$ ). <br> 1206A: aet, $231 / 2 \mathrm{lbs}(10,6 \mathrm{~kg}$ ) ; shipping, 33 lbs ( 15 kg ). <br> 1206B: net, 21 Jbs ( $9,5 \mathrm{~kg}$ ); shipping, $331 / 2 \mathrm{lbs}$ ( $15,2 \mathrm{~kg}$ ). <br> 1217A: net, $241 / 2 \mathrm{lbs}(11,1 \mathrm{~kg})$; shipping, $341 / 2 \mathrm{lbs}(15,7 \mathrm{~kg})$. <br> 1217B: net, 23 lbs ( $10,4 \mathrm{~kg}$ ); shipping. $35 \mathrm{lbs}(15,9 \mathrm{~kg}$ ). <br> Price <br> Model 1200A or 1200 B Dual Channel, $100 \mu \mathrm{~V}$ Oscilloscope <br> Model 1201A or 1201B Dual Channel, $100 \mu \mathrm{~V}$ Storage Oscilloscope <br> Model 1202A or 1202B Single Channel, $100 \mu \mathrm{~V}$ Oscilloscope

Model 1205A or 1205B Dual Channel, 5 mV Oscilloscope $\$ 950$
Model 1206A or 1206B Single Channel, 5 mV Oscilloscope $\$ 769$
Model 1217A or 1217B Dual Channel, $5 \mathrm{mV}, 7 \mathrm{MHz}$ Oscilloscope
Optlons (order by Option number)
002 (standard CRT only) : P2 phosphor in lieu of P31, no charge.
006 (rack models only): rear input terminals wired in paralle! with front panel vertical and horizontal input teminals. Vertical input shunt capacitance is increased to approx 100 pF on 500 kHz models and to approx 85 pF on 7 MHz models. Horizontal input shunt capacitance is increased to approx 75 pF on 500 kHz and 7 MHz models.
Price: add $\$ 35$ for single channel models and $\$ 55$ for dual channel models.
007 (standard CRT only) : P7 phosphor in lieu of P31, no charge.
009 (variable persistence/storage models only): remote erase through rear panel banana jack, shorting to ground provides erasure, add $\$ 25$.
011 (standard CRT only): P11 phosphor in lieu of P31, no chatge.
Beaminder does nor intensify display on Option 011 Oscillo. scopes.
015 ( 500 kHz models only): vertical channel signal outputs through rear panel connecrors.
Vertical output signal specifications
Output: $0.3 \mathrm{~V} / \mathrm{div} \pm 10 \%, 0 \mathrm{~V}$ offset unaffected by position control setring.
Bandwidth: ds to 500 kHz .
Dynamic range: $\pm 3.5 \mathrm{~V}$.
Maximum slewing rate: $12 \mathrm{~V} / \mu \mathrm{s}$ with 300 pF load.
Minimum load RC: 10 k ohms shunted by approx 300 pF . Source impedance: approx 300 ohms.
Price: single channel models, add $\$ 70$; dual channel models, add $\$ 95$.



## Introduction

Hewlett-Packard 1700 Series oscilloscopes are compact, light weight, portable instruments designed for field service applications with lahoratory quality. All models are dual channel with a selection of 35,75 , or is MHz bandaridths which allows you to march a scope to a parricular application. You can select models having main and delayed time bases for maximum timing flexibility. For applications at 35 or 75 MHz , scopes are available with only the main time base. The 1700 series also includes three models with highly burn resistance storage and variable persistence capability and one of these models has a fast storage writing speed of $100 \mathrm{~cm} / \mu \mathrm{s}$.

## Operator convenience

All 1700 Series oscilloscopes have large CRT's with sharp traces for easy viewing and high resolution for accurate measurements. Standard CRT displays are fully calibrated $6 \times 10$ cm ; variable persistence/storage displays are slightly smaller.

Front panel controls are grouped according to function for
fast familiarization and pushbuttons are used to further simplify operation. By centering all front panel controls and teleasing all pushbuttons, you can easily locate a trace for fast setup in viewing a waveform. Delayed sweep models have the delayed sweep controls in a gray front panel strip for quick identification.

Main and delayed sweep speeds are selected with separate controls which allows you to change the sweep on one time base without having to reset the other. An interlock is provided to prevent the delayed time base from sweeping slower than the main time base.
Another convenience feature, on conventional CRT models. is scaic illumination which aids in photographic work. A convenient beam finder, introduced by Hewlett-Packard, allows quick location of the trace by restricting the beam to the display area. Indicator lights are provided to show when the vertical deflection and sweep controls are not in the calibrated (detent) position. Additional conveniences are front panel ad-
justments for vertical deffection calibration, dc balance, and a one volt square wave calibration signal for probe compensa. tion.

## Performance

The 1700 Series--though light-weight, rugged, and port-able-gives you the performance ordinarily expected of laboratory oscilloscopes. Vertical defiection is specified over the full six divisions of vertical display, as indicated by the $10 \%$ and $90 \%$ CRT graticule markings. Similarly, all deflecrion factors are specified over the entire bandwidth. In addition, display mode and trigger source selection assures you of the right trigger signal for your application.

Emphasis on performance is also provided in the 1700 Series time base. Sweep linearity is specified over the full 10 divisions of horizontal display for maximum usefulness and accuracy in timing measurements. A trigger holdoff control, also introduced by Hewlett-Packard, is provided to eliminate double triggering on complex digital waveforms and maintain a fullscreen, calibrated sweep. In delayed sweep models, you can make differential timing measurements to approximately $1 \%$ accuracy by using a common reference graticule.

Calibrated mixed sweep is standard on all 1700 Series delayed sweep models. The calibration point is at the beginning of the intensified portion of the main sweep and corresponds to the delay dial setring. Mixed sweep is useful for detailed examination of individual pulses in a pulse train by allowing you to "peel" them off one at a time. It is also useful when you want to monitor events prior to the occurrence of the pulse under close examination.


## Reliability

1700 Series oscilloscopes have been designed for low power consumption which increases reliability since most active components operate at only 10 to $20 \%$ of their power rating. An example of the low porver is that the vertical output transistors do not require heat sinks. The low power requirement also means that the 1700 Series oscilloscopes do not require venti. lating holes or fans for cooling which reduces the amount of dust and dirt that can accumulate inside the scope. The lack of ventilation holes also reduces de drift since the scope is less susceptible to short term temperature changes caused by drafts.

Reliability in the trigger circuits is enhanced by emitter-coupled logic circuirs instead of conventional tunnel diodes.

## Serviceability

Ease of service is assured with plug.in circuit boards and the low number of internal adjustments. For example, if ail adjustments were misaligned, a technician (with a working knowledge of the scope) could completely recalibrate a 1700 B in as little as one hour. This means real dollar savings over the lifetime of the oscilloscope.


Plug-In printed clrcult boards reduce service time. When added to low calibration time this means significant dolar savings over the lietime of the lnstrument

## Battery operation

Seven portable oscilloscopes (Models 1700B, 1701B, 1702A, 1703A. 1705A, 1706B, and 1707B) are capable of battery operation. The optional, internal battery is easily installed with just two screw's and does nor require any power supply changes. Battery operation allows operation in remote locations without regard for line poxer connections and are also well suited for many maintenance and check out applications, especially where line isolation is required. Batrery operation can often save time on a service call, since you can move the scope around without having to turn off power, move and find a new outlet, turn-on, restabilize, and recalibrate the display.


The optional battery is easily installed and aperates the scope up to 5 hours ( $17008 / 17018$ ).

## Ruggedized portables

Hewlett-Packard model 1700B and 1707B have been de signed to meet the environmental requirements of the AN/ USM-339 and AN/USM. 338 described in MIL-0.83226 (USAF) and MIL. 0.83225 (USAF). These ruggedized oscillo. scopes, designated 1700 B Option 300 and 1707 B Option 300 , not only maintain the fully calibrated fearures of the $1700 \mathrm{~B} /$ 1707 B but go far beyond the environmental capabilities of other portable instruments. For example, they will pass the drip-proof requirements of MIL-STD. 108 with the front panel cover removed.

# PORTABLE, 35 AND 75 MHz <br> Dual channel, $10 \mathrm{mV} /$ div <br> Models 17008, 17018, 1706B, 1707B 



General information about Hewlett-Packard's portable oscilloscopes begins on page 156.

## Specifications, 1700B, 1701B, 1706B, 1707B Vertical amplifiers

Modes of operation: channel A ; channel B ; channels A and B displayed alternately on successive sweeps (ALT); channels A and B displayed by switching between channels at approx 400 kHz rate with blanking during switching (Chop); channel $A+$ channel B (algebraic addition).
Each channel (2)
Bandwidth: (Direct or with Model 10006B probe, 3 dB down from $50 \mathrm{kHz}, 6$ div reference signal from a cerminated 50 ohm source.) dc-coupled, dc 1035 MHz in 1700B, 1701B; de to 75 MHz in $1706 \mathrm{~B}, 1707 \mathrm{~B}$; ac-coupled, lower limit is approx 10 Hz .
Risetime: $<10$ ns in $1700 \mathrm{~B}, 1701 \mathrm{~B} ;<4.7 \mathrm{~ns}$ in $1706 \mathrm{~B}, 1707 \mathrm{~B}$. Direcr of with Model 10006 B probe, $10 \%$ to $90 \%$ goints with 6 div input step from a terminated 50 ohm source.

## Deflection factor

Ranges: from $10 \mathrm{mV} / \mathrm{div}$ to $\mathrm{S} \mathrm{V} / \mathrm{div}$ (9 ranges) in $1,2,5 \mathrm{se}$ quence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Vernier: continuously variable berween all ranges, extends maximum deflection factor to at least $12.5 \mathrm{~V} /$ div.
Polarlty: NORM of INV, selectable on channel B.
Signal delay: input signals are delayed sufficiently to view leading edge of input signals without advanced external trigger. Input RC

17008, 1701B: 1 megohm $\pm 1 \%$, shunted by approx 27 pF . 17068, 1707B: 1 megohm $\pm 1 \%$, shunted by approx 24 pF .
Input coupling: AC, DC, or Ground selectable. Ground position disconnects signal input and grounds amplifier input.
Maximum Input
AC-coupled: $\pm 600 \mathrm{~V}(\mathrm{dc}+$ peak ac$) ;$ rms ac $<350 \mathrm{~V}, 5 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{mV} /$ div; $<150 \mathrm{~V}$ at $10 \mathrm{mV} /$ div ( 10 kHz or less).
DC-coupled: $<350 \mathrm{~V}$ (rms) $\mathrm{s} \mathrm{V} / \mathrm{div}$ to $20 \mathrm{mV} / \mathrm{div}$; $<150 \mathrm{~V}$ at $10 \mathrm{mV} / \mathrm{div}$ ( 10 kHz or less).

## A + B oderation

Amplifier: bandwidth and defection factors are unchanged; channel $B$ may be inverted for A-B operation.
Common mode ( $\mathrm{A}-\mathrm{B}$ ): Frequency. de to 1 M Hz ; rejection ratio, at least 40 dB on $10 \mathrm{mV} / \mathrm{div}$, at lease 20 dB on all other ranges with verniers set for optimum rejection. Common mode signal amplitude equivalent to 30 div .

## Trigger source

(applies for all five modes of operation)
Norm: on displayed sigmal.
A only; on signal from Channel A.

## Time base

Sweep
Ranges: from $0.1 \mu \mathrm{~s} / \mathrm{div}$ to $2 \mathrm{~s} / \mathrm{div}$ ( 23 ranges) in $1,2,5$ se quence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Vernier: continuously variable between all ranges, extends slow. est sweep to at least $5 \mathrm{~s} /$ div. Vemier uncalibrated light indicates when vernier is not in Cal position.
Magnifler: expands all sweeps by a factor of 10 and extends fastest sweep to $10 \mathrm{~ns} / \mathrm{div}$. Accuracy $\pm 5 \%$ (including $3 \%$ accuracy of time base.)
Sweep mode
Normal: sweep is triggered by internal or external signal.
Automatic: bright baseline displayed in absence of input signal. Triggering is same as normal above 40 Hz .
Single: in Normal mode, sweep occurs once with same triggering as normal: reset pushburton arms sweep and lights indicator: in Auto mode, sweep occurs once each time Reset pushbution is pressed.

## Triggering

Internal
1700B, 17018: de to 35 MHz on signals causing 0.5 div or more vertieal deflection increasing to 1.5 div at 75 MHz in all display modes except chop: dc to 400 kHz in chop mode. Triggering on line frequency is also selectable.
1706B and 1707B: dc to 35 MHz on signals causing 0.5 div or more vertical deffection increasing to 1 div at 75 MHz in
all display modes except chop; dc to 400 kHz in chop mode. Triggering on line frequency is also selectable,
External: de to 35 MHz on signals $50 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$ or more, increas. ing to 100 mV p-p at 75 MHz .
External input RC: approx 1 megohm shunted by approx 27 pF .
Level and slope: internal, at any point on the vertical wave. form displayed; external, continuously variable from +1.2 V to -1.2 V on either slope of the trigger signal. Maximum inpor, $\pm 100$ V. Jn Models 1700 B and $1706 \mathrm{~B},-10$ extends ex. ternal trigger input range to +12 V to -12 V .
Coupling: AC, DC, LE REJ, or HF REJ.
$A C$ : atrenuates signals below approx 20 Hz .
LF.REJ: atrenuates signals below approx 15 kHz .
HF-REJ: attenuates signals above approx 30 kHz .
Trlgger holdoft: time between sweeps continuously variable.

## Delayed time base (Models 17018 and 1707B)

Trace Intensification: intensifies that pact of main time base to be expanded to full screen in delayed time base mode. Rotating time base swith from OFF position activates intensifed mode.

## Sweep

Ranges: $0.1 \mu \mathrm{~s} /$ div to $0.2 \mathrm{~s} / \mathrm{div}$ ( 20 ranges) in 1.2 .5 sequence. $\pm 3 \%$ with vernier in calibrated position.
Vernler: continuously variable between all ranges, extends slowest sweep to $0.5 \mathrm{~s} / \mathrm{div}$.
Magnifier: expands all sweeps by a factor of 10 and extends fastest sweep to $10 \mathrm{~ns} /$ div. Accuracy is $\pm 5 \%$ (including $3 \%$ accuracy of time base).

## Swbep Mode

Trigger: delayed sreep is armed at end of delay period.
Auto: delayed sweep is automatically triggered at end of delay period.
Triggering
Internal: same as arain time base.
External: same as main time base. Input RC is approx 1 megohm shunted by approx 27 pF .
Level and slope: internal, at any point on the verrical wave. form displayed; external, continuously variable from +1.2 V to -1.2 V on ejther slope of the trigger signal.
Coupling: seletrable, $A C$ or DC. AC attenuares signals below approx 20 Hz .
Delay (Before start of delayed sweep.)
TIme: continuously variable from $0.1 \mu 5102 \mathrm{~s}$.
Time Jitter: $<0.005 \%$ ( 1 part in 20,000 ) of maximum delay in each sweep.
Callbrated delay accuracy: $\pm 1 \%$; linearity, $\pm 0.2 \%$.
Mixed Swesp (Models 17018 and 1707B): combines main and delayed sweeps into one display. Sweep is started by the main time base and is completed by the faster delayed time base.

## Cathode.ray tube and controls

Type: post-accelerator, $\approx 22 \mathrm{kV}$ accelerating potential, aluminized P31 phosphor.
Gratlcule: $6 \times 10$ div internal graticule; 0.2 subdivisions on major horizontal and vertical major axes, 1 div $=1 \mathrm{~cm}$. Front pane! adjustments for trace aligrment and astigmatism.
Beam finder: returns trace to CRT screen regardless of setting of horizontal, vertical, or intensity controls.
Intensity modulation: $>+4 \mathrm{~V}$, dc to 1 MHz blanks trace of any intensity. Input R, 1000 ohms $\pm 10 \%$. Max inpur. $\pm 10 \mathrm{~V}$ (dc + peak ac).

## General

Calibrator: $1 \mathrm{kHz}, \pm 10 \%$ : 1 V p-p, $\pm 1 \%$.
Power requirements
AC line: 115 or $230 \mathrm{~V} \pm 20 \%$, 48 to $440 \mathrm{~Hz} ; 1700 \mathrm{~B}, 1701 \mathrm{~B}$, 30 VA max: 1706B, $1707 \mathrm{~B}, 50$ VA max.
DC life: 11.5 to 36 V ; 1700B, 1701B, 18 watis max; 1706B, 1707B, 25 watts max.

## Battery (optional)

Operating time: up to 6 hours in 1700 B or 17018 ; up to 4.5 hours in 1706 B or 1707 B .
Recharge time: 14 hours maximum, with power switch off, if not operated after powts indicator flashes.
Low battery indlcator: power light fashes to indicate that batteries are discharged and further operation may damage battery.
Recharging: batteries are recharging whenever power mode switch is set to AC with power applied. With poxer switch off, ful! charge is applied. With power switch on, trickle charge is applied.
Weight
Whthout panel cover: net. 24 lb ( 11 kg ); shipping, 35 lb ( 15.9 kg ).
With panel cover and accessories: net, $27 \mathrm{lb}(12,3 \mathrm{~kg})$ : ship. ping, $38 \mathrm{lb}(17,2 \mathrm{~kg})$.
With panel covers, accessories, and battery packi net, 39 $\mathrm{lb}(16 \mathrm{~kg})$; shipping, $46 \mathrm{ib}(20,9 \mathrm{~kg})$.
Dimensions: 12.13/10" wide, $73 / 4^{\prime \prime}$ high, 207/8" long with handle. $153 / \mathrm{s}^{\prime \prime}$ withour handle ( $325,4 \times 198 \times 530,400 \mathrm{~mm}$ ).
Operating environment: temparature $0^{\circ} \mathrm{C}$ in $+55^{\circ} \mathrm{C}$; humidity. to $95 \%$ relative humidity to $40^{\circ} \mathrm{C}$, altitude, to $15,000 \mathrm{ft}$; vibra. tion, vibrated in three planes for 15 min , each with 0.010 inch excursion, 10 to 55 Hz .
Accessorles furnished: one Model 10115A blue light filter: one Model 10101B front panet storage cover: two Model 10006B, 10:1 divider probes, $6 \mathrm{ft}(1,8 \mathrm{~m})$ long; one $7.5 \mathrm{ft}(2.3 \mathrm{~m})$ power cord with right angle plug (HP P/N 8120-1521); and one Operating and Service manual.
Price
Model 1700 B 35 MHz Oscilloscope $\$ 1475$
Model 1701B 35 MHz Delayed Sweep Oscilloscope $\$ 1550$
Model 1706 B 75 MHz Oscilloscope $\$ 1500$
Model 1707B $75 \mathrm{MHz}_{\mathrm{z}}$ Delayed Sweep Oscilloscope $\$ 1575$
Options
012: Model 10103B battery pack installed add $\$ 215$
020 ( 1707 B ) : adds external horizontal input and channel A output
add $\$ 50$

## 1707B Optlon 020 speciflcations

## External horizontal input

Bandwidth: de to 1 MHz when driven directly from a terminated so ohm sourre.
Coupling: dc
Deflection factor (with beam positloned at left edge of CRT): XI. $1 \mathrm{~V} / \mathrm{div}: \times 10,0.1 \mathrm{~V} / \mathrm{div}$.
Vernler: 10:1 vernier extends defection factor to at least 10 V/div ( $\mathrm{X}_{1}$ ) or $1 \mathrm{~V} / \mathrm{div}$ ( $\mathrm{X}_{10}$ ).
Dynamle range: beam may be positioned at left edge of CRT with 0 V to -5 V input.
Maximum input: $\pm 100 \mathrm{~V}$.
Input RC: 1 megohm shunted by approx 10 pF .
Channel A output
Amplitude: one division of displayed signal in channel A produces approx 100 mV output.
Cascaded deflection factor: $1 \mathrm{mV} /$ div with both vertical chan. nels set to $10 \mathrm{mV} /$ div.
Cascaded bandwldth: de to 3 MHz . Use supplied HP Model 10121A 8 -inch ( 20 cm ) BNC cable.
Couplíng: dc.
Vertical output dc level: approx 0 V .
Vertical output resistance: approx 0 V .

## OSCILLOSCOPES

RUGGEDIZED PORTABLE
35 and 50 MHz , dual channel Models 1700B Opt 300, 1707B Opt 300


General information about Hewlett-Packard's portable oscilloscopes begins on page 156 .

## Specifications

Modes of operation: channel $A$; channel $B$; channels $A$ and $B$ displayed alternately on successive sweeps (ALT): channels A and $B$ displayed by swirching between channels at appraximately 100 kHz rate with blanking during switching (CHOP): channel $\mathrm{A}+$ channel B (algebraic addition).

Each vertical amplifier charnel (2)
Bandwldth: direct or with Model 10006 B probe, 3 dB down from $50 \times 20 \mathrm{kHz}, 6$ div reference signal from a terminated 50 ohm source.

DC-coupled: $1700 \mathrm{~B}, \mathrm{~d} c$ to 35 MHz ; 1707 B , de to 50 MHz . AC-coupled: 1700 B , approx 10 Hz to 35 MHz ; 1707 B , approx 2 Hz to 50 MHz .
Risetime: $1700 \mathrm{~B},<10 \mathrm{~ns}: 1707 \mathrm{~B},<7 \mathrm{~ns}$. Direct or with Model 10006B probe, $10 \%$ to $90 \%$ points of 6 div input step from a terminated 50 ohm source.

## Deflection factor

Ranges: $1700 \mathrm{~B}, 10 \mathrm{mV} /$ div to $20 \mathrm{~V} /$ div ( 11 ranges): 1707 B , $5 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$ ( 12 ranges). $1,2,5$ sequence. $\pm 3 \%$ accuracy with vernier in calibrated setting.
Vernter continuously variable between all ranges, extends maximum deflection factor to at least $50 \mathrm{~V} /$ div.
Signal delay: input signals are delayed suffiencly to view leading edge of input signals withour adranced external trigger.
Polarlty: NORM or INV, selectable on channel B.
Inourt: 1 megohm $\pm 2 \%$. shunted by approx $35 \mathrm{pF}(1700 \mathrm{~B}), 30 \mathrm{pF}$ (1707B)
input coupling: ac, de, or ground selectable. Ground position dis. conneets input and grounds amplifer input.
Maximum Input:
AC-coupled: $\pm 600 \mathrm{~V}$ max (dc + peak ac): $<350 \mathrm{~V}$ rms, $20 \mathrm{~V} /$
div to $20 \mathrm{mV} / \mathrm{div} ;<150 \mathrm{~V} \mathrm{rms}$, at $10 \mathrm{mV} / \mathrm{div}(1700 \mathrm{~B}) 3$ mV/div ( 1707 B ) 10 kHz or less.
DC-coupled: $<350 \mathrm{~V}$ mins $20 \mathrm{~V} /$ div to $20 \mathrm{mV} / \mathrm{div} ;<150 \mathrm{~V}$ rms ar $10 \mathrm{crV} / \mathrm{div}(1700 \mathrm{~B}) 10 \mathrm{kHz}$ or less.

## $A+B$ operation

Ampllfier: bandwidth and defiection factors are unchanged; channel $B$ may be invered for A-B operation.
Common mode (A-B)
Frequency: de to 1 MHz ( 1700 B ) ; do to 3 MHz (1707B)
Rejection ratio: ar least 26 dB on all ranges with vemiers set for optimum rejection.

Channel A output (1707B)
Amplitude: one div of displayed signal in channel A provides approx 100 mV output.
Cascaded deflection factor: $0.5 \mathrm{mV} /$ div with both vertical channels set to $5 \mathrm{mV} / \mathrm{div}$.
Cascaded bandwldth: dc to 5 MHz with $8 \cdot \mathrm{in}$. BNC cable, dccoupled.
Output de level: approx 0 V .
Output resistance: approx 1 megohm.

## Triggering

Source (applies for all five modes of operation).
Composite trig: on displayed signal.
A trig: on signal from channel A.
Time base
Sweep
Ranges: from $0.1 \mu \mathrm{~s} / \mathrm{div}$ to $2 \mathrm{~s} / \mathrm{div}$ ( 23 ranges) in 1,2 . 5 , sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Vernler: continuously variable between all ranges, extends slowest sweep to at least $5 \mathrm{~s} /$ div. Vernier uncalibrated light indicates when vernier is not in CAL position.
Magnifier: expands all sweeps by a factor of 10 and extends fastest sweep to $10 \mathrm{~ns} /$ div. Accuracy, $\pm 5 \%$. Magnifier light indicates the X10 mode.

Maximum input: ac-coupled: $\pm 600 \mathrm{~V}$ max ( $\mathrm{dc}+\mathrm{pk} \mathrm{ac}$ ).
AC. or dc-coupled: $<350 \mathrm{~V}$ tms, $20 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{mV} / \mathrm{div}$ ranges, $<150 \mathrm{~V}$ rms at $\leq 10 \mathrm{kHz}$ on more sensitive ranges.
Sweep mode
Normal: sweep is eriggered by an internal or external signal.
Automatic: bright base line displayed in absence of input signal. Triggering is same as normal above 40 Hz .
Single: in normal mode, sweep occurs once with same triggering as normal; reset pushbutton arms sweep and lights indicaror; in Auto mode, sweep occurs once each time reset pushbutton is pressed.
Trlggering
Internal: ( 1700 B ) de to 35 MHz on signals causing 0.5 div or more vertical deflection increasing to 1.5 div deflection at 75 MHz : (1707B) de to 50 MHz an signals causing 0.5 div or more vertical deflection in all display modes except chop; de to 100 kHz in chop mode. Triggering on line frequency is also selectable.
External: (1700B) de to 35 MHz on signals of 50 mV p.p or more, increasing to $100 \mathrm{mV} \mathrm{p-p}$ at 75 MHz : (1707B) dc to 35 MHz on signals of 100 mV P.p or more increasing to 200 mV p.p at 50 MHz .
External trigger input RC: 1 megohm shunted by approx 27 pF . Level and slope
Internal: at any point on the vertical waveform displaped.
External: continuously variable from $+3 \mathrm{~V} 10-3 \mathrm{~V}(+30 \mathrm{~V}$ to -30 V in $\div 10$ ) on either slope of the trigger signal. Maximem input $=100 \mathrm{~V}$.
Coupling: AC, DC, LFAC, or HFAC.
AC: attenuates signals below approx $20 \mathrm{~Hz}(1700 \mathrm{~B})$. 50 Hz (1707B)
LFAC: attenuates signals above approx 30 kHz .
HFAC: attenuates signals below approx is kHz (1700B). 5 kHz (1707B).
Trigger holdoff: time between sweeps continuously variable.

## Delayed time base (Model 1707B)

Trace intensiflcatlon: intensifies that part of main time base to be expanded to full screen in delayed time base mode. Rotating time base switch from OFF position activates intensified mode.
Sweep
Ranges: $0.1 \mu \mathrm{~s} /$ div to $0.2 \mathrm{~s} /$ div ( 20 ranges) in $1.2,5$ sequence. $\pm 3 \%$ with vernier in calibrated position.
Vernier: continuously variable between all ranges, extends slowest sweep to $0.5 \mathrm{~s} / \mathrm{div}$.
Magnifier: expands all sweeps by a factor of 10 and extends fastest sweep to $10 \mathrm{~ns} /$ div. Accuracy is $+5 \%$ (including $3 \%$ accuracy of time base).
Sweep mods
Trigger: delayed sweep is armed at end of delay period.
Auto: deiayed sweep is automatically triggered at the end of delay period,
Triggering: same as internal main time base. Delay (before start of delayed sweep). TIme: continuously variable from $0.1 \mu \mathrm{~s}$ to 20 s .
Time litter: $0.005 \%$ ( 1 part in 20,000 ) of max delay in each sweep.
Calibrated delay accuracy: $\pm 1 \%$; linearity, $\pm 0.2 \%$.

## External horlzontal input

Bandwidth: de to 2 MHz .
Coupling: dc.
Deflection factor (beam positioned at left edge of $C R T$ ) : X1: 1 V/div, X10, $0.1 \mathrm{~V} / \mathrm{div}$.
Vernler! $10: 1$ vernier provides continuous adjustment between ranges.
Maximum Input: $\pm 100 \mathrm{~V}$.
Input RC: 1 megohm $\pm 2 \%$ shunted by approximately 30 pF .

## Cathode-ray tube controls

Type: post-accelerator, $\approx 15 \mathrm{kV}$ accelerating potential; aluminized P31 phosphos.
Gratleule: 6×10 div internal graticule; 0.2 subdivisions on major horizontal and vertical axes. I div $=1 \mathrm{~cm}$. Front panel adjust. ment aligns trace with graticule.
Beam finder: returns trace to CRT screen regardless of setting of horizontal, vertical, or intensity controls.

Z-axis Input (1707B): allows intensiry modulation. $>5 \mathrm{~V}, \mathrm{~d} c$ to 15 MHz blanks trace of any intensity. Input $\mathrm{R},>5000$ ohms. Maximum inpue, $\pm 200 \mathrm{~V}$ (dc + peak ac).

## General

Collbrator: $1 \mathrm{kHz}, \pm 10 \%$ square wave; $1 \mathrm{~V} \mathrm{p}-\mathrm{p}, \pm 1 \%$.
1707B outputs: two front panel outputs for MAIN and DELAYED GATES. Each output provides a pulse of at least 5 V with a duration $\geq$ than sweep time.
Power requirements
AC Jine: 115 or $230 \mathrm{~V} \pm 20 \%, 48$ to $440 \mathrm{~Hz}, 30 \mathrm{VA}$ max in 1700B and 50 VA rax in 1707B.
DC Ilne: 11.5 to $36 \mathrm{~V}, 18$ watrs max in 1900 B and 40 watts max in 1707 B .
Welght
Without panel cover: net, $27 \mathrm{Jb}(12,3 \mathrm{~kg}$ ).
With panel cover and accessories: net, $35 \mathrm{lb}(16 \mathrm{~kg}$ ).
With parel cover, accessories, and battery pack: ner, 42 lb ( $23,7 \mathrm{~kg}$ ).

## Accessory package

An accessory package, supplied with each oscilloscope contains the following: 2ea Model 100068 probes; 2ea probe ground leads ( $10004-61307$ ); 2ea hook tip assemblies (10004-67604); 2ea banana plugs (1251-0013); 2ea 6/32 probe adapter tips ( 5060 0449) : 2ea spring tip assembles ( 5060.0420 ): 2ea BNC rees, plug to 2 jacks. (UG-274C/U): zea BNC plug to VHF jack adapters (UG-255/N): zea BNC jack to VHF plug adapters (UG-273/N); tea BNC plug to dual binding post (UG-1035( )/U); 3ea fuses, one 0.3A slow.blow (2110-0044), one 0.6A slow blow, 2110.0016), and one $2 A$ (2110-0002).
Price
Model 1700B Option 300 \$2395
Model 1707B Option 300 \$2395
Model 1700B Option 300 or 17078 Option 300 with battery
Oprion Cl2 add $\$ 215$
Option: Option 301, 1700B Ope 300 or 1707 B Opt 30 withour Mil nomenclature, no charge.
Envlronmental specifications
1700 B Opr 300 and 1707 B Opt 300 meet all environmental requirements of the AN/USM. 339 described in MIL-0.83226 (USAF) and AN/USM-338 described in MIL-0.83225 (USAF).
Temperature-altitude: non-operating -62 to $+85^{\circ} \mathrm{C}, 50,000$ feet: operating -40 to $+55^{\circ} \mathrm{C} .20$ minutes at $71^{\circ} \mathrm{C}, 10,000$ feer.
Hursidity: non-operating $+28^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ at $95 \%$ relative humidity, len 24 hour cycles for toral of 240 hours.
Vibration: non-operating, 5 to $15 \mathrm{~Hz}, 0.06$ inches; is to 25 Hz , 0.04 inches; 25 to $55 \mathrm{~Hz}, 0.02$ inches.

Shock; cotal of 18 shocks, in 3 planes, of 15 g 's from an $11 \pm 1 \mathrm{~ms}$ sawrooth.
Salt fog: non-operating, per method s09, procedure 1 of MIL-STD. 810.

Explosive atmosphere: per method sil, procedure 1 of MIL-STD. 810.

Dust: non-operating per method 510 procedure 1 of MIL-STD.810.
Dripproof: per MIL.STD-108, except the front panel cover shall be removed.
Drop test and watertightness: per MIL.T-21200.
Electromagnetic interference: per M(IL-STD-462 performed by MTL.STD. 461 as follows:

Ratulrement	LImil modifiration
CE03	ralax 10 dB
CSO1. CS02	noris
CS06	none
RE02	relax 10 dB , upper frequency 1 GHz
RS02, RSO4	mone

## Battery pack parameters in Opt C12

Operating time: up to 6 hours (1700B); up to 4 hours (1707B).
Recharge time: 14 houcs maximum, with power swith off, if not operated after power lighr flashes.
Low battery indicator: power light flashes to indicate that batteries are discharged.
Recharging: batteries are recharging whenever power mode switch is set to AC with power applied. With power switch off, full charge is applied. With power switch on, trickle charge is applied.

## PORTABLE, 150 MHz <br> Dual channel, $5 \mathrm{mV} / \mathrm{div}$ <br> Model 1710A



- Selectable $50 \Omega$ or 1 MR inout
- Fully calibrated $6 \times 10 \mathrm{~cm}$ CRT
- Bright scan mode for extra brightness
- Enhanced hf trigger sensitivity


## Specifications

## Vertical amplifiers

Modes of operation: channel $A$; channel $B$; channels $A$ and $B$ displayed alternately on succersive sweeps (ALT) ; channels $A$ and $B$ displayed by switching berween channels ar approx I MHz rate with blanking during switching ( CHOP ); channel $\mathrm{A}+$ channel B (algebraic addicion).

## Each channel (2)

Bandwidth: ( 3 dB dorin from 6 div reference signal from a termi. neted so ohm source.) de-coupled, de to 150 MHz ac-coupled, 10 Hz io 150 MHz .
Rise time: <2.4 ns (measured from $10 \%$ to $90 \%$ points of 6 div input step from a terminited so ohm source).

## Deflection factor

Ranges: $5 \mathrm{mV} /$ div $105 \mathrm{~V} /$ dic ( 10 ralibrated positions) in 1,2 , 3 sequence, $\pm 2 \%$ with vernier in calibrated position.
Vernler: continuously' variable between all ranges, extends maximum defection factor to at least $12.5 \mathrm{~V} / \mathrm{div}$. Vernier uncalibrated light indicates when vernier is not in Cal position.
Polarity: NORM or INV, selectable on channel B.
Signal delay: input signals are delayed sufficienty to view leading edge of input signals without external trigger.
Input RC (selectable)
HIgh Z: 1 meg olm $\pm 1 \%$ shunted by approx 12 pF .

50 ohm: 90 ohms $\pm 1 \%$. VSWR, $<1: 3: 1$ on all ranges to 150 MHz .
Input coupling: selectable, $A C$ or $D C$ ( 1 megohm), $D C$ (so ohms), or Ground. Ground pasition disconneets input connector and grounds amplifier input.
Maximum input
 creasing to 300 V (dc + peak ac) on all other ranges. 50 ohm: 10 V rms (dc-coupled input).
$A+B$ operatlon: bandwidih and deflection factors are unchanged. channel B may be inverted for A. 8 operation.
Trigger source: selectable from channel $A$, channel $B$, or normal. Channel A: all display modes triggered by channel A signal.
Channel B: all display modes triggered by channel 8 signal.
Normal: all display modes trigeered by displayed signal except CHOP; CHOP wiggered by channel A.

## Vertical output

Amplitude: one div input deflection produces approx 25 mV output.
Cascaded deflection factor: $1 \mathrm{mV} /$ div with both vertical channels set to $9 \mathrm{mV} / \mathrm{div}$.
Cascaded bandwidth: de to 35 MHz when supplied BNC con. nectors are used to connect channel A vertical output to thannel $B$ input.

## OSCILLOSCOPES

Coupling: dc.
Vertical output de leveri: approx 0 V .
Vertical output resistance: approx 150 ohms.
Vertical output selection: TRIG SOURCE set to A TRIG seleces channel A output; TRIG SOURCE set to B TRIG selects channel B output.

## Main time base

Sweep modes: Main, Mixed, and Delayed. Sweep
Ranges: from $20 \mathrm{~ns} /$ div to $0.2 \mathrm{~s} /$ div ( 22 ranges) in $1,2,5$ se. quence. $\pm 3 \%$ accuracy orer full scale with vernier in cali. brated position.
Vernier: continuously variable berween all ranges, extends slowest sweep to at least $0.5 \mathrm{~s} /$ div. Vernier uncalibrated light indi. cates when vernier is not in Cal position.
Magnitier: expands all sweeps by a factor of 10 and extends fastest sweep to $2 \mathrm{~ns} /$ dir. Magnified sweep accuracy is $5 \%$ (includes $3 \%$ accuracy of the time base).

## Sweep trigger mode

Normal: sweep is triggered by an internal or external signal.
Automatic: bright baseline displayed in absence of input signal. Trigering is same as normal above 40 Hz .
Single: in Normal mode, sweep orcurs once with same triggering as normal, reset pushbutton arms sweep and lights indicator; in Auto mode, sweep occurs once each time Reset pushbumen is pressed.

## Triggering

Internal: de to 20 MHz on signals causing 0.3 divisions or more vertical defection, increasing to 1 division defection to 150 MHz
in all display modes. Triggering on line frequency is also select. able.
HF stability: increases high frequency drigger sensitivity ( $>20$ MHz ).
External: dc to 20 MHz on signals of 50 mV p-p or more, increasing to 200 mV p-p at 150 M Hz .
External Input RC: approx 1 megohm shunted by approx 20 pF .
Level and slope: internal. at any point on the vertical wave. form displayed: external, continunusly variable from +1.5 o -1.5 V on either slope of the trigger signal: +15 V to -15 V in $\div 10$ on main ime base only. Maximum input, $=100 \mathrm{~V}$.
Coupling: AC, DC. LF REJ, or HF REJ. AC: attenuates signals below approx 10 Hz . LF REJ: attenuates signals below approx 50 kHz HF REJ: attenuates signals above approx 50 kHz .
Trigger holdoff: time between sweeps continuously variable.

## Delayed time base

Sweep
Ranges: $20 \mathrm{~ns} /$ div to $0.1 \mathrm{~s} /$ div ( 31 ranges) in $1,2,5$ sequence. $\pm 3 \%$ accuracy over full scale with vernier in calibrated position. Selected independently of main time base setting (must sweep faster than main time base).
Vernier: continuously variable between all ranges, extends slow. est sweep ro at least $0.25 \mathrm{~s} /$ div. Vernier uncalibrated light indicates when vernier is not in Cal position.
Magnifier: same as main time base.

## Triggering

Internal: same as main time base.
Automatic: delayed sweep automatically starts a! end of delay period.
Trigger: delayed sweep is armed at end of delay period.
Level and slope: internal, at any point on the vertical wave. form displayed when in triggered mode; external, continuously variable from +1.3 V to -1.5 V on either slope of the trigger signal.
Coupling: selectable, $A C$ or $D C$. $A C$ attenuates signals below approx 10 Hz .

External: de to 20 MHz an signsls of 50 mV p.p or more, in. creasing to 200 mV p.pat 150 MHz .
External input RC: approx 1 megohm shunted by approx 20 pF .
Delay time: continuously variable from $0.02 \mu \mathrm{~s}$ to 2 s : accuracy $\pm 1 \%$; linearity $\pm 0.2 \%$.
Delay jitter: $0.005 \%$ ( 1 part in 20,000) of max. delay in each step.
Trace intensificatlon: intensifes that part of main time base to be expanded to full screen in delayed time base mode. Rotating delayed time base switch from OFF position activates intensified mode.
Mixed time base: dual time base in which main time base drives first portion of sweep and delayed time base completes the sweep up to 1000 times faster. Also operates in single sweep mode.

## External horizontal input

Bandwidth: de to 5 MHz when driven directly from a terminated so ohm source.
Coupling: dc.
Deflection factor (wlth beam positioned at lett edge of CRT): X $1.250 \mathrm{mV} / \mathrm{div}^{\prime}: \mathrm{X} 10,25 \mathrm{mV} / \mathrm{div}$.
Vernier: $3: 1$ vernier provides continuous adjustment between ranges when in X.Y operation.
Dynamic range: beam may be positioned to left edge of CRT with 0 in - 3 V input.
Maximum input: $\pm 15 \mathrm{~V}$.
Input RC: I megohm shunted by approx 20 pF .
$X \cdot Y$ operation: vercical ourpur from either channel may be applied to EXT HORIZ INPUT for calibrated X.Y operation. Deffection factor is read directly from input channel when in the X10 mode.

## Cathode-ray tube and controls

Type: post-accelerator, $\approx 22 \mathrm{kV}$ accelerating porential: aluminized P3l phosphor.
Graticule: $6 \times 10$ div internal graticule; 0.2 subdivisions on major horizontal and vertical major axes. 1 div $=1 \mathrm{~cm}$. Fronr panel aduustment aligns trace with graticule.
Beam finder: returns trace to CRT screen regardless of setting of horizontal, vertical, or intensity controls.
Intensity modulation: $>+6 \mathrm{~V}$ : ds to 1 MHz blanks trace of any intensity. Input R. 1000 nhms $\pm 10 \%$. Max input $\pm 10 \mathrm{~V}$ (d< + peak ac).
Bright scan: provides $3 \times 5 \mathrm{~cm}(1 / 2 \mathrm{~cm} /$ div) display at more than twice the brightness of $6 \times 10 \mathrm{~cm}$ display. Display remains calibrated.

## General

Outputs: rear fanel outputs for main sweep and for main and delayed gates.
Calibrator: : $\mathrm{kHz} . \pm 10 \%$ square wave; 1 V p.p, $\pm 1 \% ; 5 \mathrm{~mA}$, $\pm 2 \%$.
Power; 115 or $230 \mathrm{~V} \pm 20 \%$. 48 to $440 \mathrm{~Hz}, 75$ VA max.
Welght
Without panef cover: net. 31 lb ( 34.1 kg ); shipping, 42 lb ( 23.7 kg ).
With parel cover and accessories: net, $34 \mathrm{lb}(15,4 \mathrm{~kg})$; ship. ping, $46 \mathrm{lb}(25,4 \mathrm{~kg})$.
Dimensions: $12.13 / 16^{\prime \prime}$ wide. $73 / 4^{\prime \prime}$ high, $223 / 4^{\prime \prime}$ long with handle, $173 / 8^{\prime \prime}$ " without handle ( $325 \times 198 \times 578(448) \mathrm{mm}$ ).
Operating environment: Temperature, $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Humidity, at $95 \%$ relative humidity to $40^{\circ} \mathrm{C}$; alsitude: to 15,000 ft: vibration, ribrared in three planes for is min. each with 0.010 inch excursion, 10 to 59 Hz .

Accessories furnished: one Model $10115 A$ blue light filter; one Model 10101B front panel storage corer; two Model 10014 A , $10: 1$ divider probes, $3.5 \mathrm{ft}(1,1 \mathrm{~m})$ long; one $7.5 \mathrm{ft}(2,3 \mathrm{~m})$ power cord with right angle plug; BNC connectors for cascadiag channel $A$ into $B_{1}$ tro right angle $B N C$ male to fermale connectors (HP P/N 1250.0076), one BNC male to male connector (HP P/N 1250.0216); and one Operating and Service manual.
Price: Mndel 1710A 150 MHz Oscilloscope $\$ 2300$

PORTABLE, 35 MHz
Rugged storage/variable persistence
Models 1702, 1703A, 1705A


## Description models 1702A, 1703A, 1705A

Models 1702A, 1703A, and 1705A have the same basic vertical and time base operating features as the 1700 B and 17018 with the added capabilities of variable persistence and storage cathode-ray tubes. These storage oscilloscopes offer laboratory performance in a rugged portable package and are the first storage oscilloscopes to give you ac. dc, or battery operation. Model 1702A has a single time base white Models 1703A and 1705A have a calibrated delayed sweep. All models have 35 MHz bandwidths, dual channel $10 \mathrm{mV} / \mathrm{div}$ deflection factors, and $10 \mathrm{~ns} /$ div sweep speeds.
Hewlett-Packard's storage mesh CRT allow's you to adjust the amount of time a crace is recained, from less than one second to over one hour. Two of the most useful features of the variable persistence mode are to provide extra brightness for dim traces (such as low rep-rate pulses) and to eliminate flicker with slow sweep speeds.

## $100 \mathrm{~cm} / \mu \mathrm{s}$ storage writing speed

Model 1705A variable persistence and storage portable provides a priting speed oi $100 \mathrm{~cm} / \mu \mathrm{s}$. This ariting speed is so fast that traces you previously had to photograph to see can now be viened directly in normal ambient light. A unique FAST mode optimizes writing speed by switching the CRT display so reduced scan while maintaining full calibration and resolution. A second graticule, for the fast mode, is superim. posed in the center of the screen and a front panel light indicates when the scope is in the FAST mode. This wrising speed allows you to store a single shot 10 as rise time transient or a 25 MHz sinewave with an amplitude of 1 cm .

These oscilloscopes have tluee basic uses: 1)as a conventional scope: 2) as a variable persistence scope: and 3) as a storage scope.

## Conventional scope

The oscilloscopes can be used in most applications requiring a conventional CRT. They have a bright, crisp trace and the CRT linearity, bandwidth, and deflection factors are specified over the entire $6 \times 10$ division ( $0.85 \mathrm{~cm} /$ div) display. from de to 35 MHz .

They all have Hewlett-Packard's new burn resistant tube. In fack, they only require the same operating care of a conventional cathode-ray tube.

## Variable persistence scope

Variable persistence capability in a scope enhances conventional CRT viewing in at least two measurement situations.

## Building-up brightness of dim traces

Low duty-cycle, low rep-rate pulses are encountered in a broad spectrum of applications, from purely digital systems to electro-mechanical devices. The problem with viewing these waveforms is that the sweep speed is usually fast in order to see the rise time, but at the same time the repetition rate is much lower than the normal persistence of the phosphor. This results in a very dim trace and usually a viewing hood is necessary to see it.

This is where variable persistence really helps. You can adjust the persistance so that you "build-up" the intensity of the trace through repeated sweeps. The result is a bright, clear trace.


Theso two photos lllustrate (a) a low rep rate pulse vlawed in the conventlonal mode at maximum brightness, and (b) the Jmproved brighiness you gat by switiching to variable persistence. Increasing the persisience leis you 'bulld-up' the Intensity through repeated the pers
sweeps.

Eliminating flicker
Variable persisrence is also useful for eliminating flicker due to using slow sweep speeds on slowly changing waveforms. At sweep speeds belon' i ms/div, CRT flicker can be annoying, and at very slow sweep speeds, measurements are difficult 10 make. This is because natural persistence of commonly used phosphors is shon relative to the sweep speed. With variable persistence, you increase the persistence so that your waveform is retained as long as you like. You can adjust the persistence. for example, so that one sweep is just disappearing from the CRT as the next soeep comes along.


Slowly changlag waveforms at slow sweep speeds are easy to sete With variable persistance. The persistance has been afjusted so that the irace from one sween ls just disapoearing as the next sweep comes along. Sweed speed is 0.1 sec/div, ighal is 5 Hz
shambe.
$\checkmark$ stnambe

## Storage scope

The third basic use is as a storage scope. With storage, you can capture single shot events, such as noise related transients, or infrequently occuring events, such as a random bit dropour. Just push STORE and your waveform will be preserved for over an hour. This feature replaces a conventional scope and camera (with the associated inconveniences) for most applica. tions.
If the event to be stored has random occurence, a special feature that arms the storage circuits but turns of the floodguns may be used. By simultaneously pushing STORE and one of the writing speed pushbuttons, you have the maximum time to wait for the event to happen without the CRT back. ground fading. The stored trace will not be visible until the writing speed pushbutron is zeleased.

## Specifications, 1702A, 1703A, 1705A

Modes of operation: channel $A$; channel $B$, channels $A$ and $B$ displayed alternately on successive swetps (ALT) ; channels A and $B$ displayed by switching between channels at approx 400 kHz eate with blanking during switching (Chop); channel $\mathrm{A}+$ channel B (algebraic addition).

## Each vertical amplifier channel (2)

Bandwidth: (direct or with Model 10006 B probe. 3 dB down from $50 \mathrm{kHz}, 6$ div reference signal from a terminated 50 ohm source). DC-coupled, de to 35 MHz ; ac-coupled, lower limit is approx 10 Hz .
Risetime: < 10 ns. Direct or with Model 10006B probe. $10 \%$ to $90 \%$ points with 6 div input step from a terminated so ahm source.
Deflectlon factor
Ranges: from $10 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$ (9 ranges) in $\mathrm{L}, 2$, 5 se quence. $\pm 3 \%$ accuracy with emier in calibrated position.
Vernier: continuously variable berween all ranges, extends maximum defection factor to 26 least $12.5 \mathrm{~V} / \mathrm{div}$.
Polarity: NORM or INV, selcciable on channel B.
Slgnal delay: input signals are delayed sufficiently to view leading edge of inpur signals withour advanced extemal trigger.
Input RC: 1 megohm $\pm 1 \%$, shunted by approx 27 pP .
input coupling: $A C, D C$, or Ground seleciable. Ground position disconnects signal input and grounds amplifier input.
Maximum input
AC-coupled: $\ddagger 600 \mathrm{~V}$ (dc + peak ac): rms ac $<350 \mathrm{~V}, 3 \mathrm{~V} / \mathrm{div}$ io $20 \mathrm{mV} / \mathrm{div}:<150 \mathrm{~V}$ at $10 \mathrm{mV} / \mathrm{dis}(10 \mathrm{kHz}$ or less).
DC-coupled: $<330 \mathrm{~V}$ (ms) $5 \mathrm{~V} / \mathrm{div} 1020 \mathrm{mV} / \mathrm{div} ;<150 \mathrm{~V}$ at $10 \mathrm{mV} / \mathrm{div}$ ( 10 kHz or less).

## $A+B$ operation

Amplifier: bandwidth and deflection factors are unchanged: channel 8 mas be inverted for A-B operation.
Common mode ( $\mathrm{A}-\mathrm{B}$ ): Erequencs, de to 1 M Hz ; rejection ratio, at least 40 dB on $10 \mathrm{mV} / \mathrm{dir}$, at least 20 dB on all other ranges with verniers set for optimum rejection. Common mode signal amplitude equivalent to 30 dir.

## Trigger source

(applies for all fire modes of operation),
Norm: on displayed signal.
A only: on signal from channel $A$.

## Triggering

Internal: de 1035 MH c on signals causing 0.5 div or more vertical defection increasing to 1.5 div al 75 MHz in all display modes except chop. de to 400 kHz in chop mode. Triggering on line frequenc; is also seleciable.
External: de to 35 AiHz on signals so $\mathrm{mV} \mathrm{p}-\mathrm{p}$ or more, increasing to 100 mV g.p at 75 MHz .
External input RC: approx I megohm shunted by approx 27 pF .
Level and slope: intemal, at any point on the vertical waveform displayed; exiernal, connouously variable from +1.2 V 10 -1.2 V on either slope of the trigzer signal. Maximum inpur. +100 V . In Mindel $1702 \mathrm{~A} \div 10$ extends external cigger input range to +12 V to -12 V .
Coupling: AC, DC, LF REJ, or HF REJ.
$A C$ : accenuates signals below approx 20 Hz .
LF-REJ: attenuates signals below approx is kHz .
HF-REJ: attenuates signals above approx 30 kHz .
Trigger holdoft: ume between sweeps continuously variable.

## Tlme base

Sweep
Ranges: from 0.1 us/div to $2 \mathrm{~s} /$ div ( 23 ranges) in 1,2 , 9 sequence $=3 \%$ accuracy with vernier in calibrated position.
Vernier: continuously varible between all ranges, extends slowest sweep to at leasts s/div. Vemier uncalibrated light indicates when vernier is not in calibrated position.
Magnifier: expands all sweeps by a factor of 10 and extends fastest sweep to 10 ns/div. Accuracy $\pm 5 \%$ (including $3 \%$ accuracy of (ime base).

## Sweep mode

Normal; sweep is triggered by an intemal or extemal signal.
Automatle: bright baseline displayed in absence of input signal. Triggering is same as normal above 40 Hz .
Single: in Nomal mode, sweep occuts once with same triggering as normal: reset pushbutton arms sweep and lights indicator; in Auto mode, souep occurs once each time Reset pushbutton is pressed.

## Delayed thme base

Models $1703 A$ and $1705 A$
Trace intensiftcation: intensifies that part of main time base to be expanded to full screen in delayed zime base mode. Rotating time base switch from OFF position activates intensified mode.

## Sweep

Ranges: $0.1 \mu \mathrm{~s} / \mathrm{div}$ to $0.2 \mathrm{~s} / \mathrm{div}$ ( 20 ranges) in $1,2.5$ sequence. $\pm 3 \%$ accuracy with vernier in calibrated position.
Vernier: continuously variable between all ranges, extends slowes: sweep to $0.5 \mathrm{~s} /$ dir.
Magnifler: expands ali sweeps by a factor of 10 and extends fastest sweep to $10 \mathrm{~ns} /$ div. Accuracy is $\pm 5 \%$ (inciuding $3 \%$ accuracs of time base).

## Sweep mode

Trigger: delayed sweep is armed at end of delay period.
Auto: delayed sweep auromatically starts at end of delay period.

## Triggering

Internal: same as main rime base.
External: same as main time base. Input RC is approx 1 megohm shunted by approx 27 pF .
Level and slope: internal, at any point on the vertical waveform displajed; external, continuously variable from +1.2 V to -1.2 V on either slope of the trigger signal.
Coupling; selecrable, ac or dc. $A C$ attenlates signals below approx 20 Hz .

## Delay (before start of delayed sweep)

Time: concinuously variable from $0.1 \mu \mathrm{~s}$ to 2 s .
TIme jutter: $<0.005 \%$ ( 1 past in 20,000 ) of max delay in each sweep.
Calibrated delay accuracy: $\pm 1 \%$; linearity, $\pm 0.2 \%$.
Mixed sweep: combines main and delayed sreeps into one display. Sweep is started by the main time base and is completed by the faster delayed time base.

External horlzontal input
Bandwidth: de to 1 MHz when driven directly from a terminated so ohm source.
Coupling: $d$.
Deflection factor (with beam positioned at left edge of CRT): X1, $1 \mathrm{~V} / \mathrm{div}: \mathrm{X} 10,0: 1 \mathrm{~V} / \mathrm{div}$.
Vernier: $10: 1$ vernier extends deflection factor to at least $10 \mathrm{~V} / \mathrm{div}$ (XI) or $1 \mathrm{~V} / \mathrm{div}(\mathrm{Xi} 0)$.

Dynamic range: beam may be positioned at left edge of CRT with 0 V to -5 V input.
Maximum input: $\pm 100 \mathrm{~V}$.
Input RC: 1 megohm shunted bs approx 10 pF .

## Channel A output

Amplitude: one division of displayed signal in channel $A$ produces approx 100 mV output.
Cascaded deflectlon factor: I $\mathrm{mV} /$ div with both vertical chan. nels 5 ct to $10 \mathrm{mV} / \mathrm{div}$.
Cascaded bandwidth: dc to 3 MHz (use HP Mode! 10121 A BNC cable supplied to connect channel A output to channel B).
Coupilng: dc.
Vertical output de level: approx 0 V .
Vertical output resistance: approx 200 ohms. All models
Cathode-ray tube and controls
Type: post-accelerator, $\approx 8.3 \mathrm{kV}$ accelerating potential; aluminized P31 phosphor.
Gratleule: $6 \times 10$ div internal graticule; 0.2 subdivisions on major horizontal and verrical axes. I div $=0.85 \mathrm{~cm}$. In Model 1705A,
an $8 \times 10$ div intemal graticule is superimposed in center of normal graticule ( 1 div $=0.425 \mathrm{~cm}$ ) for fast writing speed mode. Rear panel adjustments for trace align and astigmatism.
Beam finder: relurns trace to CRT screen regardless of setting of horizontal or vertical conerols.
Intensity modulation: +4 V , ds 101 MHz blanks trace of any intensity. Input $R, 1000$ ohms $\pm 10 \%$. Max. input, $\pm 10 \mathrm{~V}$ (dc + peak ac).
Writing modes: conventional (non-storage), standard and fast (variabie persistence and storage). Pressiag STORE and either STD or FAST provides max persistence with flood guns off for a ready-to-write state. The CRT will remain primed and ready-towrite for the times specified for storage writing speed.

## Persistence

Conventional: natural persistence of P31 phosphor (approx $40 \mu \mathrm{~s}$ ).
Variable: from $<50 \mathrm{~ms}$ to $>1$ min.
Storage writing speed

Madel	STO Made	FAST Made
$1702 \mathrm{~A} / 1703 \mathrm{~A}$	$>20 \mathrm{~cm} / \mathrm{ms}^{*}$	$>10000 \mathrm{~cm} / \mathrm{ms}^{*}$
1705 A	$>0.2 \mathrm{~cm} / \mu \mathrm{s}^{*}$	$>100 \mathrm{~cm} / \mu \mathrm{s}^{* *}$

*Measured over central $5 \times 9$ divisions.
**Measured in reouced scan graticule area.
Storage time: from standard mode to store, traces may be stored at reduced intensity for $>2$ hours. With STORE T[ME in full. cor position, traces may be viewed at normal intensity for $>1$ minute. From Fast Mode to Store, uaces may be stored at reduced intensity for 5 minutes. With STORE TIME in full corr position, traces may be viewed at normal intensity for $>15$ seconds.
Erase: manual, pushburton erasure takes approx 500 ms .

## General

Calibrator: squarewave output, $1 \mathrm{kHz}, \pm 10 \% 1 \mathrm{~V} p-\mathrm{p} \pm 1 \%$.
Power requirements: ac line: 115 or $230 \mathrm{~V} \pm 20 \%$. 4810440 Hz , so VA max: dc line: 11.5 to $36 \mathrm{~V}, 25$ watts max.
Battery (optional)
Opersting time: up to 4 hours.
Recharge time: 14 hours maximum, with power switch off, if not operated afrer power indicator fashes.
Low battery indicator: power light flashes to indicate that batteries are discharged and further operation may damage batzery.
Recharging: batteries are recharging whenever power mode switch is set to AC with power switch on, trickle charge is applied.
Weight
Without panel cover: net, $24 \mathrm{lb}(1 \mathrm{~kg})$ : shipping, $35 \mathrm{lb}(15.9$ kg ).
With panel cover and accessorles: net, $27 \mathrm{ib}(12,3 \mathrm{~kg})$; shipping, $38 \mathrm{lb}(17,2 \mathrm{~kg})$.
With panel cover, accessories, and battery pack: net, 35 lb $(16 \mathrm{~kg})$ : shipping, $46 \mathrm{lb}(20,9 \mathrm{~kg})$.
Operating environment: remperacure $0^{\circ} \mathrm{C}$ to $\div 55^{\circ} \mathrm{C}$; humidit', to $95 \%$ relative bumidity to $40^{\circ} \mathrm{C}$. altitude, to $15,000 \mathrm{ft}$; vibra. tion, vibrated in three planes for 15 min , each with 0.010 inch excursion, 10 to 55 Hz .
Accessories furnished: one Model $10115 A$ blue light fiter; one Model 10101 B front panel storage cover; two Model 10006B. $10: 1$ divider probes, $6 \mathrm{ft}(1,8 \mathrm{~m})$ long; one $7.5 \mathrm{ft}(2.3 \mathrm{~m})$ power cord with righe angle plug (HP P/N 8120.1521); and one Operating and Service manual.

## Price

Model 1702A Storage Oscilloscope
S2375
Model 1703A Delayed Sweep Storage Oscilloscope $\$ 2725$
Model 1705A Delayed Sweep High Speed Oscilloscope $\$ 3000$
Option 012: Model 10103B Battery Pack installed add 5215

## -



The Hewlett-Packard 140 Oscilloscope System provides the versatility you need for measurements over the entire oscilloscope spectrum. With many high performance vertical and horizontal plug.ins to choose from, you can head in any measurement direction; wide-band sampling, high-sensitivity, delayed sweep, or measurements such as time domain reflectometry, swept frequency, or spectrum analysis.
Hewlett-Packard's 140 oscilloscope system offers these capabilities:

- Sampling bandwidth to 18 GHz .
- Sampling delayed sweep time base.
- $50 \mu \mathrm{~V} /$ div deflection factors.
- Versatile single or double-size plug-in capability.
- Direct readout TDR.
- Swept frequency.
- Spectrum analyzer plug.ins.

In addition, the system offers standard CRT persistence in either the 140B, or 143A mainframes; or variable persistence and storage in the 141 B mainframes. Select from these unique measurement capabilities or from the general purpose plag-ins available.

## High-performance mainframes

The advanced $140 \mathrm{~B}, 141 \mathrm{~B}$, and 143A mainframes give you a choice between conventional (fixed) CRT persistence, variable persistence and storage, and $8^{\prime \prime} \times 10^{\prime \prime}$ CRT displays. As a sesult, the 140 system not only has an extensive plog-in capability, but also, the CRT versatility needed to meet the requirements of measurement problems today-six months from now-or in the distant future.

Because all defection circuits are contained in the plug-ins, you get exclusive capabilities in mixing plug-ins. You can not only select the amplifier needed for the vertical axis, but also.
the particular time base generator needed for the horizontal axis.
Further, since the 140 system CRT's have identical horizontal and verrical deflection factors you can use two vertical amplifiers for an X-Y display . . or one single-channel amplifier and one dual-channel amplifier to plot two variables against a third . . . or two identical dual-channel amplifiers for a pair of simultaneous X-Y displays.

## Variable persistence and storage

The 141B mainframe gives you all the advantages of the 140B mainframe-plus the benefits of variable persistence and storage. At the twist of a knob, you can adjust trace persistence from 0.2 seconds to more than a minute. This variable persisrence allows you to adjust the CRT persistence to match the changing characteristics of a signal-any necessary number of traces can be held for trend comparisons, or for flicker free displays.

The Hewlett-Packard mesh storage tube offers many advantages which include: A highly burn resistant storage sur. face that does not require special operating procedures; a stored trace with the same high contrast and visual brightness of a conventional CRT: and intermediate trace values are casily distinguishable.

## 18 GHz sampling with delayed sweep

You can see through $P$ band, observe $C W$ signals to 18 GHz and beyond, and see fast pulses with 20 ps risetime capability. You can also use TDR measurements to resolve discontinuities down to less than 1 cm in the design of cables, coaxial components, connectors and strip lines. In addition, the delayed sweep can be used through the full bandwidth for displays of pulse segments that leave conventional sampling scopes blurred. You also get less than 20 ps jitter to ensure steady, clear displays.

## OSCILLOSCOPES

Two vertical amplifiers are available. Model 1411A provides de to 18 GHz at $1 \mathrm{mV} / \mathrm{div}$, dual-channel performance with remore samplers featuring feed through inpurs for minimum signal disurbance. The other sampling vertical amplifier, Model 1410A, gives performance to 1 GHz , with both high. Z probes and so ohm inpurs-and internal triggeting. Model 1425A Sampling Time Base plug-in provides delayed sweep, automatic triggering, and a movable intensified dot that makes it easy to set up the point of magnification.

## $50 \mu \mathrm{~V} /$ div zero drift

The versatile HP 140 Scope System gives you six highsensitivity plug-ins specifically designed for measurement of low-level signals. For example, the 1406 A vertical plug-in offers $50 \mu \mathrm{~V} /$ div defection factors with no de drift-plus precision calibrated de offset for extreme magnification.

With the Hewlett-Packard calibrated offset feature, the 1406A gives you the advantages of a dc and ac voltmeter-four-digir readout, auto decimal placement, better than $0.5 \%$ measurement accuracy. As a dc voltmeter, the 1406 A offers you the additional advantages of no drift in the measurement instrument, and the ability to observe and measure any ac riding on the dc voltage.

## 2-channel 20 MHz bandwidth, 4-channel displays to 15 MHz , and delayed sweep

If you need wideband real time performance, for example, you can use the dua)-trace 1402 A vertica! amplifier and get dc to 20 MHz (is MHz with Model 143A) at $5 \mathrm{mV} / \mathrm{div}$, algebraic addition, built-in delay line for viewing the leading

## MEASUREMENTS FROM DC TO 18 GHz 1, 2, or 4 channels, standard/delayed sweeps Model 140 System

edge of fast-rise pulses, full 6 div defection and a wide dy. namic range. An internal sync amplifiec triggers on Channel A in dual trace mode of operation-gives stable traces and ac. curate time measurements without external triggering.

When you need to display four channels of intormation, you can use the 4 -trace 1404 A ventical amplifier and get dc to 15 MHz at $10 \mathrm{mV} /$ div or $1 \mathrm{mV} /$ div to 10 MHz , algebraic addition, and built-in delay line for viewing the leading edge of íast-rise pulses. Internal trigger circuirs allow you to trigger on channel $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D or select composite triggering, which triggers each channel individually.

For easy readability of complex waveforms and accurate time interval measurements, Model 1421A Time Base \& Delay Generator provides calibrated time delays from 10 seconds to $0.5 \mu \mathrm{~s}$, calibrated sweep speeds from $0.2 \mu \mathrm{~s} /$ div to $20 \mathrm{~ns} /$ div. The 1421 A also offers mixed sweep which displays the first portion of a trace at normal sweep speeds, and expands the trailing portion of the trace at faster delayed sweep speeds to allow step-by-step magnified examination.

## Spectrum analyzer plug.ins for measurements in the frequency domain

By a simple addition of Spectrum Aralyzer plug-ins, you can convert your time-domain oscilloscope into a frequencydomain instrument with coverage from 20 Hz to 40 GHz . These specrrum analyzer plug-ins have absolute amplitude calibration, high sensitivity, low distortion, wide dynamic range, and far frequency response. See page 452 for information about these plug.ins.

140 Series Plug-in Selection Chart

Verrioal Plug-in	hEALTIME						SAMPLIN			TDA	3wept Freq.
Capabilities	1400 B	1502A	1404 A	1405A	1406A	1408A	1410A	14119/1430C	1411A/1432A	1415A	1418A
Bandwidth	500 kHz	20 MHz	15 MHz	5 MHz	400 kHz	500 KHz	1 GHz	18 GHz	4 GHz		
Deflection Factor/div	$100{ }_{\mu} \mathrm{V}$	5 mV	10 mV	5 mV	$50 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	1 mV	1 mV	1 mV		
Channels	1	2	4	2	1	2	2	2	2		
X-Y	X	X	X	K	X	X	K	X	X		
Delayed Sweep			1421A for Reallime				1425A for Sampling				
No Drift					X						
Max. CMRR in $\mathrm{dB}^{\text {B }}$	100	40	40	40	60	100					
Algebraic Add.		X	X	X		$\times$	X	X	X		
TDR										X	
Wide Band TDR								X			
Swepl Freq.											X
RECOMMENOED TIME BASES											
1421A	$X$	X	$x$	X	$x$	$x$					
1423A	X	X	X	X	X	X					
1424A							$x$	$x$	$x$		
1425A							X	X	X		
SPECTRUM ANALYZER SYSTEM PLUG-INS	Refer to Page 452 for 8550 Series Plug-ins.										



- $8 \times 10$ div internal graticule
- Bright display
- Convenient bearn finder
- Price: $\$ 795$ (less plug.ins)


1418

- Varlable persistence and storage
- Bright stored displays
- $8 \times 10$ div internal graticule
- Convenient beam finder
- Price: $\$ 1600$ (less plugins)

- Large. $8 \times 10 \mathrm{in}$. viewing area
- Bright, easy-to-see displays
- $8 \times 10$ div internal graticule
- Convenient beam finder
- Price: $\$ 1700$ (less plug.Ins)


## Description, 140 mainframes

The HP 140 Oscilloscope System provides the versatility you need for measurements over the antire oscilloscope spectrum. With many high-penformance plug-ins to choose from, you can head in any measurement direction: wideband, sampling, high sensitivity, time domain refectometry, swept frequency, and spectrum analysis.

The HP 140 -system mainframes are designed to give you high-frequency and high-sensitivity performance. The mainframe contains a post-accelerator CRT with associated control circuits and power supplies and the power supplies for the plug.ins.

The 141日 mainframe gives you all the advantages of the 140 mainframe plus the benefits of a mesh CRT with variable persistence and storage.

This variable persistence allow's you to adjust CRT persistence to match the changing characteristics of a signal. Any
necessary number of traces can be held for teend comparisons or for ficker-free low.frequency displays.
With the mesh storage tube, a stored trace has the same high contrast as a conventional CRT and intermediate trace values are easily distinguished between four or five different trace intensities. Trace intensity can be controlled from the from panel or externally modulated for X.Y.Z presentations.

Another 140 -System featuce is the large screen, $8 \times 10$ inch viewing area, 143 A mainframe, which is useful when the display is to be viewed from a distance or by many people at one time. The Model 143A provides high resolution dis. plays throughout the oscilloscope spectrum with the same accuracy and linearity associated with conventional s-inch dis. plays.
For complete specifications about the 140 System, refer to the 1 10 System data sheet or contact your Hewlett-Packard ticld engineer.


For complete 140 System specifications, contact your Hewlett-Packard field englneer.

Model 1400 series plug-ins



1425A

- Delayed sweep
- Sweeps to 10 ps/div
- Triggering to 1 GHz
- Price: $\$ 2150$

$1430 C$
- 20 ps risetime
- Price: $\$ 2800$

$1415 A$
- Complete TDR system for testing cables, connectors, striplines
- Determines location, meaning, and nature of each olscontinuity
- Resolves discontinuities-an inch apart
- Easy to operate
- Price: $\$ 1200$


1416A

- Speeds and simplifies swept frequency measurements
- High resolution direct readout in $d B$
- Low drift
- X-Y recorder outputs
- Price: $\$ 1050$

For complete 140 System specifications, contact your Hewlett-Packard field engineer.

SYSTEM \& TV WAVEFORM<br>Low cost, easy-to-use<br>Models 120B, 130C, 191A



Models 120 B and 130 C have applications in a few specialized systems and have abbreviated specifications. If complete specifications are required, contact your Hewlerr-Packard Field Engineer.

## Specifications, 120B

Time base
Range: $s \mu s / \mathrm{cm} 10200 \mathrm{~ms} / \mathrm{cm} \pm 5 \%, 1 \mu \mathrm{~s} / \mathrm{cov} \mathrm{n} \times s \pm 10 \%$. Triggering

Automatic: internal. 50 Hz to 450 kHz for most signals of 1.0 on vertical defection; extemal, 50 to 450 kHz for signals is Vp-p.
Amplitude selection: internal, 10 Hz to 450 kHz for signals $>03 \mathrm{~cm}$ vertical defection; external. 10 Hz to 450 kHz for signals 1.5 V p-p.
Trigger level and slope: from any point on the vertical wave. form presented on CRT; or continuously variable from -7 to +7 volts on the negative slope of external sync signal.

## Vertical amplifier

Bandwidth: ds to 450 kHz ; lower limit 2 Hz when ac coupled.
Deflection factor: $10 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$ in f steps. $\pm 3 \%$ : vernier extends $10 \mathrm{~V} / \mathrm{cm}$ step to ac least $100 \mathrm{~V} / \mathrm{cm}$.
Maximum Input: so V peak ( $\mathrm{dc}+\mathrm{ac}$ ).
Balanced input: on $10 \mathrm{mV} / \mathrm{cm}$ range. cominon mode rejection is at least 40 dB ; common mode signal $\pm 3 \mathrm{~V}$ peak.
Phase shift: vertical to horizontal, $\pm 2^{\circ}$ to 100 kHz (with vemiers in Cal).

## Korizontal amplifier

Bandwidth: dc to 300 kHz ; lower limit is 2 Hz when ac.coupled.
Deflection factor; $0.1 \mathrm{~V} / \mathrm{com}$ to $10 \mathrm{~V} / \mathrm{cm}$ in 3 steps, $\pm 5 \%$ : vemier
extends $10 \mathrm{~V} / \mathrm{cm}$ step to as least $100 \mathrm{~V} / \mathrm{cm}$

## General

Cathode-ray tube: 2700 V monc-accelerator, P3is phosphor.
Graticule: $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ internal graticule.
Beam finder: returns trace to CRT screen,
Intensity modulation: +20 V . pulse blanks nornial intensity trace.
Dimensions: $163 / 4^{\prime \prime}$ wide. $7^{1 / 2 "}$ high, $181 / 8^{\prime \prime}$ decp overall ( $425 \times$
$191 \times 467 \mathrm{~mm}$ ) ; hardware furnishod for quick conversion to $7^{\prime \prime}$
$\times 19$ ( $178 \times 483 \mathrm{~mm}$ ) rack mount.
Weight: net. 29 lbs ( 13 kg ) ; shipping, $35 \mathrm{lbs}(16,9 \mathrm{~kg}$ ).
Power: Its or 230 vols $\pm 10 \%$; 30 to 400 Hz ; approx 90 W .
Price: HP Model 120 B Oscilloscape

## Specifications, 130 C <br> Time base

Range: $1 \mu \mathrm{~s} / \mathrm{cm}$ to $5 \mathrm{~s} / \mathrm{cm}$, $\pm 3 \%$ : vernier extends $5 \mathrm{~s} / \mathrm{cm}$ step to a: least $12.5 \mathrm{~s} / \mathrm{cm}$.
 cm .
Automatic triggering: internal, so Hz to 500 kHz for signais $>0.5$ ${ }^{c}$ m vertical deflection; external, 50 Hz to 500 kHz for signats $>0.3 \mathrm{~V}$-p.


Amplitude selection triggering: intemal, $10 \mathrm{~Hz} 10300 \mathrm{kHz}_{2}$ for signals $>0.5$ cro vertical defection; external, for signals $>0.5 \mathrm{~V}$ p.p; dc in 500 kHz or 20 Hz to 500 kHz , accoupled.

Trigeer level and slope: any point on the display or variable from -10 to +10 V on either slope of external sync signal.

Vertical and harizontal ampliflers
Bandwidth; de to 500 kHz ; lower linit is 2 Hz when ac-coupled.
Deflection factor: $0.2 \mathrm{mV} / \mathrm{cm}$ to 20 volts $/ \mathrm{cm}, 1,2$, 3 sequence; accurcy $\pm 3 \%$; vernier extends $20 \mathrm{~V} / \mathrm{cm}$ siep to at least $50 \mathrm{~V} / \mathrm{cm}$.
Maximum input: 300 V peak ( $\mathrm{de}+$ peak ac).
Common mode rejection (dc to 50 kHz ): 40 dB from $0.2 \mathrm{mV} / \mathrm{cm}$ ro $0.1 \mathrm{~V} / \mathrm{cm} 30 \mathrm{~dB}$ from $0.2 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ common mode signal max 4 V p-p on $0.2 \mathrm{~V} / \mathrm{cm}$ range, $40 \mathrm{~V} \mathrm{p} \cdot \mathrm{p}$ on $0.5 \mathrm{~V} / \mathrm{cm}$ ko $2 \mathrm{~V} / \mathrm{cm}$ ranges, or 400 V p.p on $5 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ ranges.
Phase shift: $\pm 1^{\circ}$ to 100 kHz .

## General

Calibrator: line frequency square wave, $500 \mathrm{mV} \pm 2 \%$.
Cathode-ray tube: 3 kV mono-accelerator.
Graticule: $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ incernal graticule.
Beam finder: returns irace to CRT screen.
Intensity modulation: $\pm 20 \mathrm{~V}$ pulse blanks nomal intensiry trace.
Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 2^{\prime \prime}$ high. $183 / /^{\prime \prime}$ deep orer-all ( $426 x$ $191 \times 467 \mathrm{~mm}$ ) ; hardware furnished for quick conversion to ?" $\times 19^{\prime \prime}(178 \times 843 \mathrm{~mm})$ rack mount.
Weight: net, 31 lbs ( 15 kg ); shipping, $38 \mathrm{lbs}(18 \mathrm{~kg}$ ).
Power: 115 or 230 volts $\pm 10 \%$; 50 to 400 H 2 ; approx 90 W'.
Price: HP Midel 130 C Osciltoscope

## 191A TV Waveform Oscilloscope

The 191A is used for accurate displays of TV video wave. forms and uest signals. Its accuracy of $1 \underset{i c}{ }$ in signal amplitude measurements and positive field selection on noisy signals make this scope ideal for many video applications. Other conveniences features are: 20 kV CRT for bright, easy-to-read displays and RGB operation for color camera set-up.
Price: Model 191A TV Waveform Oscilloscope
20075


## GENERAL PURPOSE PROBES 700 MHz probe for $50 \Omega$ input <br> Models 10020A， 10000 series


＊When terminated in 50 ohms．
＂＂Limited by powef disslpation of resistive element．
Length（over－all）：approx 4 ft ．
Weight：net， $1 \mathrm{lb}(0,45 \mathrm{~kg}$ ）；shipping， $3 \mathrm{lbs}(1,36 \mathrm{~kg}$ ）．
Aecessorles supplied：blocking capacitor，BNC adapter tip，6．32 adapter tip，alligator tip，boot extension，cable assp＇s $2^{\prime \prime}$ and $6^{\prime \prime}$ ground，spanner tip，insulating cap，colored sleeve．
Price：Model 10020A，$\$ 100$.


Madsl Ho.	Divitusen Falls	Ansincaace	Shum Onpsoliance	Compoa－   catce 8repo ｜ng山｜   Capsolitas	Park Vels	Divalogn Loralicy	Orar－atl Leagth （spprox． and   fi．）	Prica
10001A	10：1	10	10 pF	15－55	600	2\％	5	535
100018	10：1	10	20 pF	15－45	600	$2 \%$	10	35
10002A	50：1	9	2.5 pF	15－55	1000	3\％	5	40
100028	50：1	9	5 pF	15－55	1000	$3 \%$	10	40
10003A	10.1	10	10 pf	15－55	6.00	2\％	4	35
100048	10：1	10	10 pF	17－30	500	3\％	3.5	50
100058	10：1	10	17 pf	17－30	500	39\％	10	50
10006 8	10：1	10	14 pF	17－30	500	3\％	6	53
100078	1：1	－	30 pF	－	600	－	3.5	22
100088	$1: 1$	－	60 pF	－	600	－	8	22
10012 B	10：1	10	16 pF	30－55	500	3\％	6	40
10014A	10：1	10	10 pF	9－13	500	$1 \%$	3.5	55
10016A	10：1	10	16 gF	9－13	500	1\％	6	55

Probe／Instrument Compatibility

80ape／   Plog－In	ผ్	$\stackrel{\rightharpoonup}{\mathbf{e}}$	$\begin{aligned} & \text { 其 } \\ & \text { 睘 } \end{aligned}$						窵	家	¢	－	E	蕞	䂞	㨞	K	䂞	E	$\underline{5}$	$\underline{ }$
Prates																					
10001A	$x$	$x$	X	L	L		X	$x$	$x$	$x$	X	1	L	L		$x$					
10001B	X	x	X	L	L		X	$x$	$x$	$x$	$x$	L	1	L		$x$					
10002A	X	x	$x$	L	L		X	$x$	$x$	$x$ x	x	L	$L$	$L$		x					
100028	$x$	$x$	X	L	L		$x$	$x$	$x$	$x$	$x$	L	L	L		$x$					
10003A	X	x	X	L	L		X	x	$x$	$x$	$\times$	L	L	L		$\times$					
100048				X	X							X	x	x			x				
10005B				X	X							$x$	$x$	$x$			$x$				
100058				X	X							$x$	x	X			$x$				
10007 C	$x$	X	X	L	L	L	x	L	L	x	$\times$	L	1	L	L	$x$	L	L			$L$
100488	X	x	$\underline{x}$	L	L	L	X	L	1	｜ x	X	L	L	L	L	X	L	L			L
100128	X	X	X				X	X	X	X X	$\times$					X					
10014A						X									x						
10018A						x									$x$						
10020A						x									x			$x$	$\times$	L	x
1120A						X									x			$\times$	$\underline{1}$	L	X
1124A						L									L			X	L		1

## Noles：

$x$ indicales that probe will malnatain the bandwidth of the instrumant．
Indicalas hat probe wind ma iniain the bandwidm of the insty

# PROBES FOR $50 \Omega$ SYSTEMS 

100,250 , and 500 MHz active probes
Models 1120A, 1124A, 1125A

500 MHz Active Probe with I:1 Gain, 1120A
(Measured with output connected to a 50 ohm load.)
Bandwldth (measured from a terminated 50 ohm source): dc. coupled, de to $>500 \mathrm{MHz}$; accoupled, $\langle 1.5 \mathrm{kHz}$ to $>500 \mathrm{MHz}$
Pulse response: (measured from a terminated 50 ohm source) risetime, $<0.75 \mathrm{~ns}$; perturbations, $< \pm 6 \%$ measured with 1 GHz sampler.
Dynamic range: $\pm 0.5 \mathrm{~V}$ with $\pm \rho \mathrm{V}$ de offser.
Noise: approx 1.5 mV (measured tangentially).
Input RC: 100 k ohms, shunt capacitance approx 3 pF at 100 MHz ; with 10:1 or $100: 1$ dividers, shunt capacitance is $\langle 1 \mathrm{pF}$ at 100 MHz
Maximurn input; $\pm 100 \mathrm{~V}$.
Weight: net, 4 lbs ( $1,8 \mathrm{~kg}$ ); shipping, 7 lbs ( 3.2 kg ).
Power: supplied by oscilloscope plug-ins with probe power jacks of a Model 1122A probe power supply.
Length: 4 ft over-all; with Option $001,6 \mathrm{ft}$.
Accessorles furnished
Model 10241A 10:1 divider: increases inpu: $R$ to approx 1 megohm shunred by $<1 \mathrm{pF}$ at 100 MHz .
Model 10243A 100:1 divider: increases input R to approx 1 regeohm shunted by $<1$ pF at 100 MHz .
Model 10242A bandwidth limiter: reduces bandwidth to approx 27 MHz shunted by approx 6 pF and reduces gain $<2 \%$.
Also inciucted: sip.on hook tip, $2.5^{\prime \prime}$ ground lead, spare probe tips, a slip.on BNC probe adapter, two red ID sleeves, and a probe divider adjustment tool ( PN 5020-0370).
Price: Model 1120A, \$395.
Model 1120A Option 001 approx 6 ft oves-all length, add $\$ 25$.


100 MHz Active Probe, 1124 A
(Measured when connected to a 50 ohm load.)
Bandwidth (measured from a terminated so ohm source): dc. coupled, de to 100 MHz ; ac-coupled, 2 Hz to 100 MHz .
Pulse response (measured from a terminated so ohm source): risetime, <3.5 ns; perturbations, $5 \%$ p-p. Measured with pulse risetime of $>2.5 \mathrm{~ns}$.
Attenuation ratlo: $10: 1 \pm 5 \% ;: 00: 1 \pm 5 \%$.
Dynamle range: $\mathrm{X} 10, \pm 10 \mathrm{~V} ; \mathrm{X} 100, \pm 100 \mathrm{~V}$.
Input RC: 10 megohms shunted by approx 10 pF .
Maximum safe input
DC.coupled: X10, $\pm 300 \mathrm{~V}(\mathrm{dc}+$ peak ac $) \leq 100 \mathrm{MHz} ;$ X100. $\pm 500 \mathrm{~V}(\mathrm{dc}+\quad$ peak ac $) \leq 100 \mathrm{MHz}$.

AC-coupled: X10, $\pm 300 \mathrm{~V}$ (dc + peak ac) $\leq 100 \mathrm{MHz}$. DC component must not exceed $\pm 200 \mathrm{~V}: \mathrm{X} 100, \pm 500 \mathrm{~V}$ (dc + peak ac) $\leq 100 \mathrm{MHz}$. DC component must not exceed $\pm 200 \mathrm{~V}$.
Accessorles supplied: one 8" ground lead, one retractable hook tip, and two probe tip insulating caps.
Power: supplied by 1800 series plugins with probe power jacks or Model 1122A probe power supply.
Weight: net, 7 oz ( $0,20 \mathrm{~kg}$ ) : shipping, $2 \mathrm{lbs}(0,91 \mathrm{~kg})$.
Length: approx 5 feet overall.
Price: HP Model 1124A, $\$ 135$

## Model 1125A Impedance Converker Probe

Attenuation ratio (oscilloscope gain may be adjusted for $10: 1$ and 100:1 division ratio): $10.5: 1$ and $105: 1, \pm 5 \%$.
Dynamle range at probe tip: X $10, \pm 4 \mathrm{~V}: \mathrm{X} 100, \pm 40 \mathrm{~V}$.
Input impedance at probe tip
High frequency: approx 500 ohms ( X 10 ) or 5 k ohms (X100) shunted by 0.7 pF (in X 10 or X 100 modes). (See impedance response graph.)
Low frequency: approx 100 k ohms (dc-coupled). (See impedance response graph.)


Maximum input
All modes: $\pm 300 \mathrm{~V}$ (ds + peak ac) with $\pm 200 \mathrm{~V}$ maximum de component.
X10: dc to $500 \mathrm{~Hz}, 200 \mathrm{~V}$ rms: decreasing 6 dB per occave to 12 V rms ar 10 kHz . $\geq 10 \mathrm{kHz}, 12 \mathrm{~V}$ rms is maximum allow. able continuous input.
X100: de to $1.5 \mathrm{kHz}, 200 \mathrm{~V}$ ms; decreasing 6 dB per octave to 35 V rms at $10 \mathrm{kHz} \geq 10 \mathrm{kHz}, 35 \mathrm{~V}$ rms is maximum allow. able continuous input.
Bandwidth (with X10 or X100 tip and supplied ift cable).
DC-coupled: ds on 250 MHz .
AC-coupled: 20 Hz to 250 MHz .
Pulse response in $\times 10$ or X100: $\leq \pm 5 \%$ perturbations measured from a rerminared so ohm source.
Accessories supplied; one 4 fr 30 ohm cable (10020-61601), one X10 divider tip ( $10020-67703$ ), one X:00 divider tip. ( $10020-$ 67706), one rigid boot extension (4040-0776), two red color coding sleeves ( 5040.0477 ), two clear plastic insulating caps ( 10020.45401 ), two jade gray insulating caps ( 10004 45402). one 2 in. 6.32 ground lead ( $10020-61602$ ), one 6 in. 6.32 ground lead ( 10020.61603 ), one 6.32 alligator tip ( $5060-0449$ ) and one 6.32 alligator tip ( 5060.0468 ).

Power: supplied by instruments with probe power jacks or a Model 1122A probe pover supply.
Length: approximate over-all length, 58 in.
Weight: net. 7 oz ( $0,2 \mathrm{~kg}$ ): shipping, $2 \mathrm{ib}(0,9 \mathrm{~kg}$ ).
Price: Model 1125A Impedance Converter Probe, \$150


## OSCILLOSCOPES



## 1111A AC Current Amplifier Speciflcations, 1111A

Deflection factor (wirh a $50 \mathrm{mV} / \mathrm{div}$ oscilloscope dehection facror) : in X1, $1 \mathrm{~mA} / \mathrm{div}$ to $50 \mathrm{~mA} /$ dir: in X100, $100 \mathrm{~mA} /$ div to $5 \mathrm{~A} /$ dir: 1.2 .5 sequence in X 1 or X 100 .
Accuracy: in X1, $\pm 3 \%$ : in X100, $\pm 4 \%$.
Risetime: 18 ns .
Noise: $<100 \mu \mathrm{~A} p$-P. referenced to input signal.
Maximum ac current: above $700 \mathrm{~Hz}, 50$ A p-p: below 700 Hz . decreases ac $1.4 \mathrm{~A} / 20 \mathrm{~Hz}$.
Output impedance: 50 ohms.
Dimensions: $11 / 2^{\prime \prime}$ high. $51 / 8^{\prime \prime}$ wide. $6^{\prime \prime}$ deep (38.1: $130.2: 152.4$ mm ).
Weight: ner, approx $2 \mathrm{ib}(0,91 \mathrm{~kg})$ : shipping, $3 \mathrm{lb}(1,36 \mathrm{~kg})$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$. 50 to $400 \mathrm{~Hz}, 1.5$ watts.
Price: Model 1111A Current Amplifier. $\$ 225$.

## 1110A Current Probe Specifications, 1110A

Sensittuity: without 100 ohm termination, $1 \mathrm{mV} / \mathrm{mA}$, with 100 ohm termination, $0.5 \mathrm{mV} / \mathrm{mA}$.

## Accuracy: $\pm 3 \%$.

Bandwldth
Lower -3 dB point: withour 100 ohm sermination, 1700 Hz : with 100 ohm termination, 850 Hz .
Upper -3 dB point: with 4 pF capacitive load, $>45 \mathrm{MHz}$; with 30 pF capacitive load, 35 MHz .
Riseblme: with 4 pF capacitive load, 7 ns ; with 30 pF capacitive load. 9 ns.
Insertlon impedance: approx 0.01 ohm shunted by $1 \mu \mathrm{H}$; capacirance to ground $<3 \mathrm{pF}$.
Maximum de current: 0.5 A .
Maximum ac current: is A p.p above 4 kHz ; decreasing below 4 kHz at $3.8 \mathrm{~A} / \mathrm{kHz}$ rate
Weight: net, 5 oz ( 0.14 kg ); shipping, $2 \mathrm{lb}(0.91 \mathrm{~kg}$ ).
Dimensions: probe aperature. $5 / 32^{\prime \prime}$ diameter: over-all length, $5 \mathrm{ft}(1.5 \mathrm{~m})$.
Price: Model 1110 A Current Probe. $\$ 125$.

## Probe Accessories Probe tips

For probes 10001 A-10003A: Model i0010C BNC adapter tip, $\$ 10$. For probes 10004B-10006B and ro0012B: Madel 10011 B BNC adapter tip.
Price: Model 10011B, \$8.

## Terminations

$\lambda$ rodel 10100 C , 50 ohm leed shrough.
Model 10100B, 100 ohm ( $\pm 2 \mathrm{ohm}$ ) feedethrough for 1110 A current probe.
Price: Model 10100B, $\$ 18$; Model 10100 C , $\$ 15$.
Attonuators: Models 10090A (2X, red), 10091A ( 5 X, green), 10092 A ( 10 X , black) 50 ohm attenuators provide division accuracies of $\doteq 3 \%$ from de to 1 GHz . Power dissipation is 2 watts average with a maximum peak of 3 kilowatts and maximum VSWR is $1,1: 1$ to 1 GHz .
Price: \$25 each.
BNC tip: 10011 B for $10004 \mathrm{~B}, 10005 \mathrm{~B}, 10006 \mathrm{~B}$ probes, $\$ 8$.

## Probe tip klts

Probe tip kits, Models 10036A and 10037A, extend usefulness of $10004 \mathrm{~B}, 1000$ SB, 10006 B . and 10012 B probes. Model 10036 A consists of an assortment including tips for the following: $0.08^{\prime \prime}$ jack; $0.025^{\prime \prime}$ and $0.045^{\prime \prime}$ square pin; $0.040 \cdot 0.062^{\prime \prime}$ dia pin; and a long pin tip. Model 10037A contains six $0.025^{\prime \prime}$ square pin dips. Probe tip kit, Model 10035 A for 10001 A. 10003 A probes contain pincer jaw, banana tip, pin tip, and spring tip.
Price: Model 10035A, 55; Model 10036A, \$20; Model 10037A, Sls.


## 1122A Probe Power Supply

Probe driving capability: up to four Hewlett-Packard active probes.
Power output: -12.6 and $+15 \mathrm{~V}, \pm 3 \%$.
Power input: 115 V or $230 \mathrm{~V} \pm 10 \%, 48$ to $440 \mathrm{~Hz}, 40 \mathrm{~W}$ (with four probes).
Welght: net, $51 / 4 \mathrm{lbs}(2,4 \mathrm{~kg}$ ); shipping, 8 lbs ( $3,63 \mathrm{~kg}$ ).
Accessories supplied: four $10131836^{\prime \prime}$ extender cables.
Price: HP diodel $1122 \mathrm{~A}, \$ 240$.

## OSCILLOSCOPES

## Calibration and service accessories

Plug-in extenders

## CALIBRATION ACCESSORIES <br> Time mark generator, extenders <br> Modals 226A, 10000 series

Plug-in extenders allow calibration and maintenance while a unit is operating.
140 system extender cable Model 10406A (one required for each plug-in), price, $\$ 40$.
180 system extender (meral frame extends both plug-ins) Model 10407 B , price. $\$ 95$.


182 LVPS Service Extender
Model 10133A service extender for the 182 oscilloscope allows the power supply to operate ouc of the mainframe during calibration or crouble shooting.
Price: Model 10133A Service Extender (182), $\$ 30$.
1804A Extender Board
Model 10412A extender board provides access to the ring coumer for fast, easy servicing.
Prlee: Model 10412A Extender Board (1804A). S20.


Model 226A is a high quality, time mark generator that provides 30 precision time intervals for calibrating oscilloscope time bases. Marker incervals are in a convenient 1,2 , 5 sequence that matches the sweep kime settings on oscilloscopes. A single, easy-to-read front panel rotary switch provides easy use without confusing nomendlature.

## Specifications, 226A

Time mark
Ranges: from 2 as to 10 s ( 30 ranges) in $1,2,5$ sequence.
Output: +1 V peak into 50 ohms. 28 intervals from 10 ns to 10 s. Sine wave output on 2 and 3 ns ranges provides 1 V into 50 rihms.
Accuracy: $\pm 0.005 \%, 0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C} ; \pm 0.002 \%$ ar $25^{\circ} \mathrm{C}$ after $1 / 2$ hour warmup.
Trigger frequency: same as time mark to $100 \mathrm{~ns}, 10 \mathrm{MHz}$ for all ranges faster than 100 ns.
Programming (Optional): all ranges are programmable, requires 6 parallet lines ( 6 bit word) and 2 timing lines. TTL compatible.

[^9]

$\qquad$
 203.2 mm ).

Weight: ner, 7 lb ( $3,2 \mathrm{~kg}$ ) ; shipping, $9 \mathrm{lb}(4,1 \mathrm{~kg})$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to 440 Hz ; approx 25 watrs
Price: Model 226A Time Mark Generator, $\$ 670$.
Opt 003: for TTL compatible programming, add $\$ 150$.


## Viewing accessories <br> Viewing hoods

Model 10175A polarizer hood, for use on $5^{\prime \prime}$ round CRT bezels, increases contrast and reduces glare when viewing dim traces in ambient light. $\$ 15$.
Model 10175 B riewing hood with removable viny! face mask for 5" sound CRT bezels. $\$ 20$.
Model 10176A viewing hood for $\mathrm{g}^{\prime \prime}$ rectangular CRT bezels. $\$ 10$.
Model 10104A collapsible viewing hood for 1700 series portable oscilloscopes. \$12.
Model 10190A light shield for large screen 182 oscilloscope. $\$ 6$.


Light ritters
Model 10178A, meeal mesh for 181, 183, 184 oscilloscopes. $\$ 15$. Model 10179A, metal mesh ( 5 " eectangular CRT) $\$ 7$.
Model 10115 A blue light filter for 1700 scrics oscilloscopes. $\$ 2$.
Amber plastic filter, HP P/N 5020-0530 ( $5^{\prime \prime}$ rectangular CRT). $\$ 2.50$.
Blue plastic filter, HP P/N 5060.0548 ( $s^{\prime \prime}$ rectangular CRT) 53. Smoke gray plastic filter, HP P/N 5020.0567 ( $S^{\prime \prime}$ rectangular CRT) \$5.

## Transit case

A Model 10168A transit case is available for 180. 181, 183, and 184 cabinet syyle oscilloscopes during transportation and storage. This case provides maximurn protection against damage and also provides a seal against dirt and moisture. $\$ 230$.

## PROTECTIVE COVERS <br> Front panel and oscilloscopes covers, adapters Model 10000 series

## OSCILLOSCOPES



Rack mount slides and adapters
Slides are available for mounting modular and rack syyle oscilloscopes. A slide adapter is requited to secure an oscilloscope to the slides.
120 through 140 serles modular oscllioscopes
prices
Slide adapter kit: HP P/N 1490.0721
Fixed slides: HP P/N 1490.0714
$\$ 35.00$
$\$ 42.00$
$\$ 40.00$
Pivot slides: HP P/N 1490.0718
180, 181, and 184 rack style oscllloscopes
Fixed slides, 22 -in.: HP P/N $1490-0714$
$\$ 42.00$
Pivot slides, 22-in.: HP P/N $1490-0719$ $\$ 37.50$
183 rack style oscilloscopes
Pivot slides, 24.in.: HP P/N 1490.0924
\$50.00
Slide adapter for 180 series HP P/N 1490-0768 $\$ 29.90$

## Protective covers

Models 10166A and 10169 A provide front panel protection and space for probe and accessory storage for 180 series and 1200 series cabinet style oscilloscopes.

Model 10166A for 180 series cabinet oscilloscopes.
$\$ 30$
Model 10169 A for 1200 series cabinet oscilloscopes. $\$ 35$
A rack style metal front panel corer is available to fir 180, 181, 183 or 184 rack model oscilloscopes. Order HP P/N 5060.4037. $\$ 60$
Flexible covers for 180 series cabinet oscilloscopes provide protection during transportation or seorage. A slotted cover top allows access to the scope handle and a pocket on one side is included for accessories.

Model 10167A for 180 , 181, or 184 cabinot models $\$ 25$
Model 10170A for 183 cabine: models $\$ 25$
Model 10172A for 182 models
Flexible covers for 1700 series portable oscilloscopes provide pro. tection during eransportation.

Model 10108A for $1700,1701,1706$, and 1707.
Model 10108B for 1702, 1703, 1705, and 1710.

## Blank plug-ins

Blank plug-ins are available for building special purpose units for 180 and 140 series mainframes.

140 system double size blank plug-in Model 10478A. \$35 180 system blank plug.ins
Vertical: Model 10408A, \$45.
Horizontal (time base): Model 10409A, $\$ 50$.
Double size: Mrodel 10410A, $\$ 60$.
Adapter banana plug
Part No.
Descrjption
1250.1263
1250.1264

Single banana plug to BNC male
Dual banana plug to BNC male
Price
$\$ 7.30$ $\$ 13.00$

1250.2277	Dual banana plug to BNC female	\$ 6.00
1251.2816	Dual banana plug	\$ 1.50
Model 10111A	Shielded banana plug to BNC female	\$10.00
Model 10113A	Triple banana p!ug to dual BNC female Adapters BNC	\$12.00
Part No.	Descrlption	Price
1250.0076	Right angle BNC (UG.306/D)	\$ 4.00
1250.0080	BNC female to BNC female (UG-914/U)	\$ 4.00
1250.0216	BNC male to BNC male	\$ 4.00
1250.0781	BNC Tee 1 male, 2 female	\$ 5.00
1250-1263	BNC male to single banana plug	\$ 7.50
1250.1264	BNC male to dual banana piog	\$13.00
1250.2277	BNC temale to twin banana plug	\$ 6.00
Model 10110A	BNC male to dual binding post	\$ 7.00
Model 10111A	BNC female to banana plug (shielded)	\$10.00
Model 10133A	Dual BNC female to triple banana plug	\$12.00
Refer to page	148 for high frequency adapters and cont	


1250.1263


1250-1264


1251-2816


10111A

1250.0076


1250-0216


1250-0781


10110 A

## OSCILLOSCOPES

# OSCILLOSCOPE CAMERAS <br> Low cost, easy-to-use, permanent records <br> Model 123A, 198A 



123A


Description, 123A
Model 123A is a lightweight compact camera built for the 1700 series portable oscilloscopes. It can also be used with the HP 180, 182, and other models. The camera does not require external power and only weighs $31 / 2$ pounds which makes it ideal for use in feld applications. The 123A has a range finder for easy focusing using a split image technique. This range finder also serves as a viewing port so that you can adjust CRT intensity and graticule illumination with the camera in place. Controls are color coded for optimum setrings and are located outside of the camera for easy reading and fasr adjustment to reduce initial setup time

The reduction ratio (i.e object-to-image ratio) may be adjusted from 1:1 to $1: 0.65$ by simply loosening two screws and sliding the adjusting plate. Synchronization contacts are also provided for use with other equipment.

The 123 A mounts directly on 1700 series partable oscillo. scopes and will adapt to other oscilloscopes as listed in the compatibility chart.

## Specitications, 123A

Reduction ratio: continuousiy adjustable from 1:1 to 1:0.65
Lens: $56 \mathrm{~mm}, \mathrm{f} / 3.5$ lens: aperture ranges $/ / 3.5$. //4. [/5.6. f/8. f/16. and $\mathrm{S} / 22$.
Shutter speeds: $1 / 60,1 / 30,1 / 15,1 / 8,1 / 4,1 / 2$, and 1 seconds Time and Bulb. Cable has thumbscrew lock for ame expossures. X-type contacts provided to trigger os synchronize other equip. ment with shutter release.
Graticule illumination: supplied by the oscilloscope.
Camera back: polaroid land camera that uses Type 107 pack film.
Mounting: lift on/of mounting with positive lock. Mounts di. rectly on HP 1700 series oscilloscopes. Adapters are available to fot other scopes, see Accessories.
Range finder: viewing port provides splir image of the CRT to allow setring of the focus.
Viewing; range finder viewing post allows riewing the CRT with camera in position. Camera swings away for wide angle viewing.
Focus: adjustable with camera back closed or open: split image focusing plate provided for use when object-to-image ratio is changed.
Dimenslons: $7.9 / 16$ in., $8.13 / 16$ in., $4-13 / 16$ in ( $192 \times 220 \times$ 122 mm ).
Weight: net $31 / 2 \mathrm{lb}(1,6 \mathrm{~kg})$; shipping, $5 \mathrm{lb}(2,3 \mathrm{~kg})$.
Accessories furnished: combinarion split image focusing plate and reduction ratio scale, and instruction manual.
Price: Model 123A Oscilloscope Camera, \$400.

## Description, 198A

The HP Model 198A is an economical camera for general. purpose oscilloscope photography. In addition, this camera may be conveniently applied to normal photography of objects or surfaces which can be placed in the camera focal plane.
The camera features a Polaroid back using the standard flat pack self-processing film, for rapid, on-the-spot results. Graticule (scale) illumination uses a simple pair of mirrors reflecting twin curtains of light onto the surface to be photographed. The mirror system is interlocked with lens focal distance and the mechanical focusing system. When the curtains of light just meet, the CRT graticule is evenly illuminated and the camera is focused.
Graticule illumination can be set continuously on, flashed by the shutter cable-release, or set off. When on or in Alash, the illumination inrensity is variable. Both focusing and graticule illumination may be seen through a viewing port at the rear of the camera.
Model 198A is easily and directly mounted on any 5 -inch Hewlect-Packard oscilloscope by an adjustable clamp that locks the 198A securely in place. Bezel adapters are available for most other oscilloscopes.

## Specifications, 198A

Film type: Polaroid ${ }^{\text {B }} 107$ Black and White ASA 30008 -pack; Polaroid(®) 108 Color ASA 758 -pack. ( $73 \times 96 \mathrm{~mm}$ ). Type 107 (black and white) development time: 15 seconds. Type 108 (color) development time: 60 seconds.
Object-to-image ratio: 1:0.85.
Lens: 75 mm . $1 / 3.5$.
Shutter
Speeds: B, $15,1 / 2 \mathrm{~s}, 1 / 4 \mathrm{~s}, 1 / 8 \mathrm{~s}, 1 / 15 \mathrm{~s}, 1 / 30 \mathrm{~s}, 1 / 60 \mathrm{~s}$. Cable release; cable has thumbscrew lock for time exposures.
Apertures: F/3.5, 4, 5.6, 8, 11, 16. 22.
Focus: directly adjustable with cameraback closed or open. Coincidence of vertical light patterns on CRT face indicates correet focus.
Graticule illumination: provided internally. Incandescent lamp and projector/mirror system, with variable intensity control, Off, FLASH, and ON.
Power required: fea Type.C, i.s V dry cells (graticule illumination).

OSCILLOSCOPES

Synchronization: X-tjpe contacts provided to trigger or synchro. nize other equipment with shutter release.

## Compatibility

Dlrect: Hewlett-Packard s-inch round and rectangular bezels (140, 180, 1200 series oscilloscopes; 8550 series spectrum analyzers, 780 series monitoring oscilloscopes, 8540 , 8410 network analyzer, and all other Hewlett-Packard instrumentation having a 5 -inch round CRT display
Adapters for other oscilloscopes: refer to camera bezel adapters. Dimensions: $7.9 / 16^{\prime \prime} \times 12.3 / 16^{\prime \prime} \times 5.13 / 16^{\prime \prime}(192 \mathrm{~mm} \times 310 \mathrm{~mm} \times$ 147 man )
Weight: net. $61 / 2 \mathrm{lbs}(2,95 \mathrm{~kg})$; shipping, 1 l lbs ( 4.99 kg ).
Option 001: 1:0.7 object-to-image ratio, allows entire 5 -inch round CRT to be photographed, add 565 .
Price: Model 198A Oscilloscope Camera, $\$ 420$.
"Polarold"(B) by Polarold Corp.

## Description, 197A

Model 197A is a general purpose oscilloscope camera which can be used for most trace recording applications. All of the 197A controls are conveniently located outside of the camera. Control settings may be read at a glance and quickly changed if desired. Controls are also color-coded for optimum setcings for mosr photos. The electronic shutter provides accurate exposure times from $1 / 30$ to 4 seconds. All solid-state circuits insure reliable operation. The slyutter may be operated remotely by providing a closure to ground, and a contact closure is prorided when the shutter is open to allow synchronization of other equipment with the camera.

A simple screwdriver adjustment allows the reduction ratio (i.e., the object to image ratio) to be varied from 1:1 to 1:0.7. This allows an optimum amount of the graticule to be photographed, which is useful for making multiple exposures or for different sized CRT's. The camera can be quickly focused using the focus knob and split-image focus plate furnished with the camera.

A rechnique that enharices the quality of scope photos is available with the 197A camera. A low power ultravioler (UV) light is used for exposing the black graticule lines in internal graticule CRT's. The UV light causes the CRT phosphor to glow uniformly over irs entire surface. The white trace contrasts with the gray background and black graticule lines, making oscillograms taken with this camera easier to interpret.

## Specifications, 197A

Reduction ratio: continuously adjustable from 1:1 to 1:0.7. Reference scale provided on focus plate.
Lens: 75 mm , $\mathrm{f} / 1.9$ high transmission lens; aperture ranges $\mathrm{t} / 1.9$ 10 $/ / 16$.
Shutter: electionically operated and timed shutter, with all solid. stare circuits: shutter speeds are $1 / 30,1 / 15,1 / 8,1 / 4,1 / 2,1,2$, 4 sec. Time, and Bulb; shutter has a sync contace closure output for triggering external equipment and input jack for remore operation.
Camera back: Polaroid Land Camera using pack film Type 107 supplied: see options for other backs; backs may be interchanged withuot refocusing and may be rotated in 90 -degree increments.
Mounting: quack lift on-off mounting with positive lock; swing away to left.
Vlewing: low'angle, direct viening fexible face mask.
Multiple exposure: back moves vertically through 11 detented positions ar $1 / 2 \mathrm{~cm}$ per detent at $1: 0,9$ object-to-image ratio.
Focus: adjustable focusing with lock.
Dimensions: $14^{\prime \prime}$ long, $101 / 2^{\prime \prime}$ high, 7 s/8" wide ( $356 \times 267 \times 194$ mm ) with hood; $12^{\prime \prime}$ long, $61 / 2^{\prime \prime}$ high, $75 / 8^{\prime \prime}$ wide ( $305 \times 165 \times$ 194 mm ) without hood.
Weight: ner, $10 \mathrm{lbs}(4,5 \mathrm{~kg})$ : shipping, $14 \mathrm{lbs}(6,4 \mathrm{~kg})$.
Power: $115 \mathrm{~V} \pm 10 \%, 48$ to $440 \mathrm{~Hz}, 6$ watts.
Accessorles furnished: combination split image focusing plare and reduction racio scale.
Price: Model 197A Oscilloscope Camera, $\$ 675$.

## Optlons

001: whthout ultraviolet light, deduce 550.
003: Gradokibl back in place of Poiaroid back; no charge.
012: modified for 230 V operation; no charge.
004: Polaroid roll back in place of Polaroid back, no charge.
"Palarold" (®) by Polarold Corp.
"Graflok" by by Graflex, inc.

## Description, 195A

Model 195A is a high speed trace recording camera for photographing high-speed low repetition-rate waveforms. An $80 \mathrm{~mm}, \mathrm{f} / 1.3$ lens with a $2: 1$ reduction 5 atio provides high light transmission for high writing speeds.


The electronic shutrer employed in the 195A provides accurate exposure times from $1 / 30$ to $\mathfrak{f}$ seconds. All solid-state circuits insure reliable operation. The shutter may be operated remotely by producing a closure to ground, and a conract closure is provided when the shuuter is open to allow syn. chronization of other equipment with the camera.

An ultraviolet light option allows a two-fold increase in writing speed by "post-fogging" the film. Ordinarily, a single, faint trace may not expose the firm sufficiently to bring the density level above the brightness threshold level. The gray background provided by the UV light, however, moves the trace's "zero" exposure level into the gray region, where a slight increase in exposure, caused by the trace, becomes visible.

The 195A mounts directly to Hewlett-Packard Oscilloscopes with 5 -inch round, or rectangular CRTs without requiring a bezel adapter. The 195A will also 5 wing away from the CRT face for easy viewing,

The camera back may be rotated from the normal horizontal position to a vertical position, allowing a $90^{\circ}$ rotation of the film format. The back can also be moved through 11 detented positions for multiple exposures. The camera back may also be removed and replaced with a $4 \times 5$ Grafock ${ }^{-16}$ back which alloxs use of cut or roll film, or a Polaroid ${ }^{(1)}$ Pack Film back.

## Specifications, 195A

Object-to-image ratlo: 1:0.5.
Lens: somm, f/1.3 high transmission lens: apcrature ranges from 6/1.3 to f/11.
Shutter: electronically operared and timed shutter, with all solidstate circuiss; shurter speeds are $1 / 30,1 / 15,1 / 8.1 / 4,1 / 2.1,2$. 4 seronds, Time, and Bulb; shutter has a sync contact closure outpur for trigeering external equipment and input jack for remore operation. Shutter-Open Light provides visual indication when shucter is open and shuter speed control is set en: $T, B$. and all orher shutcer speeds excepr 1/15 and 1/30 second.
Camera back: Polaroide roll film holder standard: Polaroide pack film holder or Graflok backs a azilable (see options); backs may be interchanged without refocusing and may be rocared in 90 degree incremens.
Mounting: quick lift on-off mounting with positive lock; swing away to left.
Viewing: low angle, direct viewing fexible face-mask.
Multiple exposure: back moves vertically through 11 derented positions.
Focus adjustable focusing with lock.
Dimensions: $141 / 2^{\prime \prime}$ long, $93 / 4^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high ( $368 \times 248 \times$ 172 mm ) without hood.
Weight: net, $12 \mathrm{lbs}(5,4 \mathrm{~kg})$; shipping, $18 \mathrm{lbs}(8,2 \mathrm{~kg})$.
Power: $115 \mathrm{~V} \pm 10 \%, 48$ to 440 Hz .
Accessorles furnished; combination split image focusing plate and seduction ratio scale. HP Parl No. 1000.0226.
Price: Model 195A Camera, \$1025.

## Options

001: with ultra violet light, add $\$ 50$.
002: Grafok back instead of roll back, no charge.
003: Polaroid (3) pack back instead of roll back, no charge.
004: modified for 230 V operation, no charge.

[^10]

Model 195A is supplied with a Polaroid ${ }^{1}$ Roll Film back and Model 197A is supplied with a Polaroid Pack Film back. Either back may be ordered initially as options ar no exura charge (refer to specifications), or the backs may be ordered separately. Polaroid Pack Film back, Model 10353A. \$9s. Polaroid Roll Film back, Model 1036A, s95. Grafok ${ }^{2}$ back, Model 10352B, \$9s.

Note: these backs will not tht on the Model 123A or 198A Cameras.


## Camera assessories

Model 123A firs HP 1700 series oscilloscopes and 195A, 197A, and 198A fit HP s-inch recrangular and round CRT oscilloscopes and can be fitted to orher oscilloscopes with bezel adapters (see (amera/oscilloscope comparibility chart).

Camera bezel adapter prites: Model 10106A, 520; Model 10355A. S20; Model 10356A, \$20; Model 10357A, \$25; Model 10360A, S20; Model 10361A, S20; Model 10362A, s20; Model 10363A, \$20; Model 10366B, $\$ 10$; Model 10367A, $\$ 20$. Adapters not shown are: 10369A, 10370A and 10371A, contace your Hewlett-Packard Field Engineer for prices of these adapters.
1 Registered Trademark Poloroid Corporation.
2 Registered Irademark Graflex, Inc.


The Model 10358 B carrying case is constructed of fiberglass and aluminum with form padding to protect the Model 195A. 197A, and 198A cameras in transit or storage. Price: $\$ 80$.

## Other accessories

When the 4 x 5 Graflok back is used, various film packs and adapters may be used, some of which are shown below. Order these firo packs from the manufacturer or your local camera dealer.


Model RH/50 $\mathbf{7 0 m m}$ rols film holder
so exposures withour reloading.
Beatrie-Coleman 70 mm roll film holder available (o'pe 45R).


## Graphic film pack adapter

Daylighe load-18-exposure film packs.


Polaroid Land $4 \times 5$ film holder No. 545
Makes both print and negative in 20 seconds-ourside the dark room.

Camera/Oscilloscope Compatibility Chart'												
OSCILLOSCOPE	CAMERA											
HEWLETT-PACKARO	HEWLETT-PACKARD					TEKTRONIX JNC.			DUMONT			
	123A	196A	'196A/B	197A	188A	C12	C27	C30/31/32	450A-1	453A-1	450A.78	321A
6.in. Round CRT	-	Direct	Direct	Direct	Direct	-	-	-	Direct	Direct	Direct	Direct
175A Only	-	Direct	Direct	Direct	Direct	-	-	-	10360A	10360 A	10360 A	10360A
6-In. Reetangular CRT	10369A	Direct	${ }^{3} 10360 \mathrm{~A}$	Direct	Direct	10361A	10362A	10363A	10360A	10360A	10360A	10360A
182	10370A	10367A	-	10367A	-	-	-	-	-	-	-	-
1330 Sorios ${ }^{2}$	-	${ }^{2} 103668$	-	${ }^{2} 103688$	${ }^{2} 10366 \mathrm{~B}$	-	-	10363 A	-	-	-	-
1700 Serles	Direcl	-	-	-	-	-	-	10106A	-	-	-	-
TEKTRONIX INC. ${ }^{\text {S }}$						Hates   2. This chant only includes hP adapter and cemera comoatiolility, for other comblations contact your Fleid Engineer.   2. 1330 A 1331 A serial prefixes 1110 A and above and 1331 C serial profix 1116 A and above require 10366 B adzorer.						
E-in. Round 549	-	10355A	10355A	10355A	10355A							
5-In. Reot, 8560 Sories	-	10356 A	-	10356 A	10356A							
529 Serres	-	10356A	-	10356A	10356A							
G47A	-	10357A	-	10357A	10357A	3. The 10360A adapter hinge mounts interfere with the Find Beam pushbution on 180 mainirames.						
422/453/454/485	103714	-	-	-	-							
DUMONT						4. Model 196A/B cameras are no longer in production.						
S-If. Round GRT	-	10355A	Direct	10355A	10355A	5. No	ters sre serles	vailabie for asilloscopes.	mounilas			1nc. 5100

## TESTMOBILES

Transport test equipment; save bench space Models 1119A/B/C/D, 1117B

## Description, Models 1119A/B

Models 1119A/B are designed for use with standard $163 / 4$ inch wide Oscilloscopes. When used with scopes such as the 140 series, mounting hardware secures the instrument to the Testmobile. A Model 10-179A Tilt. Table is available for the 180 and 1200 series. Typical oscilloscope tilt angle is $\pm 40^{\circ}$ in $10^{\circ}$ increments.

## Specifications, 1119A/B

Oscilloscope compatibility: $120,150,140$ series dircci: 180 and 1200 series with Model 10479A tilt tray; or 180 rack models with mounting plates ( $\mathrm{P} / \mathrm{N}$ 01119-69501).
Tist angle: $\pm 40^{\circ}$ in $10^{\circ}$ increments.
Dimensions: see outline drawing.
Wheel size; f-inches ( $101,6 \mathrm{~mm}$ ).
Weight
Model 1119A: net, $34 \mathrm{lb}(15,4 \mathrm{~kg})$; shipping, $47 \mathrm{lb}(21,3 \mathrm{~kg})$.
Model 11198: net, $46 \mathrm{lb}(20,9 \mathrm{~kg})$; shipping, $63 \mathrm{lb}(28,6 \mathrm{~kg})$.
Price
Model 1119A: Testmobile, $\$ 11 \mathrm{~s}$
Model 11198: Testmobile (with Model 10480A Storage Cabi. net), siss.
Optional accessories
Model 10479A tilt tray: allows oscilloscopes in be placed on Testmobile without direct mounting.
Weight: net, $12 \mathrm{lb}(5, f \mathrm{~kg})$; shipping, $18 \mathrm{lb}(8,2 \mathrm{~kg})$.
Price: Model 10á79A (ile traj), $\$ 35$.
Mounting plates: (HP Part No. 01119.69501) adapts 180 series rack model ascilloscopes to Testmobile.
Weight: get, $1 \mathrm{lb}(0,5 \mathrm{~kg})$; shipping, $2 \mathrm{lb}(0,9 \mathrm{~kg})$.
Price: mouncing plates (including detent wheel), $\$ 29.10$.

## Description, 1119C/D

Models 1119C/D are for 180 and 1200 series cabinet style and 1700 series (with a 10105 A Adapter) oscilloscopes. Instruments are secured to brace assembly with mounting knobs that mate with matching holes in the scope. Typical tilt angles are $\pm 30^{\circ}$ in $10^{\circ}$ increments. A tiftrable shelf. Model 10479B al. lons small instruments to be mounted.

## Specifications, 1119C/D

Oscilloscope compatibility: 180 and 1200 series cabiner models. direct, 1700 series with Model 10105A Adapter. When used with optional 10479B Tilt Tray, many oiher instruments may be placed on the Testmobile.
Tift angle: $\pm 30^{\circ}$ in $10^{\circ}$ increments.
Dimensions: see outline drawing.
Wheel size: 4 inches ( 101.6 mm ).
Weight
Model 1119C: net, $32 \mathrm{lb}(14,5 \mathrm{~kg})$; shipping, $43 \mathrm{ib}(19,5 \mathrm{~kg})$.
Madel 1119D: net. 43 lb ( 19.5 kg ) ; shipping. $94 \mathrm{lb}(24,5 \mathrm{~kg})$. Price
Model 1119C: Testmobile, sho.
Model 11190: Tesmobile (with Model 10480 B Storage Cabi. net), 8145 .
Optional accessorles
Model 10105A adapter plate; adapls 1700 series oscilloscopes to 1119C and 1119 D Testmobiles.
Weight: net, 1 ib ( $0,5 \mathrm{~kg}$ ) : shipping, $2 \mathrm{ib}(0,9 \mathrm{~kg})$.
Price: model 10105 adapter, $\$ 15$.

Model 10479日 tilt tray: allows oscilloscopes to be placed on 'Testmobile without direct mounting.
Weight: net, 8 lb ( $3,6 \mathrm{~kg}$ ); shipping. $12 \mathrm{lb}(5,4 \mathrm{~kg})$.
Price: model 10479 B tilt tray, $\$ 35$.


## Description, $1117 B$

Model 1117B for cabinet and rack instruments provides tilt tray angles from $-15^{\circ}$ to $+30^{\circ}$ in $712^{\circ}$ increments. In addition, other instruments can be mounted in the standard relay racks of the lower compartment. Rack mounting depth is 23 . inches and power distribution is supplied.

Optional accessory drawers $3^{\prime \prime}$ and $8^{\prime \prime}$ deep are available. The drawers may be installed in many vertical positions of the relay racks.

Specifications, 1117B
Osclloscope compatibility: cabinet or 19 -inch rack models. Titt engle: $-15^{\circ}$ to $+30^{\circ}$ in $7 x^{\circ}$ steps.

TESTMOBILES

Dimensions: see outline drawing
Wheel size: 4 -inch ( $101,6 \mathrm{~mm}$ ).
Weight: net, $91 \mathrm{lb}(41,3 \mathrm{~kg})$; shipping, $109 \mathrm{lb}(49,4 \mathrm{~kg})$
instrument mounting hardware supplied; 8 screws ( $10-24 \times 3 / 4$ )
(HP Park No. 2680-0029), 8 Tinnernan nuts (HP Part No. 0590.0128).

Price (less drawers): model 1117B Testmobile, $\$ 240$.
Optlonal accessories
Model 10475A 3-inch drawer
Weight: net, $9 \mathrm{lb}(4,1 \mathrm{~kg})$; shipping, $13 \mathrm{lb}(5,9 \mathrm{~kg})$.
Price; model 10475 A. 3 -inch accessory drawer, $\$ 4 \not 0$.
Model 10476A 8-inch drawer
Waight: net, $11 \mathrm{lb}(5,4 \mathrm{~kg})$; shipping, $18 \mathrm{lb}(8,2 \mathrm{~kg})$.
Price: model 10476A, 8-inch accessory drawer, $\$ 50$.


Description, 1118A
Model 1118A Testmobile is designed for 180 or 1200 series cabinet models, and (with a 10105A adapter) 1700 series oscilloscopes. Instruments can be tilted, rotated and vertically adjusted. This tripod testmobile also folds for easy transportation.

## Specifications, 1118A

Oscilloscope compatlbility: 180 and 1200 series cabinet models direct, 1700 series with 10105A Adapter Plate. (Use Model 1119C or D Testmobile for 183 A or C Oscilloscopes.)
Tlit angle: $\pm 45^{\circ}$.
Horizontal rotatlon: $360^{\circ}$.

Vertical height: 33 to 43 inches ( 838.2 to 1117.6 nm ).
Dimensions: see outline drawing.
Wheel slze: 3 -inches ( $76,2 \mathrm{~mm}$ ) with locks on wo wheels.
Weight: net, $13 \mathrm{lb}(5,9 \mathrm{~kg})$; shipping, $17 \mathrm{ib}(7,7 \mathrm{~kg})$.
Price: model 1118A, Testmobile, $\$ 120$.
Optional accessory
Model 10105A adapter plate: adapts 1700 series oscilloscopes to 1118A Testmobiles.
Welght: net, $1 \mathrm{ib}(0,5 \mathrm{~kg})$; shipping, $2 \mathrm{ib}(0.9 \mathrm{~kg})$.
Price: model 10105A adapter, $\$ 15$.


Description, 1116A
Model 1116A is a light weight Testmobile constructed of chrome-plated tubular steel and is well suited for holding general purpose instrumentation.

Specifications, 1116A
Oscilloscope compatibility: 140 series, 180 series rack models. 1200 series rack models, and other rack width instruments. Tlit angle: horizontal $1030^{\circ}$ in $71 / 2^{\circ}$ steps.
Dimensions: see outline drawing.
Wheel size: 4 inches ( $101,6 \mathrm{~mm}$ ).
Weight: net, $32 \mathrm{lb}(15,5 \mathrm{~kg})$; shipping, $49 \mathrm{lb}(22,2 \mathrm{~kg})$.
Price: model 1116A Testmobile, $\$ 95$.


Power supplies, as described on the following pages, are defined as instruments which electronically transform ac input power into regulated dc output power. The power supply product infor. mation is divided into seven main sections.
(1) General Purpose Lab Supplies:

Pgs. 186-193.
(2) Industrial Power Supplies:

Pgs. 194 and 195.
(3) Precision Power Supplies:

Pgs. 196 and 197.
(4) Modular Power Supplles:

Pgs. 204-206.
(5) Bi-polar Power Supply/Amplifiers:

Pgs. 198 and 199.
(6) Precision Constant Current Sources: Pg. 200.
(7) Digitally Programmable Power Supplies: Pgs. 202 and 203.
Categories (1) through (4) cover the typical, or general purpose applications of dc pover supplies including general laboratory use, systems porer, compo. nent testing. refecence sources, etc. The bipolar power supply/amplifiers, constant current sources, and digitally programmable supplies have more special. ized applications.
All categories are described briefly in subsequent paragraphs on this page and in detail on the pages referenced above. A condensed listing showing model number, ourput voltage, and output current, of the power supplies in categories (1) through (4) is presented on the adjoining page.

## General purpose power supplies

Within this group (general purpose lab, industrial, precision, and modular porrer supplies) four different classes of specifications are provided: Rating, Performance, Features and General. The meaning and significance of the most imporeant specifications are described below.

## Rating

This specificacion group covers output voluge (arranged within the specifica. tions tables in ascending voltage order), and output current. The following convention is observed in stating the output current rating: supplies with an adjustable current limit are listed as " O . XXXA'; supplies with a fixed, factoryset current limit are listed as "XXXA."

## Performance

Performance information includes all the basic power supply specifications (load and line regulation, ripple and noise. temperature coefficient, stability,
and transient response). Definitions of all specifications are given on page 201.

In general, Hewlett-Packard power supplies employ one of three regulation techniques: (1) series-transistor regulation; (2) SCR regulation; or (3) switch. ing.transistor regulation.

All low output power supplies use circuir rechnique (1) because it results in both lower cost and better performance.

Medium output power lab-type sup. plies may use either the series or SCR technique; or alternatively, a combination of the two in which a series-transistor regularor is preceded by an SCR regulator. All industrial-type supplies employ circuit technique (2) because of its grearer efficiency. The switching-transistor regulator is used in medium and high) power modular supplies where compact size, efficiency, and minimum heat generation are of primary importance.

These different regulation techniques result in distinctly different performance characteristics, particularly writh regard to regulation, ripple, and transient eesponse.

As a guide line, some typical performance specifications are listed below. Complate specifications are given in the applicable tables.

Spaolitartion	Transistor Regulatad
Line \& Load Regulation	$0.001 \%$ to 0.05\%
Ripple \& Noise	$50 \mu \mathrm{~V} 101 \mathrm{mV}$
Transient response	Less than $50 \mu$ s
Speosfication	SCR Ragulatad
Line \& Load Regulation	$0.05 \%$ to $1 \%$
Ripple \& Noise	0.1\% $103 \%$
Transient Response	Less than $50-200 \mathrm{~ms}$
Speshication	Swheniling Regulated
Line \& Load Regulation	$0.05 \%$ to 0.2\%
Ripple \& Noise	20 mV to 60 mV
Transient Response	Less than 5 ms

## Features

The fearures group describes the specific characteristics of various extra-per. formance features available on most Hewlett-Packard power supplies. In. cluded are:

Output Made: DC power supplies tan provide one of three basic modes of operation: (1) Constant Voltage, where the outpur voltage is maintained constant in spite of changes in load, line, or temperature; (2) Constant Current, where the output current is maintained constant in spite of changes in load, line, or temperature; (3) Current Limit, where the ourput current of a constant voltage power supply is limited to a predetermined maximum value (fixed or adjustable).

Auto-Series, Auto-Parallel, and AutoTracking: Auto-Series operation is a means of obtaining a higher output voltage than that available from a single supply. Similarly, Auto-Parallel opera. tion is a means of obtaining a higher output current than that available from a single supply. Auto Series and AutoParallel provide equal voltage and cur. rent sharing (respectively) under all load conditions: both allow the master supply alone to control the complete ensemble. Auto-Tracking operation is used when several different voltages referred to a common bus must vary in proportion to the setring of a particular supply: it permits simultaneous turn-on and turn-off of power supplies in the same system.

Remote Sensing: Remote sensing is used to maintain good constant voltage load regulation at loads remorely located from the power supply output terminals.

Remote Programming: Most HewlettPackard power supplies permit control of the regulated outpur voltage or cur. rent by means of a remotely varied resistance or voltage.

Overvoltage Protection Crowbar: Overvoltage protection circuits provides protection against any overvoltage condition which might occur due to operator error or failure of the power supply or load.

## General

Input power ratings and connections, dimensions, weight, price, and options available are given in the specifications tables.

## Special purpose power supplies Power Supply/Ampliflers

Power Supply/Amplifiers (pages 198 and 199) are multi-purpose laboratory instruments capable of operation either as de power supplies, or as high speed, programmable, bipolar, dc to 20 kHz power amplifiers.

## Precision Constant Current Sources

Precision Constant Current Sources (page 200) are designed for applications requiring (1) more precise current regulation, (2) lower ripple and noise at low ourput current levels, and (3) higher output impedance and faster programming speed (better dynamic characteristics) than are available from a CV/CC supply operating in the constant curtent mode. Application Note AN128, available at no charge from your local Hewlett-Packard sales office, provides detailed applications information on Hewlett-Packard Precision Constant Current Sources.

## Digital Voltage/Current Sources

Digital Voltage/Curtent Sources (pages 202 and 203) are designed for applications requiring a computer-controllable high-speed, bipolar, accurately setrable source of de or low frequency ac power. These power supplies are acrually complete digital-to-analog subsystems, incorporating input/ourput isolation, internal digital data storage, flexible interfaces, programmable current latch, computer feedback signals, external analog input, and current monitoring terminals 1)ll in one compact package.

Hewlett-Packard offers a nother means of achieving digitally programmable dc power: The 6940A/6941A ANulciprogrammer (page 472), in combination with any of the general purpose power supplies having resistance programming capabilities and employing Option 40. This combination allows control of up to 240 power supplies via a single minicomputer I/O channel. with accuracy of $0.1 \%$ and programming speeds from 10 ms .

DC Power Supply Handbook
This 138 -page book is a comprehensive source of derailed information on the operation. performance, and connection of all Hewlett-Packard regulated dc power supplies. It is available at no charge from your local Hewlet-Packard sales office.

HIgh power industrial supplles

Modal	Railngs		$\begin{aligned} & \text { Speces } \\ & \text { Pagge } \end{aligned}$
	Volts	Amps	
64288	20	45	194
64338	36	10	194
64348	40	25	194
64388	80	5	194
64398	60	15	194
64438	120	2.5	194
64488	600	1.5	194
6453A	15	200	194
6456B	36	100	194
6459 A	64	50	194
$6464 C$	8	1000	194
6466 C	16	600	194
6469 C	36	3005	194
6472 C	64	150	194
6475 C	110	100	194
6477 C	220	50	194
6479 C	300	35	194
8483C	440	25	194

Precision power supplies

Modal	Ratings		$\begin{aligned} & \hline \text { Specs } \\ & \text { Pagg } \end{aligned}$
	Votis	Amps	
6101A	20	1	196
6102A	40	0.5	196
6104A	20,40	2,1	196
6105A	50, 100	0.4, 0.8	196
6106A	100	200 mA	196
6110A	3000	5 mA	196
6111A	20	1	196
6112 A	40	0.5	196
6113A	10	2	196
6114A	20, 40	2,1	196
6115A	50, 100	0.4,0.8	196
6116A	100	200 mA	196


Madel	Ratings		$\begin{aligned} & \hline \text { Specs } \\ & \text { Page } \end{aligned}$
	Votts	Amps	
7120	$\begin{array}{r} -150, \\ -300, \\ 500, \end{array}$	5 mA ;   50 mA ;   200 mA	198
721A	30	0.15	188
890A	320	0.6	192
895A	320	1.5	192
6200B	20	1.5	186
62008	40	0.75	188
62018	20	1.5	186
6202 B	40	0.75	188
62038	7.5	3	186
62048	20	0.6	186
62043	40	0.3	188
6205 B	20	0.8	186
62058	40	0.3	188
62068	30	1	186
62068	60	0.5	188
6207B	160	0.2	192
62098	320	0.1	192
6211 A	100	100 mA	192
6212 A	100	100 mA	192
6213A	10	1	186
6214 A	10	1	186
6215 A	25	400 mA	188
6216A	25	400 mA	188
6217A	50	0.2	190
6218A	50	0.2	190
62208	25	I	186
6220B	50	0.5	188
62248	24	3	188
62268	50	1.5	190
6227 B	25	2	188
62288	50	I	190
6253 A	20	3	186
6255 A	40	1.5	190
62568	10	20	186
62598	10	50	186
62608	10	100	186
62618	20	50	188
62638	20	10	188
62648	20	20	188
62658	40	3	190
62668	40	5	190
62678	40	10	190
6288 B	40	30	190
6269B	40	50	190
6271B	80	3	192
62748	50	15	192
6281A	7.5	5	186
6282A	10	10	186
6284A	20		186
6285A	20	5	186
6286A	20	10	188
6289A	40	1.5	190
6290A	40	3	190
6291 A	40	5	190
6294A	60	I	190
8296A	60	3	192
6299A	100	750 mA	192
6384 A	5.5	8	186
6515 A	1600	5 mA	192
6516A	3000	6 mA	192
6521 A	1000	200 mA	192
6522 A	2000	100 mA	192
6525A	4000	50 mA	192

Modular power supplles
62000 Series (see page 204) 44 Models/3-48 V/To 192 W Output Series Regulated

Model	Volts	Amps			
		MOD	$M \mathrm{c}_{\mathrm{C} \mathrm{\prime} \mathrm{\prime}}$	$\begin{gathered} \mathrm{ED}^{\prime \prime} \\ \text { MOD } \end{gathered}$	$\begin{aligned} & \text { MOD }^{\prime \prime} \end{aligned}$
62003	3	2.0	4.25	8.5	17.0
62004	4	2.0	4.0	8.0	16.0
62005	5	2.0	4.0	8.0	16.0
62006	6	1.75	3.75	7.5	15.0
52010	10	1.5	3.25	6.5	13.0
52012	12	1.5	3.0	6.0	12.0
62015	15	1.25	2.5	5.0	10.0
62018	18	1.0	2.25	4.5	9.0
62024	24	0.75	1.75	3.75	7.5
62028	28	0.70	1.5	3.25	6.5
62048	48	0.45	1.0	2.0	4.0

## 62600 Series (see page 205)

9 Models/4-28 V/TO 300 W Output Switching Regulated

Model	Rsilings		Elfialency
	Volts	Amps	
	4 V	40.0 A	65
62604 J	5 V	40.0 A	65
62606 J	6 V	33.0 A	65
62610 J	10 V	25.0 A	75
62612 J	12 V	23.0 A	75
62615 J	15 V	20.0 A	80
62618 J	18 V	16.7 A	80
62624 J	24 V	12.5 A	80
62628 J	28 V	10.7 A	80

60,000 Serles (see page 206)
$6,12,24 \mathrm{~V}$ and $\pm 15 \mathrm{~V} /$ Single and Dual Outputs
Series Regulated

Model	Ratings		
		Nominal Vatit	Amps
60063A		6	1.5
60065 A		6	3
60066 A		6	8
601228		12	0.5
601238		12	1
601258		12	2.2
601268	否	12	6
602428	¢	24	0.25
602438		24	0.5
602448		24	1
60245B		24	1.5
602468		24	3.5
60153 D	T	$\pm 15$	$0-0.2$
60155C	吕	$=15$	00.75

## POWER SUPPLIES

b
GENERAL PURPOSE LAB SUPPLIES
Single \& Dual Outputs, 8-2,000 Watts
Models 721A, 890A, 895A, 6200B 6384A, 6515A.6525A

## Low cost single output supplies

## Description

Models 6211A-6218A. These low cost, compact, and reliable power supplies are designed especially for bench use. Theis performance and features make them ideal for circuit development, component evaluation, and other general laboratory applisations. The units are packaged in a molded impact-resistant case with an interlocking feature that allows two or more supplies to be stacked vertically. Standard features include short-circuit protection, dual-function merering, and coarse and fine outpur voltage controls. Any number of supplies can be connected in series when greater voltage is desired. Rack mounting accessories are described on page 201.

Model 721A. The 721A is a low cost bench-type power supply, packaged in a rugged aluminum case. The supply
will current-limit at any of four switch-selected values (25, 50,100 , or 200 mA ), while a six-position meter switch selects either of two voltage ranges ( 10 or 30 V ) or four current ranges ( $10,30,100$, or 300 mA ) for display on the meter. Performance and features of this supply make it especially useful for transistor circuit development applications.

Models 6200B-6209B (except 6205B). These models are packaged in 8 -inch wide cases which are suitable for bench use or rack installation. Rack mounting accessories are described on page 201. Standard features include Constant Voltage/Constant Current or Constant Voliage/Current Limit operation (depending on model), remoke resistance and voltage programming, remote sensing, Auto-Series/ Auto-Parallel/Auto-Tracking operation, and dual-function multi-range metering.

## Selection Guide (General Purpose Lab Supplies)

Rationg		Madel	Lead Ragulation		Line Regulation		Hipple \& Noisfa				Temperature Coetricient		Output Mode
Voits	Amps		Voltage	Current	Voltrge	Current					Voltage	Current	
4.5.5	8	6384A	imv	NA	1 mV	NA	1 ml	5 mV	NA	NA	3 mV	NA	CV/CL
0.7 .5	0.3	62038	5 mV	$\begin{array}{\|l\|} \hline 0.03 \% \\ \text { plus } 250 \mu \mathrm{~A} \end{array}$	3 mV	$\begin{array}{\|l} \hline 0.01 \% \\ \text { plus } 250 \mu \mathrm{~A} \end{array}$	$200_{\mu} \mathrm{V}$	imv	$500 \mu \mathrm{~A}$	--	0.02\%   plus 1 mV	$\begin{aligned} & 0.02 \% \\ & \text { plus } 2 \mathrm{~mA} \end{aligned}$	CVICC
0-7.5	0.5	6281A	5 mV	$\begin{aligned} & 0.01 \% \\ & \text { plus } 25 \mathrm{~A} \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 0.01 \% \\ & \text { jlus } 2 \mathrm{mV} \end{aligned}$	$0.01 \%$ plus $250 \mathrm{~A} A$	2004 V	$\operatorname{ImV}$	40A	-	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500_{\mu} \mathrm{V} \text {. } \end{aligned}$	$\begin{array}{\|l\|} \hline 0.02 \% \\ \text { plus } 2.5 \mathrm{~mA} \\ \hline \end{array}$	cVics
0-10	1	6213A	4 mV	NA	4 mV	NA	200 $\mu \mathrm{V}$	imV	NA	NA	$\begin{aligned} & 0.02 \% \\ & \text { plus } 1 \mathrm{mV} \end{aligned}$	NA	CV/CL
$0-10$	0.1	6214 A	4 mV	500, A	4 mV	750 ${ }^{\text {A }}$	200, V	1 mV	$150 \mu \mathrm{~A}$	$500 \mu \mathrm{~A}$.	$\begin{aligned} & 0.02 \% \\ & \text { plus } \operatorname{Iinv} \end{aligned}$	6 mA	cvice
0-10	0.10	8282A	$\begin{aligned} & 0.01 \% \\ & \text { plus } 1 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \hline 0.05 \% \\ & \text { plus } 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } \mathrm{ImV} \end{aligned}$	$\begin{aligned} & 0.05 \% \\ & \text { plus ImA } \end{aligned}$	$500 \mu \mathrm{~V}$	25 mV	5 mA	-*	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 5 \mathrm{~mA} \end{aligned}$	CV/CC
010	0.20	62568	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200 \mathrm{~V} V \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & 0.14 \mathrm{~s} .50 \mathrm{D}_{\mu} \mathrm{A} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { oles } 200 \mathrm{~V} V \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500_{\mu} \mathrm{A} \end{aligned}$	200, V	10 mV	5 ma	--	$\begin{aligned} & 0.01 \% \\ & \text { plos } 200 \mathrm{jV} \end{aligned}$	$\begin{aligned} & \begin{array}{l} 0.01 \% \\ \text { plus } 2 \mathrm{~mA} \end{array} \end{aligned}$	cV/cc
0.10	0.50	6259B	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200 \mathrm{uV} \end{aligned}$	$0.02 \%$ olus imA	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0.02 \% \\ & \text { plus 2mA } \end{aligned}$	$500 \mu \mathrm{~V}$	5 mV	25 mA	--	$\begin{aligned} & 0.01 \% \\ & \text { plus } 2000_{\mu} \mathrm{V} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 4 \mathrm{~mA} \end{aligned}$	CV/CC
0.10	0.700	6280B	$\begin{aligned} & 0.0 .1 \% \\ & \text { plus. } 200 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0.02 \% \\ & \text { plus } 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { ples 200 } \mathrm{V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 2 \mathrm{~mA} \end{aligned}$	500] V	5 mV	50 mA	-	$\begin{aligned} & 0.01 \% \\ & \text { plos } 200_{\mu} \mathrm{V} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.01 \% \\ \text { plus } 8 \mathrm{~mA} \end{array}$	CV/EC
$\begin{aligned} & 0.20 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.3 \end{aligned}$	6204B	0.01\%   plus 4 mV	NA	$0.01 \%$ plus 4 mV	NA	$200 \mu \mathrm{~V}$	ImV	NA	NA	0.02\% plus ImV	NA	CV/CL
$\begin{aligned} & 0-20 \\ & 0-40 \\ & \text { Buel } \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.3 \end{aligned}$	6205B	$\begin{aligned} & 0.01 \% \\ & \text { plus } 4 \mathrm{mV} \end{aligned}$	NA	$\begin{aligned} & 0.01 \% \\ & \text { plus } 4 \mathrm{mV} \end{aligned}$	NA	$200 \mu \mathrm{~V}$	1 mV	NA	NA	$\begin{aligned} & 0.02 \% \\ & \text { plus } \ln \mathrm{V} \end{aligned}$	NA	CV/CL
$\begin{aligned} & 0.20 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.1 .5 \\ & 0.0 .75 \end{aligned}$	62008	$\begin{aligned} & 0.01 \% \\ & \text { plus } 4 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.03 \% \\ & \text { plus } 250 \mu \mathrm{~A} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.01 \% \\ \text { plus 4mV } \end{array}$	$\begin{array}{\|l\|} \hline 0.01 \% \\ \text { plus } 250_{\mu} \mathrm{A} \end{array}$	200, V	lmV	$500 \mu \mathrm{~A}$	-	$\begin{aligned} & 0.02 \% \\ & \text { olus } 1 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus ImA } \end{aligned}$	CV/CE
0.20	$0-1.5$	62018	$0: 07 \%$ olus, Am V .	$\begin{aligned} & 0.03 \% \\ & \text { plus } 250, \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 4 \mathrm{mV} \end{aligned}$	$0.01 \%$ plus 2604A.	2004 V	imV	$500 \mu A$	-	$\begin{aligned} & 0.02 \% \\ & \text { plus Imv } \end{aligned}$	$\begin{array}{\|l\|} \hline 0.02 \% \\ \text { plus ima } \end{array}$	cvicc
$0.20$	0.3	6253A	$\begin{aligned} & 0.01 \% \\ & \text { plus } 4 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 250 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 2 \mathrm{mVV} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.01 \% \\ \text { plus } 250 \mu \mathrm{~A} \\ \hline \end{array}$	$200 \mu \mathrm{~V}$	1 mV	2 mA	--	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500 \mathrm{~V} \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 1.5 \mathrm{~mA} \\ & \hline \end{aligned}$	CV/CC
0-20	0.3	8284A	$\begin{aligned} & 0.01 \% \\ & \text {-plus } 4 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 250 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plas } 2 \mathrm{mV} \end{aligned}$	$0.08 \%$   plus $250 \mu \mathrm{~A}$	200 kV	1 mV	2 mA	-	$\begin{aligned} & 0.02 \% / \\ & \text { plus } 500 \mathrm{in} \end{aligned}$	$0: 02 \%$	CV/CC
0.20	0.5	6285A	$\begin{aligned} & 0.01 \% \\ & \text { plus } 1 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \hline 0.05 \% \\ & \text { plus } 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } \$ \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.05 \% \\ & \text { plus } 1 \mathrm{~mA} \end{aligned}$	$500 \mu \mathrm{~V}$	25 mV	3mA	--	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500 \mu \mathrm{~V} \end{aligned}$	$\begin{array}{l\|} \hline 0.02 \% \\ \text { plus } 2.5 \mathrm{~mA} \end{array}$	CV/CC

## Low cost single output supplies


$\left.\begin{array}{l}6211 \mathrm{~A}- \\ 6212 \mathrm{~A}-\end{array}\right\} 100 \mathrm{~V} / 0.1 \mathrm{~A} ;$ p. $\left.192 \begin{array}{l}\text { 6215A- } 6216 \mathrm{~A}-\end{array}\right\} 25 \mathrm{~V} / 0.4 \mathrm{~A}:$ p. 188
$\left.\begin{array}{ll}\text { 6213A- } \\ 6214 A-\end{array}\right\} 10 \mathrm{~V} / 1 \mathrm{~A} ;$ p. $\left.186 \begin{array}{ll}\text { 6217A- } \\ \text { 6218A- }\end{array}\right\} 50 \mathrm{~V} / 0.2 \mathrm{~A} ;$ p. 190

$6200 \mathrm{~B}-200 \mathrm{~V} / 2.5 \mathrm{~A}$ or $40 \mathrm{~V} / 0.75 \mathrm{~A} ;$ p. 186
6204B-20V/0.6A or 40V/0.3A; p. 186
$6206 \mathrm{~B}-60 \mathrm{~V} / 0.5 \mathrm{~A}$ or $30 \mathrm{~V} / 1 \mathrm{~A}$; p. 190


721A-30V/0.15A; p. 188


6201B-20V/1.5A; p. 186
6202B-40V/0.75A; p. 188
$6203 \mathrm{~B}-7.5 \mathrm{~V} / 3 \mathrm{~A}$; p. 186
6207B-160V/0.2A; p. 192
6209B-320V/0.1A; p. 192

Stability		Transiont Roc overy		Sorias Par. Track	Remotis Prog.	Overvoleage Prataction		Input Power	Dimensians (in. mm )			Options Available (page 201)	Price
$0.3 \% \text { plus } 10 \mathrm{~m} \text {. }$	MA	S0us	10 mb	No	No	Standard	NC	115Vac $10 \%$, 48-63Hz, 1.4A, 120 W	$\begin{aligned} & 81 / 2 \\ & 216 \end{aligned}$	$\begin{array}{\|l\|} \hline 3 \% \\ 89 \\ \hline \end{array}$	$\begin{aligned} & 128 \\ & 317 \end{aligned}$	28	5258:
$\begin{aligned} & 0.1 \% \\ & \text { olus } 5 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & \text { plus } 10 \mathrm{~mA} \end{aligned}$	60 5 s	10 mV	Yes	Yes	11	550	$115 \mathrm{Vac}+10 \%, 48-440 \mathrm{~Hz}$, 0.9A. JOW	$\begin{aligned} & 81 / 2 \\ & 216 \end{aligned}$	$\begin{array}{\|l\|} \hline 31 / 2 \\ 89 \end{array}$	$\begin{aligned} & 121 / 2 \\ & 317 \end{aligned}$	$\begin{aligned} & 78,9,91 \\ & 13,14,28 \end{aligned}$	\$190
$\text { Do.T\% } 2.5 \mathrm{mV}$	0.1\% plus 12.5 mA	S0us	15 mV	Yes	Yes.	11	\$50	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \%, 49.48 \mathrm{~Hz}, \\ & 1.3 \mathrm{~A}, 118 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 881 / 2 \\ & 216 \end{aligned}$	$\begin{array}{\|l\|} \hline 31 / 2 \\ 89 \end{array}$	$\begin{aligned} & 10 \% \\ & 368 \end{aligned}$	$\begin{aligned} & 7,8,9,11 \\ & 13,14,28 \end{aligned}$	\$245
$\begin{aligned} & 0.1 \% \\ & \text { plus } 5 \mathrm{mV} \end{aligned}$	NA	S0us	15 mV	No	No	NA	NA	$\begin{aligned} & 115 \mathrm{VaC} \pm 10 \%, 48-440 \mathrm{~Hz}, \\ & 0.29 \mathrm{~A}, 28 \mathrm{~W} \end{aligned}$	$\begin{array}{\|l\|} \hline 54 \\ 133 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3 k \\ 83 \\ \hline \end{array}$	$\begin{aligned} & \hline 8 \\ & 203 \end{aligned}$	28	S98
$\begin{aligned} & 0 .{ }^{0.5 \%} \\ & \text { plus } 5 m v \end{aligned}$	15 mA	50 us	15 mV	No	No.	NA	NA	$\begin{aligned} & 1 \mathrm{TPV} \mathrm{Va}^{\circ} \pm 10 \%, 48 \mathrm{~A} 40 \mathrm{~Hz} ; \\ & 0.3 \mathrm{~A}_{i} 28 \mathrm{~W} \end{aligned}$	$\begin{array}{\|l\|} \hline 51 \\ 133 \end{array}$	$\begin{aligned} & 34 \\ & 83 \end{aligned}$	$\begin{aligned} & 8 \\ & 203 \end{aligned}$	28	5120
$\begin{array}{\|l\|} \hline 0.1 \% \\ \text { plus } 2.5 \mathrm{mV} \\ \hline \end{array}$	$\begin{aligned} & 0.1 \% \\ & \text { plus } 25 \mathrm{~mA} \end{aligned}$	$50 \mu \mathrm{~s}$	15 mV	Yes	Yes	11	\$55	$\begin{aligned} & 115 \mathrm{Vat} \pm 10 \%, 57-63 \mathrm{~Hz}, \\ & 3.5 \mathrm{~A}, 200 \mathrm{~W} \end{aligned}$	$\begin{array}{\|l\|} \hline 81 / 2 \\ 216 \end{array}$	$\begin{array}{\|l\|} \hline 5 \% \\ 133 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 16 \\ 406 \\ \hline \end{array}$	$\begin{aligned} & 5,1,8,9,11 \\ & 13,14,18 \end{aligned}$	\$360
$\begin{aligned} & 0.03 \% \\ & \text { inlus sodiv } \end{aligned}$	$\begin{aligned} & 0.03 \% \\ & \text { iplus } 6 \mathrm{gm} \\ & \hline \end{aligned}$	5 Fg 5	10 mV	Yes	Yas:	Standird	NC	$\begin{aligned} & 115 \mathrm{Vac}+10 \% ; 57.63 \mathrm{~Hz} \text {. } \\ & 5 A, 375 \mathrm{~W} \end{aligned}$	$\begin{array}{\|l\|} \hline 18 \\ 483 \\ \hline \end{array}$	$\begin{array}{\|l\|} 5 \% \\ 133 \end{array}$	$\begin{aligned} & 17 \% \\ & 445 \end{aligned}$	$\begin{aligned} & 5,7, B, 9,10,13,14 \\ & 20,21,22,27,28, A 0 \end{aligned}$	5525
$\begin{aligned} & \hline 0.03 \mathrm{~K} \\ & \text { plus } 2 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.03 \% \\ & \text { plus } 10 \mathrm{~mA} \end{aligned}$	50ys	10 mV	Yes	Yes	Standard	NC	$\begin{aligned} & 230 \mathrm{Vac} \pm 10 \%, 57-63 \mathrm{~Hz}, \\ & 6 \mathrm{~A}, 850 \mathrm{~W} \end{aligned}$	$\begin{array}{\|l\|} \hline 19 \\ 483 \end{array}$	$\begin{array}{\|l} \hline 7 \\ 178 \\ \hline \end{array}$	$\begin{aligned} & \hline 171 / \\ & \hline 445 \\ & \hline \end{aligned}$	$\begin{aligned} & 5,7,8,9,10,13,14 \\ & 2021,22,26,27,40 \end{aligned}$	\$725
$\begin{aligned} & 0.03 \% \\ & \text { ipus } 2 \mathrm{mV} \text {. } \end{aligned}$	$\begin{aligned} & 0.03 \% \\ & 0.30 \mathrm{~mA} . \end{aligned}$	60/s	10 mV	Yes	Yos	Sjandard	NC	$\begin{aligned} & 230 \mathrm{Vot} \pm 10 \%, 57-83 \mathrm{~Hz}, \\ & 128,16000 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$7.178$	$\begin{aligned} & \hline 7 \% \\ & 445 \\ & \hline \end{aligned}$	$\begin{aligned} & 5,7,8,9,10 ; 13,14 \\ & .16220,21,22,27,40 \end{aligned}$	\$895
$0.1 \%$ plus 5 mV	NA	50us	10 mV	Yes	Yes	13	\$50	$115 \mathrm{Vac} \pm 10 \%, 48-440 \mathrm{~Hz}$, 0.4A, 24W	$\begin{aligned} & 81 \\ & 216 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 31 / 2 \\ 88 \end{array}$	$\begin{aligned} & 121 \\ & 317 \end{aligned}$	7,11,13,28	\$170
$\begin{aligned} & \text { 0.1\% } \\ & \text { olus } 5 \mathrm{mV} \end{aligned}$	NA	50ws	10 mV	Yes	Yes	$11$	\$80	$\begin{aligned} & 1 \mathrm{VVOC} \pm 10 \% ; 48440 \mathrm{~Hz} \text { ? } \\ & 0.5 \mathrm{~A}, 50 \mathrm{w} \end{aligned}$	$\begin{aligned} & 818 \\ & 218 \end{aligned}$	$\begin{array}{\|l\|} \hline 3 \% \\ 89 \\ \hline \end{array}$	$\begin{aligned} & 12 \ddot{y}_{2} \\ & 317 \end{aligned}$	7.11,13,28, 40	\$25
$\begin{aligned} & 0.1 \% \\ & \text { plus } 5 \mathrm{mV} \end{aligned}$	$0.1 \%$   plus 5 mA	50as	10 mV	Yes	Yes	11	550	$\begin{aligned} & 116 \mathrm{Vac} \pm 10 \%, 48440 \mathrm{~Hz} . \\ & 0.9 \mathrm{~A}, 70 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 81 / 2 \\ & 216 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 31 / 2 \\ 88 \end{array}$	$\begin{aligned} & 121 / 2 \\ & 317 \end{aligned}$	${ }_{28}^{7,8,11,13,14}$	\$210
$\begin{aligned} & 0: 1 \% \\ & \text { alus } 5 \mathrm{mV} \end{aligned}$	$0.1 \%$ plus 5 mA	50us	tomV	Yes	Yes	11	\$50	$\begin{array}{\|l\|} \hline 115 \mathrm{Vac}+710 \%, 48-440 \mathrm{~Hz}, \\ 0.8 \mathrm{~A}, 66 \mathrm{~W} \end{array}$	$\begin{gathered} \overline{9} / 2 \\ 216 \end{gathered}$	$\begin{aligned} & 3 \cdot \frac{1}{2} \\ & 89 \\ & 89 \end{aligned}$	$\begin{aligned} & 127 \\ & 317 \end{aligned}$	$\begin{aligned} & 78,9,11,3,14 \\ & 28 \end{aligned}$	$\$ 190$
$\begin{aligned} & 0.1 \% \\ & \text { olus } 2.5 \mathrm{mV} \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & \text { plus } 7.5 \mathrm{~mA} \end{aligned}$	50us	15 mV	Yes	Yes	11	\$110	$\begin{aligned} & 115 \mathrm{Vec} \pm 10 \%, 48 \wedge 40 \mathrm{~Hz}, \\ & 2.6 \mathrm{~A}, 236 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 19 \\ & 483 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3 k_{1} \\ & 89 \end{aligned}$	$\begin{aligned} & 148 \\ & 368 \end{aligned}$	$\begin{aligned} & 78,9,10,11,13 \\ & 14.28 \end{aligned}$	\$490
$\begin{aligned} & 0.7 \% \\ & \text { Rhy: } 2.5 \mathrm{mV} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & \text { plus } 7.50 \mathrm{~A} \end{aligned}$	50,	15 mV	Yes	Yes	11	\$50	T15Vac $\pm 10 \%, 48-440 \mathrm{~Hz} ;$ 1.5 A .128 W	$\begin{aligned} & 88 \\ & 216 \end{aligned}$	$\begin{aligned} & 36 \\ & 89 \\ & 89 \end{aligned}$	$\begin{aligned} & 1442 \\ & 368 \end{aligned}$	$789811,1314$	5230
$\begin{aligned} & 0.1 \% \\ & \text { plus } 2.5 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & \text { plus } 12.5 \mathrm{~mA} \end{aligned}$	50 ss	15 mV	Yes	Yes	11	\$55	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \%, 57.63 \mathrm{~Hz}_{2} \\ & 3.5 \mathrm{~A}, 160 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 81 / 2 \\ & 216 \end{aligned}$	$\begin{aligned} & 5 / 4 \\ & 133 \end{aligned}$	$\begin{aligned} & 18 \\ & 406 \end{aligned}$	$\begin{aligned} & 5,7,8,9,11,13,14 \\ & 18 \end{aligned}$	\$350

[^11]
## Low cost dual output supply



62058-20V/0.6A or 40V/0.3A; p. 186

## Description

Model 6205日. The Model 6205B is actually two independent Constant Voltage/Current Limit power supplies in a single half-rack width case. Each regulated output is selectable in either of two ranges $(0.20 \mathrm{~V}$ at $0-0.6$ A or 0.40 V at $0-0.3 \mathrm{~A}$ ) by a convenient front-panel switch. Output voltage is adjusted by concentric coarse and fine controls. Separate controls, binding posts, and dual-function meters are provided for each output. Automatic current limiting, remote sensing, remote voltage and current output program. ming, and Auto-Series/Auto-Parallel/Auto-Tracking opera. tion are standard features. For protection of delicate loads, built-in overvoltage crowbar protection is available as an option. Units measure $8.7 / 32^{\prime \prime} \mathrm{W} \times 3.13 / 32^{\prime \prime} \mathrm{H} \times 113 / 4^{\prime \prime} \mathrm{D}$ and may be bench operated or mounted individually, in pairs, or combined with models 6200B-6209B using optional rack-mounting kits (ste page 201).

Selection Guide (General Purpose Lab Supplies) continued

Rating		Model	Load Regulation		Line Regulation		Ripple \& Noisf				Temperature Coefticient		Outpus Mode	
Volts	Amps		Vodtage	Current	Voltage	Current					Voltage	Current		
020	0.10	6286A	$\begin{aligned} & 0.0 \mathrm{~T} \% \\ & \text { olus } \operatorname{InV} \mathrm{V} \end{aligned}$	$0: 05 \%$ olus imA	$0.01 \%$ plus imv	$0.05 \%$ plus ima	500 HV	25 mV	5 mA	-	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500_{\mu} V \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { pluis } 5 \mathrm{~mA} \end{aligned}$	crice	
0.20	0.10	62638	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200, \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { olus } 500_{\mu} \mathrm{A} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200_{\mu} \mathrm{V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500 \mu \mathrm{~A} \end{aligned}$	$200 \mu \mathrm{~V}$	10 mV	3 mA	--	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 2 \mathrm{~mA} \end{aligned}$	CV/CC	
0.20	0.20	62548	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200 \mathrm{piv} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.01 \mathrm{~N}_{6} \mathrm{y} \\ & \text { plus } 200_{\text {r }} \mathrm{V} \end{aligned}$	0:02\% plus 600 A A	20014 V	10 mV	5 mA	-	$\begin{aligned} & 0.0+\% \\ & \text { plus } 200 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 2 \mathrm{~mA} \end{aligned}$	CV/CC	
0.20	0.50	62618	$\begin{array}{\|l\|} \hline 0.01 \% \\ \text { plus } 200 \mu \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 1 \mathrm{~mA} \end{aligned}$	$0.01 \%$ plus $200 \mu \mathrm{~V}$	$\begin{aligned} & 0.02 \% \\ & \text { pius } 1 \mathrm{~mA} \end{aligned}$	500, V	5 mV	25 mA	--	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 4 \mathrm{~mA} \end{aligned}$	cV/CC	
0:24	0.3	62748	$\begin{aligned} & 00^{0}+\mathrm{Fin} \\ & \text { plus. } 4 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 250 \mu A \end{aligned}$	$0.01 \%$ plas 2 mV	$\begin{aligned} & 0.01 \% \\ & \text { plus } 250 \mathrm{~mA} \end{aligned}$	2004	1 mV	200uA	ImA	$\begin{aligned} & 0.02 \% \\ & \text { pius } 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0:(22 \% \\ & \text { phus } 1.5 \mathrm{~mA} \end{aligned}$	CV/CG	
0.25	400 mA	6215A	4 mV	NA	4 mV	NA	$200 \mu \mathrm{~V}$	1 mV	NA	NA	$\begin{aligned} & \hline 0.02 \% \\ & \text { plus Inv } \\ & \hline \end{aligned}$	NA	CV/CL	
0.25	$0 \cdot 4040$	621BA	4 mV	500 uA	4 mV	5000 A	$200{ }_{\mu} \mathrm{V}$	ImV	150,	500ja	$\begin{aligned} & 0.02 \% \\ & \text { plus } 1 \mathrm{mV} \end{aligned}$	2 mA	CVICS	
$\begin{aligned} & 0.25 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.0 .5 \end{aligned}$	62208	$\begin{aligned} & 0.01 \% \\ & \text { plus } 2 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 250 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 2 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 250 \mu \mathrm{~A} \end{aligned}$	200 NV	1 mV	200uA	1 mA	$\begin{aligned} & 0.02 \% \\ & \text { plus } 1 \mathrm{mV} \text { V } \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 3 \mathrm{~mA} \end{aligned}$	CVICC	
$\begin{aligned} & 0-25 \\ & \text { Onal } \end{aligned}$	0.2	62278		$\begin{array}{\|c\|} 0.01 \% \\ \text { plus } 250 \mu \mathrm{~A} \end{array}$	1 mV	$100 \mu \mathrm{~A}$	$250 \mu \mathrm{~V}$	4 mV	250 $\mu \mathrm{A}$	2mA	$0.02 \%$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 3004 \mathrm{~A} \end{aligned}$	CV/CC	
0.30	150 mA	121A	$\begin{aligned} & 0.3 \% \text { or } \\ & 30 \mathrm{mV} \end{aligned}$	NA	$\begin{aligned} & 0.3 \% \text { or } \\ & 15 \mathrm{mv} \end{aligned}$	NA	$150 \mu \mathrm{~V}$		NA	NA	--	NA	CV/CL	
$\begin{aligned} & 0.30 \\ & 0.60 \end{aligned}$	$0.5$	62068	$\begin{aligned} & 0.01 \% \\ & \text { plus } 4 \mathrm{mV} \text {. } \end{aligned}$	NA	$0.01 \%$	NA	200 NV	$\operatorname{tm} V$	NA	NA	$\begin{aligned} & 0.02 \% \\ & \text { plus } 1 \mathrm{mV} \end{aligned}$	NA	6v/C:	
$\begin{array}{\|l\|} \hline 0-40 \\ 0-20 \\ \hline \end{array}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	62048	$\begin{aligned} & \begin{array}{l} 0.01 \% \\ \text { plus } 4 \mathrm{mV} \end{array} \end{aligned}$	NA	$\begin{array}{\|l\|} \hline 0.01 \% \\ \text { plus } \Delta \mathrm{mV} \end{array}$	NA	$200 \mu \mathrm{~V}$	1 mV	NA	NA	$\begin{aligned} & \hline 0.02 \% \\ & \text { plus } 1 \mathrm{mV} \end{aligned}$	NA	CV/CL	
$\begin{aligned} & 0-40 \\ & 0-20 \\ & 0091 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	6205B	$0.01 \%$ plus 4 mV		0.01\% plus 4imy	NA	$200 \mu \mathrm{~V}$	1 mV	NA	NA	$\begin{aligned} & 0.02 \% \\ & \text { plus } 1 \mathrm{~m} \\| \end{aligned}$	NA	CV/CL	
$\begin{aligned} & 0.40 \\ & 0-20 \end{aligned}$	$\begin{aligned} & 0.0 .75 \\ & 0-1.5 \end{aligned}$	62008	$\begin{aligned} & 0.01 \% \\ & \text { plus } 4 \mathrm{mV} \end{aligned}$	$\begin{array}{\|l\|} 0.03 \% \\ \text { olus } 250 \mu \mathrm{~A} \end{array}$	$0.01 \%$ plus 4 mV	$\begin{array}{\|l\|} \hline 0.01 \% \\ \text { plus } 250 \mu \mathrm{~A} \\ \hline \end{array}$	$200 \mu \mathrm{~V}$	1 mV	$500 \mu \mathrm{~A}$	--	$\begin{aligned} & 0.02 \% \\ & \text { pius } 1 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus ImA } \end{aligned}$	CV/CL	
0.40	0.0 .75	6202B	$\begin{array}{\|l\|} \hline 0.08 \% \\ \text { plus } 4 \mathrm{mV} \end{array}$	$\begin{array}{\|l\|} \hline 0.03 \% \\ \text { plus } 250 \mu \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 4 \mathrm{mv} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { Plus } 250 \mu \mathrm{~A} \end{aligned}$	200, V	1 mv	$500 \mu \mathrm{~A}$	--	$\begin{aligned} & 0.02 \% \\ & \text { plus } \operatorname{lmV} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 0.5 \mathrm{~mA} \\ & \hline \end{aligned}$	CV/CC	

-- indicatas that information was not avgilable at time of printing: NA indicates Noy Applicable: DUAL indicates supply has two, independent, de output voltages.

## General purpose single output supplies

## Description

This group of regulated power supplies consists of fue series covering thirty different models. The five series are designated: (1) Low Volage Rack Supplies; (2) Medium Power Rack Supplies; (3) Medium Power Bench Supplies; (4) Compact Bench Supplies; and (9) Incegrated Circuit Bench Supply. Photographs of these supplies are given on pages 190 and 191. Rack mounting accessories are described on page 201.

Low Voitage Rack Supplies, Models 62568-62748. This series consists of thirteen full-rack width models packaged in three different height cases. All models are of the Constant Voltage/Constant Current type. Available output ratings range from 0.10 V at 0.20 A to 0.60 V at 0.15 A . Standard features inciude overvolage crowbar protection, remore sensing, and remore resistance and volt. age programming.

Medium Power Rack Supplies, Models 890A and 895A. These solid state general purpose Constant Voltage/Current Limit type supplies provide continuously variable output voltage in the range of 0.320 V . Model 890 A has a 0.600 mA output, while the 895A is rated at 0-1.5 A. High performance specifications include $0.007 \%$ line and load regulation and 1 mV rms ripple and noise. Remote sensing and programming are standard Yeatures. Units are packaged in full-rack width modules measuring either $31 / 2$ inches high ( 890 A ) or $51 / 4$ inches high ( 895 A ).
Medium Power Bench Suppiles, Models 6281A.6299A. Eleven regulated power supplies in two different size packages make
up this group of bench-rype supplies. All models are of the Constant Voltage/Constant Current type, with remote sensing, remose programming, and Auto-Series/Auto-Parallel/Auto-Tracking operation as standard features. Output voltage and current are adjusted by means of concentric coarse and fine controls. A four-position meter switch seleats either of two voltage or current ranges for display on the dual.function panel meser. Dual-output versions of models 6284 A and 6289 A are a a ailabic (models 6253 A and 6255 A ) as described on page 192.

Compact Bench Supplles, Models 6220B, 6224B and 6226B. This series consists of three Constant Voltage/Constans Current de power supplies suitable for either bench or rack use. Model 6220B is a dual-range instrument with output ratings of 0.25 V at 0.1 A or 0.50 V at 0.0 .5 A . Models 6224 B and 6226 B have single ourputs of 0.24 V at 0.3 A and 0.50 V ar 0.1 .5 A , respectively. All models feature ten-turn voltage and current conerols and multi-range dualfunction metering. Remote sensing, remote programming, and Auto-Stries/Auro-Parallel/Auto-Tracking operation are standard on all models.

Integrated Circult Bench Supply, Model 6384A. The 6384A is a well-regulated Constant Voltage/Current Limit supply. Its output rating of 4.5 .6 V at 0.10 A , low ripple and noise ( 5 mV P.p ) and fast transient response ( 50 us) make it an ideal supply for integrated sircuit and other low voltage semiconductor circuit applications. Included is an over-voltage crowbar circuit for protection of sensitive loads.

Stablity		Transient Racovery		Series   Par.   Track.	Ramota Prog.	Qvervoltage Psataction		Input Power	Olmensions (in./mm)			Options Available (pyge 201)	Price
		Timb	Leve			Option	rice		w	H	0		
$\text { 0.1\% } 2.5 \mathrm{my}$	$\begin{aligned} & 0.1 \% \\ & \text { plus } 25 \mathrm{~mA} \end{aligned}$	$50 \mathrm{\mu s}$	15 mV	Yes	Yes	11	\$55.	$\text { 115Vectio\%, } 57.63 \mathrm{~Hz},$	$\begin{aligned} & 8 \% \\ & 216 \end{aligned}$	$\begin{aligned} & 51 / 2 \\ & 133 \end{aligned}$	$\begin{aligned} & 36^{24 x} \\ & 406 \end{aligned}$	$\int_{18}^{58911,13,14}$	\$395
$\begin{aligned} & 0.03 \% \\ & \text { plus } 500 \mu \mathrm{~V} \end{aligned}$	$\begin{array}{\|l} \hline 0.03 \% \\ \text { plus } 6 \mathrm{~mA} \\ \hline \end{array}$	50us	10 mV	Yes	Yes	Stisndard	NC	115Vac $\pm 10 \%, 57.83 \mathrm{~Hz}$. 4A, 350W	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{array}{\|l\|l} \hline 31 / 2 \\ 89 \end{array}$	$\begin{aligned} & 17 / 2 \\ & 445 \end{aligned}$	$\begin{aligned} & 5,7,8,9,10,13,14 \\ & 20,21,22,27,28,40 \end{aligned}$	\$485
$\begin{aligned} & 0.03 \% \\ & \text { plua } 50,4 \end{aligned}$	$\begin{aligned} & 0.03 \% \\ & \text { plusing } A \end{aligned}$	$50 \mathrm{\mu s}$	10 mV	Yes	Yoss	Stantiard	NC	8A 60 OW	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{aligned} & 15 \times 5 \\ & 133 \\ & \hline 18 \end{aligned}$	$\begin{aligned} & 17 \% \\ & 445 \end{aligned}$	$\begin{aligned} & 5,89 ; 107,14 \\ & 202122,27,28,40 \end{aligned}$	8550
$\begin{aligned} & 0.03 \% \\ & \text { plus } 2 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.03 \% \\ & \text { plus } 10 \mathrm{~mA} \mathrm{~A} \end{aligned}$	$50 \mu$	10 mV	Yes	Yes	Standard	NC	$\begin{aligned} & 230 \mathrm{Vac} \pm 10 \%, 57-83 \mathrm{~Hz}, \\ & 12 \mathrm{~A}, 1500 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{aligned} & 7 \\ & 178 \end{aligned}$	$\begin{aligned} & 17 y_{2} \\ & 445 \end{aligned}$	$\begin{aligned} & 5,7,8,9,10,13,14 \\ & 20,21,22,26,27,40 \end{aligned}$	\$855
$\begin{aligned} & 01 \% \\ & \text { plus } 2.5 \mathrm{~m} x \end{aligned}$	$\begin{aligned} & 0: 1 \% \\ & \text { Mlas } 1.5 \mathrm{~mA} \end{aligned}$	50 ms	10 mV	Yes	Yes	NA	NA	$\begin{aligned} & 1.15 \mathrm{Vac} \pm 10 \%, 46.69 \mathrm{~Hz} \\ & 1.8 \mathrm{~A}, 164 \% \end{aligned}$	$\begin{aligned} & 35 / 8 \\ & 130 \end{aligned}$	$\frac{64}{169}$	$\begin{aligned} & 11 \\ & 279 \end{aligned}$	13,14:28,40	\$355
$\begin{aligned} & 0.1 \% \\ & \text { plus } 5 \mathrm{mV} \\ & \hline \end{aligned}$	NA	50 ${ }^{5}$	15 mV	No	No	NA	NA	$\begin{aligned} & 115 V_{\mathrm{sc}} \pm 10 \%, 48-440 \mathrm{~Hz}, \\ & 0.26 \mathrm{~A}, 25 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 5 \% \\ & 133 \end{aligned}$	$\begin{aligned} & 3 \% \\ & 83 \end{aligned}$	$\begin{array}{l\|} \hline 8 \\ 203 \end{array}$	28	\$99
$\begin{aligned} & 0196 \\ & 0 \text { ops } 5 \mathrm{~m} V \end{aligned}$	5 mA	$50 \mu s$	15 mV	No	No	NA	NA	$\begin{aligned} & 15 \mathrm{Vac}-10 \% \mathrm{~F} \cdot \mathrm{4B-440Hz} \\ & 0.25 \mathrm{~A}, 26 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 54 \\ & 133 \end{aligned}$	$\begin{aligned} & 33 y^{3} \\ & 83 \end{aligned}$	$\frac{6}{203}$	28	\$120
B. $1 \%$ plus 5 mV	$0.1 \%$ plus 5 mA	50 us	10 mV	Y\&s	Yes	NA	NA	$115 \mathrm{Vac} \pm 10 \%, 48-440 \mathrm{~Hz}$, $0.5 \mathrm{~A}, 44 \mathrm{~W}$	$\begin{aligned} & 51 / 8 \\ & 130 \end{aligned}$	$\begin{array}{\|l\|} \hline 84 \\ 159 \end{array}$	$\begin{aligned} & 11 \\ & 279 \end{aligned}$	13,14,28,40	\$235
$\begin{gathered} 0: 2 \% \\ \text { plung } \end{gathered}$	$\begin{aligned} & 0.2 \% \\ & \text { plus } 3 \mathrm{ma} \end{aligned}$	50/s	10 mV	Yes	Nes	Standard	NC	F15:01230 Vact $19 \%$ A8-63Hzina, $260 \%$	$\begin{aligned} & 7 x \\ & 197 \end{aligned}$	$\begin{aligned} & 6^{6178} \\ & 156 \end{aligned}$	$\begin{aligned} & 123,38 \\ & 315 \end{aligned}$	7,8;9,13,14	\$525
---	NA	--	--	No	No	NA	NA	$\begin{aligned} & 115 \text { or } 230 \mathrm{Vac} ¥ 10 \% \text {, } \\ & 48-53 \mathrm{~Hz}, \mathrm{I} 5 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 178 \end{aligned}$	$\begin{array}{\|l\|} \hline 43 / 8 \\ 111 \end{array}$	$\begin{aligned} & \hline 51 / 4 \\ & 133 \end{aligned}$	NA	\$165
$\begin{aligned} & \text { o.tig } \\ & \text { plus } 5 \mathrm{mV} \end{aligned}$	NA	$50 \mu \mathrm{~s}$	$10 \mathrm{mV}$	Yes	Yes	$11$	\$50	$115 V_{a c} \pm 10 \%, 48-440 \% 2$ $1 \mathrm{~A}, 66 \mathrm{w}$	$8$	$89$	$\begin{aligned} & 12 \% \\ & 317 \end{aligned}$	$7,11,13,28$	\$180
$0.1 \%$ olus 5 mV	NA	60 ${ }^{\text {s }}$	10 mV	Yes	Yes	11	\$50	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \%, 48440 \mathrm{~Hz} \text {, } \\ & 0.4 \mathrm{~A}, 24 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 81 / 2 \\ & 216 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{aligned} & 121 / 2 \\ & 317 \end{aligned}$	7,11,13,28	\$170
$0.1 \%$ plas 5 mV	NA	$50 / 4$	10 mV	Yes	Yes	11	\$90	$\begin{aligned} & 115 v a r \pm 10 \%, 48-440 \mathrm{~Hz} \text {, } \\ & 0.5 \mathrm{~A}, 50 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 18 \% \\ & 216 \\ & 216 \end{aligned}$	$\begin{array}{\|l} \hline 31 / 2 \\ 89 \end{array}$	$\begin{aligned} & 12 \mathrm{y} \\ & 317 \end{aligned}$	7,11,13.28	5255
$0.1 \%$ plus 5 mV	$\begin{aligned} & 0.1 \% \\ & \text { plus } 5 \mathrm{~mA} \end{aligned}$	50 ss	10 mV	Y	Yes	1	\$50	$115 \mathrm{Vac} \pm 10 \%, 48.44 \mathrm{DHz}$ 0.9A, 70W	$\begin{aligned} & 81 / 2 \\ & 216 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{aligned} & 121 / 2 \\ & 317 \end{aligned}$	$\begin{aligned} & 7,8,9,11,13,14 \\ & 28 \end{aligned}$	\$210
$0.1 \pi^{2} 5 \mathrm{~m}$	$\text { 0.1. } \mathrm{plus} 2.5 \mathrm{~mA}$	50 cs	10 mV	Yes	Yes	$11$	550		$296$	$\begin{aligned} & 39 \\ & 89 \end{aligned}$	$\frac{12 h}{217}$	$\begin{aligned} & 7,89110314 \\ & 28 \quad \text { m. } \end{aligned}$	$5190$

[^12]General purpose single output supplies


6282A-10V/10A; p. 186 6285A-20V/5A; p. 186 6286A-20V/10A; p. 188 6290A-40V/3A; p. 190 5291A-40V/5A; p. 190 8296A—60V/3A; p. 192


6384A-5.5V/8A; D. 186


6281A-7.5V/5A; p. 186 6284A-20V/3A; p. 186 6289A-40V/1.5A; p. 190 6294A-60V/LA; p. 190 6299A-100V/0.75A; p. 192


62208-25V/1A or 50V/0.5A; p. 188
$6224 \mathrm{~B}-24 \mathrm{~V} / 3 \mathrm{~A}$; p. 188
6226B-50V/1.5A: D. 190

Selection Guide (General Purpose Lab Supplies) continued

Raxing		Mode!	$L$ doad Regulation		Line Regulation		Aip ple \& Noise				Temperature Coetficient		Output Mode
Volts	Amps		Voltage	Current	Voltage	Currant					Voltrge	Current	
040	045	66289'A	$\begin{aligned} & \text { poip } \\ & \text { ptus } 2 \mathrm{~m} v \end{aligned}$	$0.01 \%$	goisimo	potir $250 \mathrm{~A} A$	200 mV	imv	$500 . \mathrm{A}$	-	$0 \mathrm{ap}$	$002 \% \text { orish }$	CV/C
O-40	0-1.5	8255A	$0.0 \%$ plus 2 mV	$\begin{aligned} & 0.01 \% \\ & \text { plus } 250 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.01 / 8 \\ & \text { plus } 2 \mathrm{mv} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 250 \mathrm{uA} \end{aligned}$	2004 V	1 mV	$500 \times \mathrm{A}$	--	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 0.8 \mathrm{~mA} \end{aligned}$	CV/CC
640	03	\%22004	$0.01 \%$	$0.05 \%$	$\begin{aligned} & 0 \text { gid } \\ & \text { Risis /av. } \end{aligned}$	$\begin{aligned} & 0.06 \% \\ & \text { plu } \mathrm{MmA} \end{aligned}$	500 NV	$25 \mathrm{mV} /$	3 mA		$0: 12 \%$	$\begin{gathered} 6.02 \% \\ 0 \operatorname{lug} 1,6 \mathrm{~mA} \end{gathered}$	cv/ce
0-40	0.3	62658	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200_{\mu} \mathrm{V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { lout } \\ & \text { plus } 200 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500 \mu \mathrm{~A} \end{aligned}$	$200 \mu \mathrm{~V}$	10 mV	3mA	--	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200, \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { olus } 1 \mathrm{~mA} \end{aligned}$	CV/CC
0.40	0.5	6291.	$\begin{aligned} & 0.01 \% \mathrm{~m} \\ & \text { plor } \mathrm{mm} \end{aligned}$	$\begin{aligned} & \text { Rojo } \\ & \text { pas } 1 \mathrm{ma} \end{aligned}$	(Co1\%	$\begin{aligned} & 0.05 \% \\ & \text { plusim } \end{aligned}$	1500 HV	25 mV	3 mA	-	$\begin{aligned} & 0.02 \%, \% \\ & 01085060, ~ \end{aligned}$	$\begin{aligned} & 600 \% \\ & \operatorname{sich} 2.5 \mathrm{~mA} \end{aligned}$	cvice
0.40	0.5	6268B	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200 \mu \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.02 \% \\ \text { plus } 500 \mu \mathrm{~A} \end{array}$	$\begin{aligned} & 0.01 \% \\ & \text { plos } 200 \mathrm{VV} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500 \mu \mathrm{~A} \end{aligned}$	$200 \mu \mathrm{~V}$	10 mV	3 mA	--	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 1 \mathrm{~mA} \end{aligned}$	CV/CS
040	610	62678	$0.018000$		$000 \% \text { on }$	$\begin{aligned} & 0.02 \% \\ & \text { olus } 500 j \mathrm{kN} \end{aligned}$	2000 V	tomv	3mA	--	$010.1 \%$	$\begin{aligned} & 0.01 \% \text {, } \\ & \text { plos } 13 \mathrm{~m} \end{aligned}$	c.fe
040	0.30	8288B	$\begin{aligned} & 0.071 / 2 \\ & \text { plus } 200 \mu \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.02 \% \\ \text { plus } 2 \mathrm{~mA} \end{array}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0,02 \% \\ & \text { plus } 2 \mathrm{~mA} \end{aligned}$	1 mV	5 mV	20 mA	--	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 2 \mathrm{~mA} \end{aligned}$	CV/CC
0.40	0:50	. 62898	$0.01 \%$ pilis 200 MV	$\begin{aligned} & 0,02 \% \\ & \text { plis } 2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0.0 \% \\ & 000 \mathrm{j}, 200 \mathrm{VV} \end{aligned}$	$0.02 \%$	Inv.	5 mV	25 mA	--	$\begin{aligned} & 0.01 \% \\ & 0.145 .200 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 4 \text { ma } \end{aligned}$	Cv/cc
0-50	0.2	8217A	4 mV	NA	4 mV	NA	$200 \mu \mathrm{~V}$	1 mV	NA	NA	$\begin{aligned} & 0.02 \% \\ & \text { Dius ImV } \end{aligned}$	NA	CV/CL
0.50	$000 ; 2$	8218a	4mV	500 us	4tin	600, A A	$200 \mu \mathrm{~V}$	1 mV	1504 A	$500 \mu \mathrm{~A}$	$\begin{aligned} & 0<02 \% \\ & p l u s .1 \mathrm{mv} \end{aligned}$	1 miA	CVYCC
$\begin{aligned} & 0-50 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.0 .5 \\ & 0.1 \end{aligned}$	6220日	0.01\% plus 2 mV	$\begin{aligned} & 0.01 \% \\ & \text { olus 250 } A \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 2 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 250_{\mu} \mathrm{A} \end{aligned}$	200 V	1 mV	200 $\mu \mathrm{A}$	ImA	0.02\% plus imV	$\begin{aligned} & 0.02 \% \\ & \text { plus } 1 \mathrm{~mA} \end{aligned}$	cV/CC
$0.50$	0.1	62288	$\begin{aligned} & 0.01 \% \\ & \text { phos } 1 \mathrm{~m} . \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus'250, } \mathrm{A} \end{aligned}$	tmiv	$100 \mu \mathrm{~A}$	250 V V	4 mV	250ر/ A	$2 \mathrm{~m} A$		$\begin{aligned} & 0.02 \% \\ & \text { plus } 150 \mathrm{~mA} \end{aligned}$	CV/Ce
0-50	0-1.5	62288	$\begin{aligned} & 0.01 \% \\ & \text { plus } 2 \mathrm{mV} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.01 \% \\ \text { plus 250 A } \end{array}$	$\begin{array}{\|l} \hline 0.01 \% \\ \text { slus } 2 \mathrm{mV} \end{array}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 250_{\mu} \mathrm{A} \end{aligned}$	200, V	1 mV	2004 A	1 mA	$\begin{aligned} & 0.02 \% \\ & 0.01 \text { lus } 500 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0.02 \% \\ & \text { plus } 0.8 \mathrm{~mA} \end{aligned}$	CV/CC
$\begin{aligned} & 0.60 \\ & 0.30 \end{aligned}$	$0.5$	62058	$0.01 \%$ ptus 4 mV	NA	$\begin{array}{\|l\|} \hline 601 \% \\ \text { plus } 4 \mathrm{my} \end{array}$	NA	200\%	ImV	MA	NA	$02 \mathrm{z}$	NA	cVicl
0.60	0.1	6294A	$\begin{aligned} & 0.01 \% \\ & \text { plus } 2 \mathrm{mV} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.01 \% \\ \text { plus } 250, \mu \mathrm{~A} \end{array}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 2 \mathrm{mV} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.01 \% \\ \text { plus 250 } \mathrm{A} \end{array}$	$200 \mu \mathrm{~V}$	1 mV	500 4	-	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.02 \%_{0} \\ & \text { plus } 0.5 \mathrm{~mA} \end{aligned}$	CV/CC

[^13]General purpose single output supplies


890A-320V/0.6A; p. 192


895A—320V/1.5A; p. 192


6259B-10V/50A: p. 188 6268B-40V/30A; p. 192
6260B-10V/10A; p. 188 6269B-40V/50A; p. 192
$6261 \mathrm{~B}-20 \mathrm{~V} / 50 \mathrm{~A} ;$ p. 190


6263B-20V/10A; p. 188
$6266 \mathrm{~B}-40 \mathrm{~V} / 5 \mathrm{~A} ;$ р. 190 6271B-60V/3A; p. 192

$6256 \mathrm{~B}-10 \mathrm{~V} / 20 \mathrm{~A} ;$ p. $186 \quad 6264 \mathrm{~B}-20 \mathrm{~V} / 20 \mathrm{~A} ;$ p. 188 6267B-40V/10A; p. 190


6274B-60V/15A; p. 192

Stability		Transjent Recovery		Series Par. Track.	Remoto Prog.	Overvoltage Protection		Input Power	Dimensions ( $\mathrm{fn} . / \mathrm{mm}$ )			OptionsAvailable(pape 201)	Price
Voltrage	Current	Time	Level			Option	Price		W	H	D		
$\begin{aligned} & \text { O.1\% } \\ & \text { Dlus } 2.6 \mathrm{mV} \end{aligned}$	0.1\% plus 4mA	5 9us	15 mV	Yes	Y 6	11	\$50	$185 \mathrm{Vac} \pm 10 \%, 48440 \mathrm{~Hz}$; 1.34, 110 W	$\begin{aligned} & 8 y \\ & 216 \end{aligned}$	$\begin{aligned} & 34 \\ & 89 \end{aligned}$	$\begin{aligned} & 14 k \\ & 368 \end{aligned}$	$\begin{aligned} & 7,89,11,13,14 \\ & 28 \end{aligned}$	130.
$\begin{aligned} & 0.1 \% \\ & \text { plus } 2.5 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & \text { plus } 4 \mathrm{~mA} \end{aligned}$	60us	15 mV	Yes	Yes	11	\$110	$115 \mathrm{Vac} \pm 10 \%, 48440 \mathrm{~Hz}$. 2.6A, 235W	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{aligned} & 14 \% \\ & 368 \end{aligned}$	$\begin{array}{\|l\|} \hline 7,8,9,10,11,13,14 \\ 28 \end{array}$	\$470
$\begin{aligned} & \text { 0.7. } \\ & \text { blus } 2.6 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & \text { plus } 7.5 \mathrm{~m} \mathrm{~A} \end{aligned}$	50 ys	15 mV	Yes	Yes	11	\$55	T15Vac $\pm 10 \%, 5753 \mathrm{Fz}$. 3.5A, 170W	$\begin{aligned} & 88 \\ & 218 \end{aligned}$	$\begin{aligned} & 5 \% \\ & 333 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 406 \end{aligned}$	$\begin{aligned} & 5,7,8,9,1,13,14 \\ & 18 \end{aligned}$	1350
$\begin{aligned} & \begin{array}{l} 0.03 \% \\ \text { plus } 500 \mu \mathrm{~V} \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.03 \% \\ \text { pius } 3 \mathrm{~mA} \\ \hline \end{array}$	50us	10 mV	Yes	Yes	Standerd	NC	$115 \mathrm{Vac} \pm 10 \%, 57.63 \mathrm{~Hz}$, 3A, 180W	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{aligned} & 312 \\ & 89 \end{aligned}$	$\begin{aligned} & \hline 171 / 2 \\ & 445 \end{aligned}$	$\begin{aligned} & 5,7,8,8,10,13,14 \\ & 20,21,22,27,28,40 \end{aligned}$	5410
$\begin{aligned} & \text { Dif\% } \\ & \text { blus 2.5mV } \end{aligned}$	0.1\% phas 12.5 mA	50.45	15 mV	Yes	Y	11	555	5.5A. 280W	$\begin{aligned} & 8 y^{\prime} \\ & 216 \end{aligned}$	$\begin{aligned} & 5 \% \\ & 133 \end{aligned}$	$\begin{aligned} & 16 \\ & 405 \end{aligned}$	$\begin{aligned} & 5,7,8,9,11,13,14 \\ & 18 \end{aligned}$	\$305
$\begin{aligned} & 0.03 \% \\ & \text { plus } 500 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.03 \% \\ & \text { plus } 3 \mathrm{~mA} \end{aligned}$	50us	10 mV	Yes	Yes	Standard	NC	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \%, 57.63 \mathrm{~Hz}, \\ & 4 \mathrm{~A}, 326 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{aligned} & 171 / 2 \\ & 445 \end{aligned}$	$\begin{aligned} & 5,7,8,9,10,13,14 \\ & 20,21,22,27,28,40 \end{aligned}$	\$460
$\begin{aligned} & 003 \% \\ & \text { olus } 2 n y y \end{aligned}$	$\begin{aligned} & 0.08 \% \\ & \text { plus } 3 \mathrm{~mA} \end{aligned}$	$50 \mathrm{\mu s}$	10 mV	Yes	Yes	Standard	HC	$115 \mathrm{Vax}^{2} \pm 10 \%, 57-63 \mathrm{~Hz}_{2}$ 8A,550W	$\begin{aligned} & 19 \\ & 483 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \% \\ & 133 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \%^{2} \\ & 445 \\ & \hline \end{aligned}$	$\begin{aligned} & 5,8,10,14 \\ & 20,21,22,27,28,40 \\ & \hline \end{aligned}$	4890:
$\begin{aligned} & 0.03 \% \\ & \text { plus } 2 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.03 \% \\ & \text { plus } 5 \mathrm{~mA} \\ & \hline \end{aligned}$	50ns	10 mV	Yes	Yes	Sliandard	NC	$\begin{aligned} & 230 \mathrm{Vac} \pm 10 \%, 57.63 \mathrm{~Hz}, \\ & 11 \mathrm{~A}, 1600 \mathrm{w} \end{aligned}$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 178 \end{aligned}$	$\begin{aligned} & 171 / 2 \\ & 445 \end{aligned}$	$\begin{aligned} & 5,7,8,9,10,13,14 \\ & 20,21,22,26,27,40 \end{aligned}$	\$745
$\begin{aligned} & 0.035 \\ & \text { olus } 2 \mathrm{mV} \end{aligned}$	$\tan 0 \mathrm{or} 10 \mathrm{nA}$	50 ms	10 mV	V	Yes	Standard	NC	$\begin{aligned} & 230 \mathrm{VBC} \pm 10 \% ; 57.63 \mathrm{~Hz}, \\ & 18 \mathrm{~A}, 250 \mathrm{NW} \end{aligned}$	$\begin{array}{\|l\|} \hline 19 \\ 48.3 \\ \hline \end{array}$	$178$	$\begin{aligned} & 771 / 2 \\ & 445 \\ & \hline \end{aligned}$	$\begin{aligned} & 5,1,9,9,10,15,14 \\ & 20,21,22,23,40 \\ & \hline \end{aligned}$	\%exing
$\begin{aligned} & 0.1 \% \\ & \text { plus } 5 \mathrm{mV} \end{aligned}$	NA	50 ${ }^{\text {s }}$	15 mV	No	No	NA	NA	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \%, 48-440 \mathrm{~Hz}, \\ & 0.25 \mathrm{~A}, 25 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 51 / 4 \\ 133 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 31 / 4 \\ 83 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 8 \\ 203 \\ \hline \end{array}$	28	\$98
$\begin{aligned} & 0.1 \% \\ & \text { : plus } 5 \mathrm{mV} \\ & \hline \end{aligned}$	2.5 mA	$60 \mu \mathrm{~s}$	15 mV	No	No	NA	NA	$1 \mathrm{ISve} \pm 10 \%, 48440 \mathrm{~Hz}$, 0.25A, 26W	$\begin{aligned} & 5 \% \\ & 133 \end{aligned}$	$\begin{aligned} & \hline 3 K \\ & 83 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 203 \\ & \hline \end{aligned}$	28	\$120:
$\begin{aligned} & 0.1 \% \\ & \text { plus } 5 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & \text { plus } 5 \mathrm{~mA} \end{aligned}$	50ر/s	10 mV	Yes	Yes	NA	NA	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \%, 48-440 \mathrm{~Hz}, \\ & 0.5 \mathrm{~A}, 44 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 51 / 8 \\ & 130 \end{aligned}$	$\begin{aligned} & 6 \% \\ & 159 \end{aligned}$	$\begin{array}{\|l\|} 11 \\ 279 \end{array}$	13,14,28,40	\$295
$\begin{aligned} & 02 \% \\ & \text { phus } 2 \mathrm{my} \end{aligned}$	0.2\% plus 1.5 mA	50148	50 mV	Yes	Yes	Standerd	NC	$48-63 H 2,2,7 A, 260 \mathrm{~W}$	$\begin{array}{\|l\|} \hline 7 \% \\ \hline 197 \\ \hline \end{array}$	$\begin{aligned} & 618 \\ & 156 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 123 / 8 \\ 316 \\ \hline \end{array}$	7,8,9,13,14	83
$\begin{aligned} & 0.1 \% \\ & \text { pius } 2.5 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & \text { plus } 4 \mathrm{~mA} \end{aligned}$	50 ${ }^{\text {s }}$	10 mV	Yes	Yes	NA	NA	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \%, 48-63 \mathrm{~Hz}, \\ & 1.8 \mathrm{~A}, 164 \mathrm{~W} \end{aligned}$	$\begin{array}{\|l} \hline 51 / 8 \\ 130 \end{array}$	$\begin{aligned} & 5 \% \\ & 159 \end{aligned}$	$\begin{array}{\|l\|} \hline 11 \\ 279 \end{array}$	13,14,28,40	3365
$\begin{aligned} & 0 ; 1 \% \\ & \text { plus } 5 \mathrm{my} \end{aligned}$	部A	50.8	10 mV	Y85	Yes	11	\$50	$\begin{aligned} & \text { 185Vac } \pm 10 \%, 48-440 \mathrm{~Hz} \\ & 1 \mathrm{~A}, 66 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 8 / 2 \\ & 216 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{aligned} & 121 / 2 \\ & 317 \end{aligned}$	7,11,13,28	\$190:
$\begin{aligned} & 0.1 \% \\ & \text { plus } 2.5 \mathrm{mV} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.1 \% \\ \text { Dlus } 2.5 \mathrm{~mA} \\ \hline \end{array}$	50, 5	16 mV	Yes	Yes	11	\$50	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \%, 48440 \mathrm{~Hz}, \\ & 1.3 \mathrm{~A}, 114 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 84 \\ & 216 \\ & \hline \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \% \\ & 368 \\ & \hline \end{aligned}$	8,11,13,14,28	\$ 545

[^14]

## Description

Models 6227B and 6228B. Each unir houses two identical, independently adjustable 50 -watt power supplies. A convenient front panel switch selects one of two modes: independent or tracking. In the independent mode, the output voltage and current are controlled separately. In the tracking mode, the outputs are connected in series, and the controls for the left supply adjust the magnitude of both positive and negative outputs. The tracking mode is especially useful for powering operational amplifiers, push-pull stages, deflection systems, or any application where plus and minus voltages are required to track with an insignificant error. Overvoltage protection, Constant Voltage/Constant Current operation, remore programming, and remote sensing are among the standard features.

Models 6253A and 6255A. These 60 .watt dual output supplies are packaged in a full-rack widrh case. Ourputs are completely independent and are individually controlled and metered. Current limit protection, remote sensing, remote programming, and Auto-Series/Auto-Parallel/Auto-Tracking operation are standard. Single output versions of these supplies (Models 6284A and 6289A) are described on page 189.

Selection Guide (General Purpose Lab Supplies) continued

Hoting		Madet	Laad Regulation		Ling Regulation		Ripple \& Noise				Temperature Coefficient		Output Mode
Valts	Amps		Valtage	Current	Volcage	Curtent	sms	边	,	p	Voltage	Current	
0.60	0.3	6296A	$\begin{aligned} & \begin{array}{l} 0.05 \% / 6 \\ \text { plus } \mathrm{ImV} \end{array} \end{aligned}$	$\begin{aligned} & 0.05 \% \\ & . \mathrm{plch} .1 \mathrm{INA} \end{aligned}$	0.01\% plus ImV	$\begin{aligned} & 0.05 \% \\ & .0 .451 \mathrm{~mA} \end{aligned}$	$500 \mu \mathrm{~V}$	25 mV	3 mA	--	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500 \mathrm{\mu V} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.02 \% \\ \text { plus } 1.5 \mathrm{~mA} \end{array}$	cVICS
0.60	0-3	62718	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500_{\mu} \mathrm{A} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500 \mu \mathrm{~A} \end{aligned}$	$200 \mu \mathrm{~V}$	10 mV	3 mA	-~	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.09 \% \\ & \text { plus ImA } \end{aligned}$	CV/CC
0.60	0.15	6274B	$\begin{aligned} & 0.01 \% \\ & \text { plus 200 } 3, ~ \end{aligned}$	$\begin{aligned} & 0.020 / 4 \\ & \text { plus } 50 \mathrm{~B} \quad \mathrm{~A} \end{aligned}$		$0.02 \%$ plas 500ua	200 V	20 mV	5mA	--	$\begin{aligned} & 0.01 \% \\ & \text { plus } 200_{\mu} \mathrm{V} . \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { pli's } 2 \mathrm{miA} \end{aligned}$	cV/CC
0.100	$0 \cdot 0.1$	62114	8 nV	NA	4 mV	NA	$200 \mu \mathrm{~V}$	1 mV	NA	NA	$\begin{aligned} & 0.02 \% \\ & \text { plus } 1 \mathrm{mV} \\ & \hline \end{aligned}$	NA	uv
0.100	0.0 .1	6212A	8 mV	500kA	4 mV	$500{ }_{4} \mathrm{~A}$	200 HV	1 mv	150 ${ }^{\text {a }}$ A	$500 \mu \mathrm{~A}$	$\begin{aligned} & 0.0 \mathrm{Z} \% \\ & \text { plus } 1 \mathrm{mV} \end{aligned}$	0.5 m A	cV/cc
0.100	00.0.75	6298A	$\begin{aligned} & 0.01 \% \\ & \text { plus } 2 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 250 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 2 m \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 250 \mu \mathrm{~A} \end{aligned}$	$200 \mu \mathrm{~V}$	imv	500~A	--	$\begin{aligned} & 0.02 \% \\ & \text { plus } 500 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { olus } 0.4 \mathrm{~mA} \end{aligned}$	CV/CC
0.160	0.0 .2	62078	$\begin{aligned} & \text { 0:02\% } \\ & \text { plus 2ny. } \end{aligned}$	200uA	$\begin{array}{\|l\|} \hline 0.02 \% \\ \text { plus } 2 \mathrm{~m} V \\ \hline \end{array}$	200/4	500 HV	40 mV	200uA	-	$\begin{aligned} & \text { D. } \overline{\mathrm{D} 2 \mathrm{c}} \\ & \text { plus } 1 \mathrm{~m} \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 150 \mu \mathrm{~A} \end{aligned}$	CV/CC
0.320	0-0.1	6209B	$\begin{aligned} & 0.02 \% \\ & \text { plus } 2 \mathrm{mV} \end{aligned}$	200 $\mu \mathrm{A}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 2 \mathrm{mV} \end{aligned}$	$200 \mu \mathrm{~A}$	1 mV	40 mV	200~A	--	$\begin{aligned} & 0.02 \% \\ & \text { plus ImV } \end{aligned}$	$\begin{array}{\|l\|} \hline 0.02 \% \\ \text { plus } 75_{\mu} \mathrm{A} \\ \hline \end{array}$	CV/CC
0.320	0.6	8904	$\begin{aligned} & 0.007 \% \text { or } \\ & 10 \mathrm{mV} \end{aligned}$	NA	$\begin{aligned} & \text { D. } 007 \mathrm{~F} \% \text { ar } \\ & 10 \mathrm{mV} \end{aligned}$	NA ${ }^{\text {a }}$	1 mV	--	NA	NA	$\begin{aligned} & 0.03 \% \\ & \text { plus } 1.5 \mathrm{mv} \end{aligned}$	NA	CV/CL
0.320	1.5	895A	$\begin{aligned} & 0.007 \% \text { or } \\ & 10 \mathrm{mV} \end{aligned}$	NA	$\begin{aligned} & 0.007 \% \text { or } \\ & 10 \mathrm{mV} \end{aligned}$	NA	inv	--	NA	NA	$\begin{aligned} & 0.03 \% \\ & \text { plus } 1.5 \mathrm{mV} \end{aligned}$	NA	$\mathrm{CV} / \mathrm{CL}$
0.1000	10-200mA	6521A	$\begin{aligned} & 0.005 \% \text { ar } \\ & 20 . m y \end{aligned}$	$\begin{aligned} & \text { 2\% or } \\ & \text { imA } \end{aligned}$	$\begin{aligned} & \text { Qi0 } 2 \% \text { or } \\ & 20 \mathrm{mv} \end{aligned}$	ImA	imV	--	2mA		$0.012 \%$ plus inv	$\begin{aligned} & 0.2 \% \\ & \text { plus } 0 ; 2 \mathrm{~mA} \end{aligned}$	CV/CC
0.1600	SmA	6515A	$\begin{aligned} & 0.01 \% \text { or } \\ & 16 \mathrm{mv} \end{aligned}$	NA	$\begin{aligned} & 0.01 \frac{1 / 2}{} \text { or } \\ & 16 \mathrm{mV} \end{aligned}$	NA	2 mV	$5 \times \mathrm{V}$	NA	NA	$\begin{aligned} & 0.02 \% \\ & \text { plus } 2 \mathrm{mV} \end{aligned}$	NA	CV/CL
0.2000	-100ma.	6522A	$\begin{aligned} & 0.005 \% \text { or } \\ & 20 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \text { 2\% or } \\ & \operatorname{lin} A \end{aligned}$	$\begin{aligned} & 0.005 \% \text { oi } \\ & 20 \mathrm{mV} \end{aligned}$	1 mA .	1 mV	--	1 mA	--	$\begin{aligned} & 0.012 \% \\ & \text { plus } \mathrm{ImV} \end{aligned}$	$\begin{aligned} & 0: 2 \% \\ & \text { plus } 0.1 \mathrm{~mA} \end{aligned}$	CV/CC
0-3000	GmA	日518A	$\begin{aligned} & 0.01 \% \text { or } \\ & 16 \mathrm{mV} \end{aligned}$	NA	$0.08 \% \text { or }$ 16 mv	NA	2 mV	6 mV	NA	NA	$\begin{aligned} & 0.02 \% \\ & \rho 1 \mathrm{Ls} 2 \mathrm{mV} \end{aligned}$	NA	CV/CL
0.4000	0.50 mA	6525A	$\begin{aligned} & 0.005 \% \text { or } \\ & 20 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \text { 2\% or } \\ & 1 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0.005 \% \text { ar } \\ & 20 \mathrm{mV} \end{aligned}$	1 mA	1 mV	--	500 $/ \mathrm{A}$	--	0.012\% plus ImV	$\begin{aligned} & 0.2 \% \text { plus } \\ & 0.05 \mathrm{~mA} \end{aligned}$	$C \cdot / C C$

[^15]High voltage lab supplies


## Descríption

Models 6521A, 6522A, 6525A. These all-semiconductor high voltage supplies provide high voltage power in three ranges: 0.1 kV at $0.200 \mathrm{~mA}(6521 \mathrm{~A}) ; 0.2 \mathrm{kV}$ at 0.100 mA ( 6522 A ), and 0.4 kV at 0.50 mA ( 6525 A ). All models are well regulated and have sufficient output current to power devices such as TWT's, klystrons, magnetrons, back-ward-wave oscillators, high-power gas lasers, and electron beam welding devices. Constant Voltage/Constant Current operation with automatic crossover between modes is standard. Output voltage is set easily and precisely by a three. decade thumbwheel switch plus a thumbwheel vernier with $0.002 \%$ resolution.

Models 6515A and 6516A. These models are lower in cost, but have less power output and fewer features than the 6521 A-series supplies. Their small size, low price, and short-circuit-proof operation make them ideal high-voltage laboratory supplies. The Model 6515A employs a multi-position range switch plus a vernier control which varies the output voltage from 0.100 V above the range switch setting. The Model 6516A uses a three-decade thumbwheel switch plus a thumbwheel vernier for precise output voltage control.

Stability		I ransient Recovery		Sarios Pas. Track.	Armute Prog.	Dvarvoltage Protection		Ingut Power	Dimensions \{in./mm\}			Options Available (page 201)	Prica
		Time	Leval			Opi	Price		W	H	0		
$\text { Phas } 25 \text { nuv }$	$\begin{aligned} & 0,4 \%, \operatorname{man} A \\ & \text { phis } 2 \end{aligned}$	50ks	Fin $V$	Yes	Yes	11	\$55	$\begin{aligned} & 15 \mathrm{Vec} \pm 10 \%, 57.63 \mathrm{~Hz}, \\ & 4.8 \mathrm{~A}, 250 \mathrm{w} \end{aligned}$	$\begin{aligned} & 8 \mathrm{x} \\ & 26 \\ & \hline 16 \end{aligned}$	$35$	$406$	$52,8,9,113,14$	8365
$\begin{array}{\|l\|} \hline 0.03 \% \\ \text { plus } 500, \mathrm{~V} \end{array}$	$\begin{aligned} & 0.03 \% \\ & \text { plus } 3 \mathrm{~mA} \end{aligned}$	50 L	10 mV	Yes	Yes	Slandard	NC	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \%, 57 \cdot 63 \mathrm{~Hz} \\ & 4 \mathrm{~A}, 300 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{gathered} 11 / 2.1 / 2 \\ 445 \end{gathered}$	$\begin{aligned} & \frac{5,7,8,9,10,13,14}{20,21,22,27,28,40} \end{aligned}$	\$460
digs zinv	$\begin{aligned} & \text { Bj03\% } \\ & \text { plus } 5 \mathrm{ma} \end{aligned}$	$50,4$	10 mV	Yes	Yes	Stinderd	NC	$\begin{aligned} & 15 \mathrm{Vacos10} \mathrm{\%} 57 \mathrm{fi} 3 \mathrm{H}= \\ & 15 \mathrm{~A}, 1200 \mathrm{y} \end{aligned}$	$49$	$\begin{aligned} & 5 \mathrm{x} \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 / 2 \\ & 445 \end{aligned}$	$\begin{array}{r} 57,89,1109314 \\ 20,7122,27,284 \mathrm{~B} \end{array}$	8888.
$\begin{aligned} & 0.1 \% \\ & \text { plus } 5 \mathrm{mV} \end{aligned}$	NA	50 ${ }^{\text {s }}$	15 mV	No	No	NA	NA	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \%, 48440 \mathrm{~Hz}, \\ & 0.29 \mathrm{~A}, 27 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 5 \% \\ & 133 \\ & \hline \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 83 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 203 \end{aligned}$	28	\$105
$\begin{aligned} & \text { ing } \\ & \text { ins } 5 \mathrm{mv} \end{aligned}$	1.3 mA	50as.	15 mV	No	No	WA	NA:	$\begin{aligned} & 115 \mathrm{Ves} \text { I } 103 \mathrm{~N}, 4840 \mathrm{~Hz} \\ & 029 \mathrm{~A}, 28 \mathrm{w} \end{aligned}$	$\begin{aligned} & 5 / 4 \\ & 30 \end{aligned}$	$183$	$8$		\$130.
$\begin{aligned} & 0.1 \% \\ & \text { plus } 2.5 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & \text { plus 2mA } \end{aligned}$	50hs	15 mV	Yes	Yes	11	\$50	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \%, 48440 \mathrm{~Hz}, \\ & 1.5 \mathrm{~A}, 135 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 81 / 2 \\ & 216 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{aligned} & 141 / 2 \\ & 368 \end{aligned}$	8,11,13,14,28	\$270
0ip	$\begin{aligned} & 0.9 \% \\ & \text { Dlus } 750 \mathrm{~A} \end{aligned}$	5 Las	10 mV	Yes	Yes	NA	NA	$\begin{aligned} & 115 \mathrm{Vot} \pm 10 \%, 48 \% 3 \mathrm{~Hz}, \\ & 1 \mathrm{~A} .60 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 88_{1} \\ & 216 . \end{aligned}$	$81 / 2$	$\begin{aligned} & 327 \\ & 3 \times 17 \end{aligned}$	8,134428	5208\%
$\begin{aligned} & 0.1 \% \\ & \text { plus fimV } \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & \text { plus } 350 \mu \mathrm{~A} \end{aligned}$	$50 \mu \mathrm{~s}$	10 mV	Yes	Yes	NA	NA	$\begin{aligned} & 115 \mathrm{Vac} \pm\{0 \%, 48 \cdot \mathrm{G} 3 \mathrm{~Hz}, \\ & 1 \mathrm{~A}, 60 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 81 / 2 \\ & 216 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{aligned} & 121 / 2 \\ & 317 \\ & \hline \end{aligned}$	8.13,14,28	\$255
$5 \%$	NA	100.s.	20 mV	No	Yes	NA	NA	$\begin{aligned} & \text { 15Vacj10\% } 57.63 \mathrm{~Hz} \\ & 3.5 \mathrm{~A}, 255 \mathrm{~W} \end{aligned}$	$489$	$\begin{aligned} & 3 y \\ & 39 \end{aligned}$	$\begin{array}{r} 16 \% \\ 536 \\ \hline \end{array}$	NA	¢30.
$0.1 \%$   plus 5 mV	NA	100 $\mathrm{ss}^{\text {s }}$	20 mV	No	Yes	NA	NA	$\begin{aligned} & 115 \mathrm{Vac}+10 \%, 57.63 \mathrm{~Hz}, \\ & 8.7 \mathrm{~A}, 585 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{aligned} & 51 / 2 \\ & 133 \end{aligned}$	$\begin{aligned} & 163 / 4 \\ & 426 \end{aligned}$	NA	\$875
dio36\%	$\begin{aligned} & \text { 0.2. } \\ & \text { plus } 0.5 \mathrm{~mA} \end{aligned}$	50 Ns	$\begin{aligned} & \text { 8005\% } \\ & \text { or } 20 \mathrm{mivy} \end{aligned}$	No	No	NA	NA	$115 \mathrm{Vac} \pm 10 \%, 48.440 \mathrm{~Hz}$ 44, 270N	$18$	$\begin{aligned} & 58 \\ & 53 \\ & \hline \end{aligned}$	$48$	NA	\$885
$\begin{aligned} & 0.05 \% \\ & \text { plus } 5 \mathrm{mV} \end{aligned}$	NA	$100 \mu \mathrm{~s}$	$\begin{array}{l\|} 0.01 \% \\ \text { or } 16 m \mathrm{mV} \end{array}$	No	No	NA	NA	$\begin{aligned} & 115 V_{\text {sc }} \pm 10 \%, 80 \pm 0.3 \mathrm{~Hz}, \\ & 162 \mathrm{~mA}, 19 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 818 \\ & 216 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 113 \\ & 299 \end{aligned}$	13	\$250
$\begin{aligned} & 0.03 \% \\ & \text { phis } 3 i n v \end{aligned}$	$\begin{aligned} & 0.25 \% \\ & \text { plus } 025 \mathrm{ma} \end{aligned}$	50.48	$\begin{aligned} & 0.00 \% \% \\ & 0.20 \mathrm{inv} \end{aligned}$	No	No	NA	NA	$1454 \mathrm{c} 40 \%, 48440 \mathrm{H}$ 4A. 270 W	$49$	$\begin{aligned} & 5 \% \\ & 133 \\ & \hline \end{aligned}$	$45$	NA	5856
$\begin{aligned} & 0.05 \% \\ & \text { plus } 5 \mathrm{mV} \end{aligned}$	NA	100 $\mu \mathrm{s}$	$\begin{aligned} & 0.01 \% \\ & \text { or } 16 \mathrm{mV} V \end{aligned}$	No	No	NA	NA	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \%, 57-63 \mathrm{~Hz} \\ & 1 \mathrm{~A}, 40 \mathrm{w} \end{aligned}$	$\begin{aligned} & 8 / 2 \\ & 816 \\ & 216 \end{aligned}$	$\begin{aligned} & 15 / 4 \\ & \hline 133 \end{aligned}$	$\begin{aligned} & 16 \\ & 406 \end{aligned}$	5.18	\$340
$\begin{aligned} & 0.036 \% \\ & \text { plus } 3 \mathrm{mv} \end{aligned}$	$\begin{aligned} & 0.25 \% \\ & \mathrm{Dlus} .0 \mathrm{mmA} \end{aligned}$	$50 \mathrm{\mu s}$ :	$0.02 \%$	No	No	NA	NA	$115 \mathrm{Vec}+10 \%, 48440 \mathrm{~Hz}$ $4 A, 270 \mathrm{~W}$	$19$	$\begin{aligned} & 5 \mathrm{~F} \\ & 138 \\ & 83 \end{aligned}$	$18$	NA	Cos

[^16]
# HIGH POWER INDUSTRIAL SUPPLIES <br> 300-11,000 Watts <br> Models 6427B-6483C 

## Description

Ninetzen models covering a range from 0.8 V to 0.600 V with por'er ratings up to 11 kilowatrs make up this series of heavy duty industrial-type porer supplies. All models employ silicon controiled rectifier regulation techniques and fearure Constant Voltage/Conseant Current operation, remore sensing, remote resistance and voltage programming, and Auro-Series/ Auto-Parallel operation. Overvoltage protection is available as an option. The nineteen models are divided ino three cate. gories according to the highest porter rating within the group. The groups are 1 kilowatt, 3 kilowatts, and 11 kilowatts.

1 Kilawatt Supplies. Eight models covering ratings from 0.20 V at 0.15 A to 1.600 V at $5 \mathrm{~mA} \cdot 1.5$ A make $u p$ this group. Four of the models are rated al zeproximately 300 watts output and are packaged in $31 / 2^{\prime \prime}$ high rack-mounting cabinets. The remaining four models are rated at approximately 1000 warts and are packaged in $51 / 2^{\prime \prime}$ high cabinets. Convection cooling is employed on the 300 w att units, while cooling fans arc used on the higher power models.

## Selection Guide (High Power Industrial Supplies)

3 Kilowatt Supplies. Models 6453A, 6456B, and 6459A make up this group of mediun power SCR segulated supplies. Output ratings are 0.15 V at $0.200 \mathrm{~A}(6453 \mathrm{~A}), 0.36 \mathrm{~V}$ at $0.100 \mathrm{~A}(6456 \mathrm{~B})$ and 0.64 V at 0.50 A ( 6459 A ). Combined constant voltage load and line regulation for the three models is $0.25 \%$ plus 10 mV . These supplies have excellent line transient immunity (insensitive co disturbances lasting s to 10 cycles) and fast load transient recovery. In addition to over. load protection, the supplies also have an ac line dropout protection curcuit which turns off the eectifiers and opens the output bus in the event of ac power failure. The units measure $19^{\prime \prime} \mathrm{W} \times 14^{\prime \prime} \mathrm{H} \times 181 / 4^{\prime \prime} \mathrm{D}$ and are designed for rack mounting. Rack mounting accessories are described on page 201.

10 Kilowatt Supplles. This category includes nine models with ratings from 0.8 V at 0.1000 A 100.600 V at 0.15 A . Units are housed in a $163 / s^{\prime \prime} \mathrm{W} \times 261 / 2^{\prime \prime} \mathrm{H} \times 2633^{\prime \prime} \mathrm{D}$ cabiner. weighing approximately 500 pounds. Rack mounting hardware and casters are available at additional cosi (see page 201). Serviceability of these units is enhanced by a modula: desiga and the use of plug-in amplifice boards. An over. temperature cur-out circuit provides added protection

Rating		Model	Load Regulation		Line Ragalation		Rigole \& Noixe $\mathrm{mms} / \mathrm{p} \cdot \mathrm{g}$	Temparature Caetficient Voltage Current	
Volts	Amps		Voltaga	Curent	Votrage	Current			
.0-8	0.1000	6484C	0.5\% plus 5mV	0.1\% plus 1A	0.05\% plus 5 mV	0.1\% plus 1A	$80 \mathrm{mV} / 1 \mathrm{~V}$	$\begin{aligned} & 0.03 \% \text { glus } \\ & 100 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.06 \% \text { plus } \\ & 0.25 \mathrm{~A} \end{aligned}$
0.15	0.200	8453a	$0.2 \%$ plus 10 mV comb. line \& load	$\begin{aligned} & \text { 1\% or 2A } \\ & \text { comb. line \& load } \end{aligned}$	$0.2 \%$ plus 10 mV comb. line \& load	$\begin{aligned} & 1 \% \text { or 2A } \\ & \text { comb. line \& load } \end{aligned}$	150mV	$\begin{aligned} & 0.05 \% \text { plus } \\ & 2 \mathrm{mV} \\ & \hline \end{aligned}$	1.2A
$\begin{aligned} & 0.16 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 0.600 \\ & 0.500 \end{aligned}$	6486C	. $0.05 \%$ plus 5 mb	0.1\% plus 0.6 A	0.05\% plus 5 mV	0.1\% plus 0.6 A	180mV/LV	$\begin{aligned} & 0.03 \% \text { plus } \\ & 200 \mathrm{pa} V \end{aligned}$	$\begin{aligned} & 0.00 \% \text { plus } \\ & 0.15 A^{\prime} \end{aligned}$
0-20	0.15	6427B	20 mV	150 mA	10 mV	160 mA	$40 \mathrm{mV} / 400 \mathrm{mV}$	$\begin{aligned} & 0.03 \% \text { pius } \\ & 3 \mathrm{mV} \end{aligned}$	45 mA
0-20	0.45	64288	40 mV	450 mA	20 mV	450 mA	$48 \mathrm{mV} / 500 \mathrm{mV}$	$\begin{aligned} & 0.03 \% \text { plus } \\ & 3 \mathrm{mV} \end{aligned}$	135 mA
0-36	0.10	64338	38 mV	100 mA	18 mV	100 mA	$36 \mathrm{mV} / 400 \mathrm{mV}$	$\begin{aligned} & 0.03 \% \text { plus } \\ & 5 \mathrm{mV} \end{aligned}$	30 mA
0.36	0.100	84588	$0.2 \%$ plus 10 mV comb. line \& load	$\begin{array}{\|l\|} \hline \text { 1\% or iA } \\ \text { comb: line \& load } \\ \hline \end{array}$	$0.2 \%$ plus . TomV comb. line \& loadd	$\begin{aligned} & 1 \% \text { or } 1 \hat{A} \\ & \text { comb: Inine load; } \end{aligned}$	180 mV	$\begin{aligned} & 0,05 \% \text { plus } \\ & 2 \mathrm{mV} \end{aligned}$	0.6A
0.36	0.300	8469C	0.05\% plus 5 mV	0.1\% plus 0.3A	$0.05 \%$ plus 5 mV	0.1\% plus 0.3A	$180 \mathrm{mV} / \mathrm{IV}$	$\begin{aligned} & 0.03 \% \text { plus } \\ & 400 \mu \mathrm{v} \end{aligned}$	$\begin{aligned} & 0.06 \% \text { plus } \\ & \text { n. } 14 \end{aligned}$
0.40	0.25	64348	40 mV	1200 mA	samv	1200 mA	$40 \mathrm{mV} / 500 \mathrm{mV}$	$\begin{aligned} & 0.03 \% \text { plus } \\ & 5 \mathrm{mV} \end{aligned}$	75 mA
0.60	0.5	64388	60mV	50mA	30mV	50 mA	$120 \mathrm{mV} / 400 \mathrm{mV}$	$\begin{aligned} & \text { U.U3\% plus } \\ & 10 \mathrm{mV} \end{aligned}$	15 mA
0.60	0.75	64398	120 mV	150 mA	60 mV	150 mA	$60 \mathrm{mV} / 800 \mathrm{mV}$	$\begin{aligned} & 0.03 \% \text { plus } \\ & 10 \mathrm{mv} \end{aligned}$	45 mA
0-64	0.50	6468A	$0.2 \%$ plus 10 mV comb. line \& load	$\begin{aligned} & 1 \% \text { or } 0.5 \mathrm{~A} \\ & \text { comb. line \& load } \end{aligned}$	$0.2 \%$ olus 10 mV comb. line \& load	$1 \%$ ar $0.5 A$ camb. line \& load	160 mV	$\begin{aligned} & 0.05 \% \text { plus } \\ & 2 \mathrm{mv} \end{aligned}$	0.3A
0.64	0.150	6472C	$0.05 \%$ plus 100 mV	0.1\% plus 0.15A	0.05\% plus 100 mV	0.7\% plus 0.15A	$160 \mathrm{mV} / \mathrm{IV}$	$\begin{aligned} & 0.03 \% \text { plus } \\ & 4 \mathrm{mv} \end{aligned}$	$\begin{aligned} & 0.06 \% \text { plüs } \\ & 86 . \mathrm{inA} \end{aligned}$
0.110	0.100	6475C	0.05\% plus 100 mV	0.1\% plus 0.1A	0.05\% plus 100 mV	0.1\% plus 0.1A	$220 \mathrm{mV} / 2 \mathrm{~V}$	$\begin{aligned} & 0.03 \% \text { plus } \\ & 5 \mathrm{~m} v \end{aligned}$	$\begin{aligned} & 0.06 \% \text { plus } \\ & 75 \mathrm{~mA} \end{aligned}$
0.120	0.2 .5	84438	120 mV	25ma	G0mV	25 mA	240 mV 1400 mV		8 mA
0.220	0-60	8477C	$0.05 \%$ plus 100 mV	0.1\% plus 50 mA	0.05\% plus 100 mV	0.1\% plus 50 mA	$330 \mathrm{mV} / 2 \mathrm{~V}$	$\begin{aligned} & 0.03 \% \text { plus } \\ & 8 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.00^{\%} \text { plus } \\ & 85 \mathrm{~mA} \end{aligned}$
0.300	0.35	6479 C	0.05\% nlus 100 mV	0.1\% ples 35mA	0.05\% plus 100 mV	0.1\% ples 35mA	$338 \mathrm{mV} / 3 \mathrm{~V}$	$\begin{aligned} & 0.03 \% \text { plus } \\ & 11 \mathrm{mV} \end{aligned}$	$7.06 \%$ 'plus 60 mA
$\begin{aligned} & \hline 0.440, \\ & 500,600 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 20.15 \end{aligned}$	6483C	0.05\% plus 100 mV	0.1\% plus 35 mA	0.05\% plus 100mV	0.1\% plus 35 m A	600mV/5V	$\begin{aligned} & 0.03 \% \text { plus } \\ & 20 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.06 \% \text { plus } \\ & 60 \mathrm{~mA} \end{aligned}$
1.800	$\begin{aligned} & 5 \mathrm{~mA} \text { - } \\ & 1.5 \mathrm{~A} \end{aligned}$	6atis	12 plus 400 mV	2\% plum.10mA	800 mV	15 mA	$600 \mathrm{mV} / 2 \mathrm{~V}$	$0.03 \% \text { plus }$	SmA

[^17]

Stability		Transient Recovery		Floating, up to	Overvaltage Prosection		Snput Powes	Oimensions (in $/ \mathrm{mm}$ )			Options   Aveilable   (paga 201)	Price
Vodtage	Current	Time	Leved		Option	Price		w	H			
03\% plus $1 m y$	$0.6 \% \text { plus }$ $1 A$	$\begin{gathered} 50 \mathrm{~ms} \\ 100 \mathrm{~ms} \end{gathered}$	$\begin{aligned} & 18 y \\ & 500 \mathrm{my} \end{aligned}$	100V	NA	NA	Option 12:3,3,32   Boa per thsse BizeV	$\frac{16 x}{426}$	$\begin{gathered} 60 \mathrm{x} \\ 667 \end{gathered}$	$\begin{aligned} & 261 / 8 \\ & 664 \end{aligned}$	12,3,53.31,32	\$3500
$\begin{aligned} & 0.25 \% \text { plus } \\ & 10 \mathrm{mV} \end{aligned}$	6A	50 ms	150 mV	300 V	6	\$350	Option 1,2,3,31,32   14 A per phase @ 230 V	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{aligned} & 14 \\ & 356 \end{aligned}$	$\begin{aligned} & 181 / 2 \\ & 464 \end{aligned}$	1,2,3,5,6,10,31,32	51425
$\begin{aligned} & \text { 0.2\% plus } \\ & 1 \mathrm{mV} \end{aligned}$	$0.58 \text { ph }$	$\begin{array}{r} 50 \mathrm{~ms} \\ 100 \mathrm{~ms} \end{array}$	$55 \mathrm{~F}$	100V	$6$	\$500	Option 12,2,31.32   sida per phase e 2Sigv	$\frac{166}{426}$	$\begin{aligned} & 261 \% \\ & 667 \end{aligned}$	$\begin{aligned} & 28 \mathrm{x} / 8 \\ & 664 \end{aligned}$	1,2,3,5,6,23,31,32	\$2800
$0.1 \%$ plus 10 mV	150 mA	200 ms	200 mV	300 V	NA	NA	$\begin{aligned} & 115 \mathrm{Vac} 10 \%, 57 \cdot 63 \mathrm{~Hz}, \\ & 6.5 \mathrm{~A}, 450 \mathrm{~W}, \end{aligned}$	$\begin{gathered} 19 \\ 483 \end{gathered}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{aligned} & 171 / 2 \\ & 445 \end{aligned}$	5,10,27,28	\$425
$\begin{aligned} & \text { 01\%plus } \\ & 10 \mathrm{vy} \end{aligned}$	450 mA	200 ms	200 mb	3 L	NA	NA	$\begin{aligned} & 15 \mathrm{Varct10} \mathrm{\%} .57 .63 \mathrm{~Hz} \\ & 1 \mathrm{AR} \text { 120ew } \end{aligned}$	${ }^{99} 9$	$\begin{aligned} & 64 \\ & 43 \end{aligned}$	$\begin{aligned} & 164 \\ & .426 \end{aligned}$	510027.28	$554$
$\begin{aligned} & 0.1 \% \text { plus } \\ & 15 \mathrm{mV} \end{aligned}$	100 mA	200 ms	200 mV	300 V	NA	NA	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \%, 57.63 \mathrm{~Hz}, \\ & 7 \mathrm{~A}, 450 \mathrm{w} \end{aligned}$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \\ & \hline \end{aligned}$	$\begin{aligned} & 171_{2} \\ & 445 \\ & \hline \end{aligned}$	5,10,27;28	8385
$\begin{aligned} & 0.25 \% \text { plus } \\ & 100 \mathrm{~V} \end{aligned}$	3 A	50 ms	300 mV	300 V	6	\$300	Option 12,3,3192 LAA poriphisage. 23 av	$48$	$14$	$\begin{aligned} & 1844 \\ & 884 \end{aligned}$	1,2,3,5;6, 10,31,32	$\$ 1320$
$\begin{aligned} & 0.15 \% \text { plus } \\ & 1 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.4 \% \mathrm{~F} 1 \mathrm{l} \\ & 0.4 \mathrm{~A} \end{aligned}$	$\begin{gathered} 50 \mathrm{~ms} \\ 100 \mathrm{~ms} \end{gathered}$	$\begin{aligned} & 1.5 \mathrm{~V} \\ & 500 \mathrm{mV} \end{aligned}$	100 V	6	\$450	Option 1,2,3,31,32 50 A per phase @ 230 V	$\begin{aligned} & 163 / \\ & 426 \end{aligned}$	$\begin{aligned} & \hline 261 / 2 \\ & 667 \\ & \hline \end{aligned}$	$\begin{aligned} & 281 / 8 \\ & 664 \end{aligned}$	1,2,3,5,6,23,31,32	\$2500
$\begin{aligned} & 0.1 \% \mathrm{oplus} \\ & 20 \mathrm{mV} \end{aligned}$	250 mA	200 ms	200mV	300 V	NA	NA	$\begin{aligned} & 1508 \mathrm{ct10} \mathrm{\%}, 5763 \mathrm{~Hz} \\ & 19 \mathrm{~A}, 3300 \mathrm{~N} . \end{aligned}$	$\begin{array}{r} 79 \\ -183 \\ \hline \end{array}$	$\begin{aligned} & 58 \\ & 83 \\ & \hline \end{aligned}$	$\begin{aligned} & 163 \\ & 426 \end{aligned}$	5,10,27,28	$5570$
$\begin{aligned} & 0.1 \% \text { plus } \\ & 30 \mathrm{mV} \end{aligned}$	50mA	200 ms	300 mV	300 V	NA	NA	$\begin{aligned} & 115 \mathrm{Vac} \pm 10 \%, 57.63 \mathrm{~Hz} \\ & 6.5 \mathrm{~A}, 400 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{array}{\|l\|} \hline 31 / 2 \\ 89 \end{array}$	$\begin{aligned} & 171 / 2 \\ & 445 \end{aligned}$	5,10,27,28	\$385
	150 mA	200ms	600 mV	300 V	NA	NA	$\begin{aligned} & \text { 115Vact } 10 \%, 5763 \mathrm{~Hz} \\ & 17 \mathrm{~A} .1200 \mathrm{w} \end{aligned}$	$\begin{gathered} 19 \\ 4803 \end{gathered}$	$5 x^{4}$	$16 \%$	5,10,22, 28	$\$ 550$
$\begin{aligned} & 0.26 \% \text { pius } \\ & 10 \mathrm{mV} \\ & \hline \end{aligned}$	1.5A	50ms	600 mV	300 V	6	\$300	Option 1,2,3,31,32   14A ger phase @ 230V	$\begin{gathered} 19 \\ 483 \end{gathered}$	$\begin{aligned} & 14 \\ & 356 \\ & \hline \end{aligned}$	$\begin{aligned} & 181 / 4 \\ & 464 \end{aligned}$	1,2,3,5,6,10,31,32	\$1325
$\begin{aligned} & 0.15 \% \text { plas } \\ & 10 \mathrm{mvV} \end{aligned}$	$\begin{aligned} & 03 \% \text { plus } \\ & 035 A \end{aligned}$	$\begin{gathered} 50 \mathrm{~ms} \\ 100 \mathrm{~ms} \end{gathered}$	$\frac{2 \mathrm{~V}}{50 \mathrm{mV}}$	100V	6	5400	Option 1,2,3,31,32  	$16 \%$	$66 \%$	$\begin{gathered} 261 / 8 \\ 664 \\ \hline \end{gathered}$	12,35,233,3132	seing
$0.15 \%$ plus   20 mV	$\begin{aligned} & 0.3 \% \text { plus } \\ & 300 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 50 \mathrm{~ms} \\ 100 \mathrm{~ms} \end{gathered}$	$\begin{aligned} & 2.5 \mathrm{~V} \\ & 1 \mathrm{~V} \end{aligned}$	300 V	6	5400	Option 1.2,3,31,32   50A per phasa@ 230 V	$\begin{aligned} & 18 \% \\ & 426 \end{aligned}$	$\begin{aligned} & 261 / 4 \\ & 667 \end{aligned}$	$\begin{aligned} & 261 / 8 \\ & 664 \\ & \hline \end{aligned}$	1, 2, 3,5,6,23,31,32	\$2800
$\begin{aligned} & 0.1 \% \text { pites } \\ & 60 \mathrm{mv} \end{aligned}$	25 mA	$200 n \mathrm{~s}$	600 mV	300 V	NA	NA	$\begin{aligned} & 115 \mathrm{Vmat10} \mathrm{\%}, 57.63 \mathrm{~Hz} \\ & 6.5 \mathrm{~A}, 4 \mathrm{OW} \end{aligned}$	$48$	$3 / 2$	$48$	5,1027, ${ }^{2}$	$8388$
$\begin{aligned} & 0.15 \% \text { plus } \\ & 35 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.3 \% \text { plus } \\ & 250 \mathrm{~mA} \end{aligned}$	$\begin{array}{r} 50 \mathrm{~ms} \\ 100 \mathrm{~ms} \\ \hline \end{array}$	$\begin{aligned} & 5 \mathrm{~V} \\ & 2 \mathrm{~V} \end{aligned}$	300 V	$\delta$	\$300	Uption 1,2,3,31,32 50A oer phase @ 230V	$\begin{aligned} & 36 \% \\ & 426 \\ & \hline \end{aligned}$	$\begin{aligned} & 261 / 2 \\ & 667 \\ & \hline \end{aligned}$	$\begin{aligned} & 261 / 8 \\ & 664 \\ & \hline \end{aligned}$	1,2,3,5,6,23,31,32	\$2800
$\frac{0.15 \% \text { plus }}{45 \mathrm{inv}}$	$0.3 \%$ piut 250 mA	$\begin{aligned} & 50 \mathrm{~ms} \\ & 100 \mathrm{~ms} \end{aligned}$	$3 v$	300 V	6	\$300.	$\begin{aligned} & \text { Option } 1,2,31,32 \\ & 50 \mathrm{~A} \mathrm{perphase} 0230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 169 \\ & 426 \end{aligned}$	$\begin{aligned} & 26 \% \\ & 65 \% \end{aligned}$	$\begin{aligned} & 2618 \\ & 664 \end{aligned}$	1,2,3,5,6,23,31,32	\$2800
$\begin{aligned} & 0.15 \% \text { plus } \\ & 80 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 0.3 \% \text { plus } \\ & 250 \mathrm{~mA} \end{aligned}$	$\begin{array}{r} 50 \mathrm{~ms} \\ 100 \mathrm{~ms} \end{array}$	$\begin{aligned} & 12 \mathrm{~V} \\ & 5 \mathrm{~V} \end{aligned}$	100 V	6	$\$ 300$	$\begin{aligned} & \text { Option } 1,2,3,31,32 \\ & 50 \mathrm{~A} \text { per phase } @ 230 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 16 \% \\ & 426 \end{aligned}$	$\begin{aligned} & 26 \% \\ & 667 \end{aligned}$	$\begin{aligned} & 261 / 0 \\ & 664 \end{aligned}$	1,2,3,5,6,23,31,32	\$2800
$\begin{aligned} & 0 \text { poplos } \\ & \text { sonv } \end{aligned}$	15 mA	200 ms	3 V	300 V	NA	NA	$\begin{aligned} & 1 \text { igVarito\%, } 57.63 \mathrm{~Hz} \\ & 16 \mathrm{~A}, 1200 \mathrm{~F} \end{aligned}$	$483$	$\begin{aligned} & 51 / 6 \\ & 133 \end{aligned}$	$\begin{aligned} & 168 \\ & 426 \end{aligned}$	8,10,21, 28	\$595

-     - indicates that information was not awailable at time of printing; NA indicates Not Agplicable; NC indicates No Charge


## Description

Hewlett-Packard precision power supplies are high-accuracy instruments designed for use as low-cost calibrators, working voltage standards, systems reference supplies, or high-performance lab supplies. They are ideal for applications requiring an accurate, highly stable, and easy-to-use source of de voltage. Operating characteristics of these sup. plies are one or two orders of magnitude better than typical laboratory' supplies.

Models 6114A/6115A. These models feature a four-digit pushbutton 5 witch for fast and accurate setting of output voltage to within $0.025 \%$ plus 1 mV . Additional features include 5 minute warmup, automatic dual-cange operation, built-in overvoltage protection, overvoltage and current mode indicators, front panel metering, and Auto-Series/ Auto-Parallel/Auto-Tracking capability. Models 6104A/

6105 A have similar features, but employ a ten-turn potentiometer for outpur voltage control.
Models 6111A, 6112A, and 6116A. These models have fewer features and somewhat lower performance than the $6114 \mathrm{~A} / 6119 \mathrm{~A}$ units, but are also lower in cost. Standard features include a precise five-digit thumb-wheel voltage control, adjustable ourrent limit protection, dualfunction merering, and Auto-Series/duto-Tracking operation. Models $6101 \mathrm{~A}, 6102 \mathrm{~A}$, and 6106 A are similar to models 6111 A , $6112 A$, and $6116 A$, but employ coarse and fine potentiometers to adjust ourput voltage.

Model 6110A. The 6110A is a precision high-voltage power supply capabie of supplying 0.3000 V a: 0.6 mA . It can be used in any application requiring a precise and stable source of high-voltage dc power. Standard features include fuxed current limit protection, dual-function metering and ${ }^{2}$ precise five-digit thumb-wheel voltage control.

## Selection Guide (Precision Power Supplies)

Rating		Model	Load Pegulation		Lina Regulation		Ripple \& Noise		Temparaduce Coetficient		$\begin{gathered} \text { Dutput } \\ \text { Voltage } \\ \text { Accuracy } \end{gathered}$	Output Mode
Volts	Amps		Voltage	Current	Voltage	Curent	( $\mathrm{rms} / \mathrm{p}-\mathrm{p}$ )	[(ms/op-p\|	Voltege	Curcent		
0.10	0.2	5113A	$0.001 \%$   plus $100 \mu \mathrm{~V}$.	NA	0.001\%	NA	40, $\mathrm{V} / 10 \mathrm{OH} \mathrm{V}$	NA	$\begin{aligned} & 0.001 \% \\ & \text { plus } 10 \mu \mathrm{~V} \end{aligned}$	NA	$\begin{aligned} & 0.1 \% \\ & \text { plus } \operatorname{Imv} \end{aligned}$	CV/CL
0.20	0.1	6101A	$\begin{aligned} & 0.001 \% \\ & \text { plus } 100_{\mu} \mathrm{V} \end{aligned}$	NA	D.001\%	NA	$40_{\mu} \mathrm{V} / 100_{\mu} \mathrm{V}$	NA	$\begin{aligned} & 0.005 \% \\ & \text { plus } 30 \mu V \end{aligned}$	NA	NA	CV/CL
0.20	Q1	6111A	$\begin{aligned} & 0: 001 \% / \\ & \text { plus } 100, v \end{aligned}$	NA	0.001\%	NA	$4 \mathrm{~B}_{\mu} \mathrm{V} / 100 \mu \mathrm{~V}$	NA	$\begin{aligned} & \text { 0.001\% } \\ & \text { plus } 10 \mu \mathrm{~V} \end{aligned}$	NA	$\begin{aligned} & \hline 0.1 \% \\ & \text { plius } \operatorname{tmV} \end{aligned}$	CV/CL
$\begin{aligned} & 0.20 \\ & 20.40 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0-2 \\ & 0-1 \end{aligned}\right.$	6104 A	$\begin{aligned} & 0.0005 \% \\ & \text { plus } 100_{\mu} V \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 0.01 \% \\ \text { plus } 500 \mu \mathrm{~A} \end{array}$	$\begin{aligned} & 0.0005 \% \\ & \text { plus } 40 \mu \mathrm{~V} \end{aligned}$	0.005\% plus $40 \mu \mathrm{~A}$	$40 \mu \mathrm{~V} / 100 \sim \mathrm{~V}$	$200 \mu \mathrm{~A} / \mathrm{ImA}$	$\begin{aligned} & 0.005 \% \\ & \text { plus } 25 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus 50 } \mathrm{A} \end{aligned}$	NA	CVICC
$\begin{aligned} & 020 \\ & 20-40 \end{aligned}$	$\begin{aligned} & 0-2 \\ & 0-1 \end{aligned}$	B114A	$\begin{aligned} & 0.0 .005 \% \\ & \rho / 05100_{\mu} \mathrm{V} \end{aligned}$	glus $500 \mu \mathrm{~A}$	$\begin{aligned} & 0.0005 \% \\ & \text { plus } 40 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.005 \% \\ & \text { pius 404A } \end{aligned}$	$40 \mu \mathrm{~V} / 100_{\mu} \mathrm{V}$	200, A//mA	$\begin{aligned} & 0.001 \% \\ & \text { plus } 15 \mu \mathrm{~V} \end{aligned}$	$\begin{array}{l\|} 0.02 \% \\ \text { plus } 50_{\mu} \mathrm{A} \end{array}$	$\begin{aligned} & 0.025 \% \\ & \text { plus } 1.0 \mathrm{mV} \end{aligned}$	CV/CC
0.40	0.0 .5	6102A	$\begin{array}{\|l\|} \hline 0.001 \% \% \\ \text { plus } 100, \mathrm{~V} \end{array}$	NA	0.001\%	NA	$40 \mu \mathrm{~V} / 100 \mu \mathrm{~V}$	NA	$\begin{aligned} & 0.005 \% \\ & \text { plus } 50_{\mu} \mathrm{V} \end{aligned}$	NA	NA	CV/CL
0.40	0-0.5	6112A	$\begin{aligned} & 0.001 \% \\ & \text { plus } 100 \mu \mathrm{~V} \end{aligned}$	NA F (2as	0.001\%	NA	$40^{2} \mathrm{~V} / 100{ }^{2} \mathrm{~V}$	NA	$\begin{aligned} & 0.001 \% \\ & \text { pfus } 10 \mu v \end{aligned}$	NA	0.1\% Dius imv	CVICL
$\begin{aligned} & 20.40 \\ & 0.20 \end{aligned}$	$\left[\begin{array}{l} 0.1 \\ 0.2 \end{array}\right.$	6104A	$\begin{aligned} & 0.0005 \% \\ & \text { plus } 100 \mathrm{H} \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 50 \mathrm{O}_{\mu} \mathrm{A} \end{aligned}$	D.0005\% plus $40 \mu \mathrm{~V}$	$\begin{aligned} & 0.005 \% \\ & \text { plus } 40 \mu \mathrm{~A} \end{aligned}$	$40_{\mu} \mathrm{V} / 100_{\mu} \mathrm{V}$	200 4 A/ 1 mA	$\begin{aligned} & 0.005 \% \\ & \text { plus } 2 \mathrm{~L}_{\mu} \mathrm{V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 50_{\mu} \mathrm{A} \end{aligned}$	NA	CVICC
$\begin{aligned} & 20.40 \\ & 0-20 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.2 \\ 0,1 \\ \end{array}$	B114A		plus 500uA	$\begin{aligned} & 0.0005 \% \\ & \text { olus } 40 \mu \mathrm{u} \end{aligned}$	$\begin{aligned} & 0.005 \% \\ & \text { plus } 40 \mu \mathrm{~A} \end{aligned}$	$40 \mu \mathrm{~V} / 100 \mu \mathrm{~V}$	$200 \mu \mathrm{~A} / 1 \mathrm{~mA}$	$\begin{aligned} & 0.001 \% \\ & \text { plus } 15 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 50 \mu \mathrm{~A} \end{aligned}$	$\begin{array}{\|l\|} \hline 0.025 \% \\ \text { plus } 1.0 \mathrm{mVV} \end{array}$	OV/CE
$\begin{aligned} & 0.50 \\ & 50.100 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0 .8 \\ 0-0.4 \end{array}$	8105A	$\begin{aligned} & 0.0005 \% \\ & \text { pius } 50 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { مlus } 50 \mathrm{a}_{\mu} \mathrm{A} \end{aligned}$	$\begin{aligned} & 0.0005 \% \\ & \text { plus } 100 \mu \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.005 \% \\ & \text { plus } 20_{\mu} \mathrm{A} \end{aligned}$	$40 \mu \mathrm{~V} / 100 \mu \mathrm{~V}$	200\%A/1mA	$\begin{array}{\|l\|} \hline 0.005 \% \\ \text { plus } 50 \mu \mathrm{~V} \end{array}$	$\begin{aligned} & \hline 0.02 \% \\ & \text { plus } 25 \sim \mathrm{~A} \end{aligned}$	NA	cV/CC
$\begin{aligned} & 0-50 \\ & 50-100 \end{aligned}$	$\begin{aligned} & 0-0.8 \\ & 0-0.4 \end{aligned}$	6115A	$\begin{aligned} & 0.8005 \% \\ & .14850 \% \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.01 \% \\ & \text { phess } 500_{y} \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.0005 \% \\ & \text { plus } 100, \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.005 \% \\ & \text { plus 20 A } \end{aligned}$	$40 \mu \mathrm{~V} / 10 \mathrm{O}_{\mu} \mathrm{V}$	200uA/1mA	$\begin{aligned} & 0.001 \% \\ & \text { plus } 15 \mu v \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 25 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.025 \% \\ & \text { plus } 1.0 \mathrm{mV} \end{aligned}$	cV/CC
0.100	$\begin{aligned} & 0 . \\ & 200 \mathrm{~mA} \end{aligned}$	6106A	$\begin{aligned} & 0.001 \% \\ & \text { plus } 100_{\mu} \mathrm{V} \end{aligned}$	NA	0.001\%	NA	$40_{\mu} \mathrm{V} / 100{ }_{\mu} \mathrm{V}$	NA	$\begin{aligned} & 0.005 \% \\ & \text { plus } 100 \mu \mathrm{~V} \end{aligned}$	NA	NA	CV/CL
0-100	$\begin{aligned} & 0 . \\ & 200 \mathrm{~mA} \end{aligned}$	8118A	$\begin{array}{\|l\|} \hline 0.001 \% \\ \text { plus } 100_{\mu} \mathrm{V} \\ \hline \end{array}$	NA	0.001\%	NA	$40 \mu \mathrm{~V} / 100 \mu \mathrm{~V}$	NA	$\begin{aligned} & 0.001 \% \\ & \text { ples } 10 \mathrm{~V} V \end{aligned}$	NA	$\begin{aligned} & \hline 0.1 \% \\ & \text { plus Imv } \end{aligned}$	CV/CL
$\begin{aligned} & 50.100 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0-0.4 \\ & 0-0.8 \end{aligned}$	8105A	$\begin{array}{\|l\|l} 0.0005 \% \\ \text { glus } 50_{\mu} V \end{array}$	$\begin{aligned} & 0.01 \% \\ & \text { plus } 500 \mu \mathrm{~A} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.0005 \% \\ & \text { plus } 100 \mu V \end{aligned}\right.$	$\begin{aligned} & 0.005 \% \\ & \text { plus } 20 \mu \mathrm{~A} \end{aligned}$	$40_{\mu} \mathrm{V} / 100_{\mu} \mathrm{V}$	$200 \mu$ A/mA	$\begin{aligned} & 0.005 \% \\ & \text { plus } 50_{\mu} \mathrm{V} \end{aligned}$	$\begin{aligned} & 0.02 \% \\ & \text { plus } 25 \mu \mathrm{~A} \end{aligned}$	NA	CV/CC
$\begin{aligned} & 50-900 \\ & 0-50 \end{aligned}$	$\begin{aligned} & 0-0.4 \\ & 0-0.8 \end{aligned}$	6115A	$\begin{aligned} & 0.0005 \% \\ & \text { plus } 50, \mu \nu \bar{V} \end{aligned}$	plus 500wA	$\begin{aligned} & 0.0005 \% \\ & \text { plus } 100_{\mu} V \end{aligned}$	Plus 20ヶA	$40 \mu \mathrm{~V} / 100 \mu \mathrm{~V}$	200 ${ }^{\text {a }}$ / $/ \mathrm{mA}$	$\begin{array}{\|l\|} \hline 0.061 \% \\ \text { plus } 15 \mathrm{~S} \end{array}$	$\begin{array}{\|l\|} \hline 0.02 \% \\ \text { plus } 25_{\mu} A \end{array}$	$\begin{aligned} & 0.025 \% \\ & \text { plus } 1.0 \mathrm{mV} \end{aligned}$	CV/CC
0.3000	Sma	61104	$\begin{array}{\|l} \hline 0.001 \% \\ \text { plus } 100_{\mu} \mathrm{V} \end{array}$	NA	0.003\%	NA	$2 \mathrm{mV} / 5 \mathrm{mV}$	NA	$\begin{aligned} & \hline 0.001 \% \\ & \text { plus } 50 \mu \mathrm{~V} \end{aligned}$	NA	$\begin{aligned} & 0.1 \% \\ & \text { plus } 100 \mathrm{mV} \end{aligned}$	CV/CL

[^18]

[^19]

Models 6823A and 6824A are general-purpose laboratory instruments capable of a variety of operating modes. Two or more of these units can be connected in Auto-Series to obtain greater voltage capability. High speed constant current operation can be obrained by simply adding an external resistor in series with the load and making minor changes in the rear barrier strapping.

When used as a DC Poucr Supply, either model can be controlled from the fronr panel, or remotely programmed with resistance or voltage. As a power amplifier, each unit offers a signal-to-noise ratio of 80 dB ar full output with low distortion, and 20 dB gain from dc to 20 kHz .

Specifications

Power Supply			
Model		6823A	6824A
Outiput:	OC Voltage	$-2010+20 \mathrm{Vdc}$	$-5010+50 \mathrm{Vot}$
	DC Current	$0-0.58$	0-1.0A
Load Regulatlon:		$0.02 \%$ plus 5 mV	
Llne Perulatlon;		0.02\% plus 5 mV	
Ripple 8 Noles:		2 mV rms	10 mv mms
Load Tramsient Reodvery Time:		Less than $100 \mu \mathrm{sec}$ to within 5 mV $+0.02 \%$ of the nominal output.	
Output:	DC Voltage	40 V P.P	100 V P.P
	DC Current	0-0.5 A	0-1.0A
Voltage Galni		Variable 0-10 (20 dB) output inverted	
Frequanay Responsa:		Al full oulpul $=3 \mathrm{~dB}$ from dc to 20 kHz	
Max. Phase Shitt:		dc $-180^{\circ}, 100 \mathrm{~Hz} \cdot 181^{\circ} .1 \mathrm{kHz}-183^{\circ}$. $10 \mathrm{kHz} \cdot 205^{\circ} .20 \mathrm{kHz} \cdot 225^{\circ}$	
Distorion:		<0.02\% @ I kHz and 'ull output	
Input Impedanos:		2 kohms approx.	
Common Sppolfioations			
AE Inpuf:		$115 \mathrm{Vac} \pm 10 \%$ ! phase. 48-440 $\mathrm{H}_{2}$ : 03 A. 24 W (G) 115 Vac	$115 \mathrm{Vac}=10 \%, 1$ phase. 48-63 Hz; 1.3 A. 96 W (C) 115 Vac
Price:		\$240	\$395
Optlons Avallable: (see gage 201)		028(\$10)	007 (\$35). 028 (\$10)

Accessorles Available
(see page 201)

## MODEL $712 C$ MULTIPLE-OUTPUT SUPPLY

## Specifications

Output
DC main (CV/CC): 0 to 500 V at 010200 mA .
DC fixed bias: -300 V al 0 to 50 mA .
DC varlable blas: 0 to -150 V at $s \mathrm{~mA}$.
AC unregulated: 6.3 V CT at 10 A .
Input: $115 \mathrm{Vac} \pm 10 \%, 37.63 \mathrm{~Hz}, 2 \mathrm{~A}$ at 115 Vac ( 230 Vac inpue not a vailable).
CV Load Regulation: The conscane voltage load regulation is given for a load current change equal to the current rating of the supply.
DC main: $0.01 \%+5 \mathrm{mV}$.
DC fixed bias: 50 mV .
DC variable bias is tied to fxed bias, hence source regularion is same for fixed bias. Intermal impedance is 0 to 10,000 ohms, depending on bias control setting.
OC Load Regulation: The constant current load regulation is given for a load volrage change entual to the voluge rating of the supply. DC main. 0.25 mA .


Price: $\$ 345$.
Option 005: 50 Hz input, add $\$ 39$.


MODELS	Standard   （Blank Panel）	6825A   $(6830 \mathrm{~A})$	6826 A   $(6831 \mathrm{~A})$	6827 A   $(8832 \mathrm{~A})$


OPERATION AS A PONER SUPPLY				
OUTPUT	DC Voltage High Range	$-2010+20 \mathrm{~V}$	-50 to +50 V	-100 to＋100V
	DC Current	0－1．0A	0－1．0A	0－0．5A
LOAD REGULATION	Voltage High Range	0．5mV $+.01 \%$	$1 \mathrm{mV}+.01 \%$	$1 \mathrm{mV}+.01 \%$
	Low Range	$0.1 \mathrm{mV}+.01 \%$	0．2mV＋． $01 \%$	0.2 mV －． $01 \%$
	Current	0．01\％＋250 2 A	0，01\％＋250以A	0．01\％＋250 4
LINE REGULATION	Voltage High Range	2mV＋．01\％	$5 m V+.01 \%$	10mV＋01\％
	Low Range	0．2mV＋．01\％	0．5mV＋． $07 \%$	$5 \mathrm{mV}+.0)^{\%}$
	Current	0．01\％＋250 2	0．01\％＋250 $\mu \mathrm{A}$	0．01\％＋ $250 \mu \mathrm{~A}$
PIPPLE \＆   NOISE   （ $20 \mathrm{~Hz}_{2}-20 \mathrm{mHz}$ ）   （rms／p－g）	Volrage High Bange	$2.5 \mathrm{mV} / 8 \mathrm{mV}$	$6 \mathrm{mV} / 25 \mathrm{mV}$	$10 \mathrm{mV} / 30 \mathrm{mV}$
	Low Range	$2 \mathrm{mV} / 8 \mathrm{mV}$	$2.5 \mathrm{mV} / 6 \mathrm{mV}$	$2.6 \mathrm{mV} / 8 \mathrm{mV}$
	Current	$0.8 \mathrm{~mA} / 2 \mathrm{~mA}$	$0.8 \mathrm{~mA} / 2 \mathrm{~mA}$	$0.4 \mathrm{~mA} / \mathrm{mm}$
IOADTRANSIENTRECOVERYTHME	Voltage	20 mV	50 mV	100 mV
	Time	150／5	1504	150رs

OUTPUT METERING－Standard Models Only

voltage	OC		$-2410+24 \mathrm{~V}$	$-60+0+60 \mathrm{~V}$	$-12010+120 \mathrm{~V}$
	AC		$0-18 \mathrm{Vrms}$	0.40 Vms	0.80 V ms
CURRENT	OC		-1.2 to＋1．2A	$-1.210+1.2 \mathrm{~A}$	$-0.610+0.6 A$
	AC		0．0．8A	0．0．8A	0．0．4 A
		DC	24V．6V	60V．6V	$120 \mathrm{~V}, 12 \mathrm{~V}$
		AC	16 V .6 V	$40 \mathrm{~V}, 4 \mathrm{~V}$	80V，8V

## Description

This new series of power amplifiers offers higher per－ formance and more versatility than Power Supply／Amplifier Models 6823 A and 6824 A ．New features include dual range output，CV／CC operation，bipolar overvoltage protection， and metering of ac and dc voltage and current．Output vol－ tage and current as a dc supply，or gain as a power amplifer， are remotely programmable and are compatible with Hew－ lett－Packard Multiprogrammer Systems．

Each standard model is available in a blank panel version for remote programming applications where metering and front panel access to function switching is not required．

MOOELS	Standard （8\}ank Pznel)	$\begin{gathered} \text { 6日25A } \\ (6830 A) \end{gathered}$	$\begin{gathered} 6828 A \\ (6831 A) \end{gathered}$	$\begin{gathered} \hline 6827 A \\ (6832 A) \end{gathered}$
OPERATION AS A POWER AMPLIFIER				
OUT9UT	DC Voltage High Range	20V pk	50V pk	100V pk
	Low Ranga	5 V p 人	5 V pk	10Vpl
	DC Current	1．0Apk	1．0A Dk	0．5A Pk
voltage GASN	Fixed〔｜nverting	4x 1x	10x ix	20x 2x
	Variable   （Non－invart．）	0－8 0.2	0．20 0－2	0－40 0． 4
freauency RESPONSE （ $+1,-3 \mathrm{dt})$	Fixed Gain	dc． 40 kHz	dc． 40 kHz	dc． 30 kHz
	Variable   Gain	dc． $15 \times \mathrm{Hz}$	de． 15 kHz	dc．15kHz
DISTORTION	1KHz \＆full output	0．1\％THD	0．1\％THD	0．1\％THD
FIXEO GAIN ACCURACY$(a 1$ DC）		$\begin{gathered} \Delta x: 10.1 \% \\ \pm 2 m \mathrm{~V} \end{gathered}$	$\begin{aligned} & 10 x: \pm 0.1 \% \\ & \pm 5 \mathrm{mV} \end{aligned}$	$\begin{gathered} 20 \mathrm{x}: \pm 0.1 \% \\ \pm 10 \mathrm{mV} \end{gathered}$
		$\begin{gathered} 1 \mathrm{x}: \pm 0.1 \% \\ \pm 0.5 \mathrm{mV} \end{gathered}$	$\begin{gathered} 1 \mathrm{x}: \pm 0.1 \% \\ \pm 0.5 \mathrm{mV} \end{gathered}$	$\begin{aligned} & 2 x: \pm 0.1 \% \\ & \pm 1 \mathrm{~m} V \end{aligned}$
REMOTE PAOGRAMMING CHARACTERISTICS				
RESISTANCE   PROGRAMMING COEFFICIENT	Voltage   High Range	5002／V	200תN	1002／V
	Low Range	$2000 \Omega 2 \mathrm{~V}$	$2000 \Omega / \mathrm{V}$	$1000 \Omega \mathrm{~V}$
	Curren：	$10 \Omega \mathrm{ma}$	10S／mA	10§／ma
Gsin，Variable$A_{V}=\frac{k \beta_{1}}{10.24 k \Omega}$	High Range	$4 \mathrm{~F}_{1} / 10.24 \times \Omega$	$10 \mathrm{R}_{1} / 10.24 \mathrm{~K} \Omega$	$20 \mathrm{R} / 10.24 \mathrm{~K} \Omega$
	Low Range	R／10．24 $\times$ S	R／$/ 10.24 \mathrm{~K} \Omega$	$2 \mathrm{R}_{\mathrm{f}} / 10.24 \mathrm{~K} \Omega$
voltage pROGRAMMING COEFFICIENT	Voltage	See Vollage Goin Specification		
	Current	1A／V	1AN	IA／V
PADGEAMMING SPEED Batween 10\％and 90\％of value of fixed gain，		50us	50／s	50us

Whara $k$ is the constanc indicated，and $F_{\Gamma}$ as the programming resistance．

## Additional Specifications

Power：104－127／208－254 Vac．Switchable． 48.440 Hz ．
Temperature：Operating： 0 to $55^{\circ} \mathrm{C}$ ；Storage：-40 to $75^{\circ} \mathrm{C}$ ． Coolling：Convection．

Output Mode：CV／CC，Auto－series，Auto－parellel，Auto－track－ ing．

Isolation： 300 V （dc or peak）maximum can be placed be－ tween either output terminal and ground．


61778, 6181B

$6186 B$
outpur permits the supplies to be used for measurement of dynamic or incremental impedance of circuit components.

## Specifications

Load regulation: less than 25 ppm of output +s ppm of range swith setting for a load change which causes the output voltage to vary from zero to maximum.

Line regulation: less than 25 ppm of output +5 ppm of range switch setting for a $10 \%$ change in the line vollage.

Load transient recovery time: Less than $200 \mu$ s for output current recovery to within $1 \%$ of the nominal output current following a full load change in ourput voltage.

Temperature coetficient: output change per degree $C$ is less than 75 ppm of output current +5 ppm of range switch serting.

Stabllty: less than 100 ppm of output current +25 ppm of range switch setting after 1 hour warmup.

Resolution: $0.02 \%$ of range switch setting.
Temperature: operating, 0 to $55^{\circ} \mathrm{C}$; storage, -40 to $+75^{\circ} \mathrm{C}$.
Dimensions:
6177B, 6181日: $73 / 4$ " wide, $3.7 / 16^{\prime \prime}$ high, $123 / 8^{\prime \prime}$ deep. 6186B: $73 / 4^{\prime \prime}$ wide, $6.7 / 32^{\prime \prime}$ high, $123 / 8^{\prime \prime}$ deep.

Welght:
6177B, 6181B: 10 lbs net, 13 lbs shipping 6196B: 13 lbs net, 17 lbs shipping.

## Options

014: three digit graduated decadial current control, add $\$ 35$ 028: $230 \mathrm{~V} \mathrm{ac}, \mathrm{(Models} \mathrm{6177B} \mathrm{and} \mathrm{6181B} \mathrm{only)} \mathrm{add} \$ 10.$,

These solid-state constant-current sources have excellent ripple, regulation, drift, and ourput impedance characteristics, making them ideal for semiconductor circuit development, component testing, and precision electroplating applications.
In addition, the high-speed remote programming characteristics lend these supplies to diverse applications, such as testing and sorting of semiconductors, resistors, relays, meters, etc. The capability of superimposing ac modulation on the dc

Moded			67778	61818	61868
Output Curient			0-500 mA	0-250 me	0-100 mA
Voltage Compliance			$0-50 \mathrm{Vdc}$	$0-100 \mathrm{Vdc}$	$0-300 \mathrm{Vdc}$
Output Ranges		A	0-5 mA	$0-2.5 \mathrm{~mA}$	0-1 mA
		8	0-50 mA	0-25 mA	0-10 mA
		C	0-500 mA	0-250 mA	$0-100 \mathrm{~mA}$
AC ingut			$115 \mathrm{Vac}=10 \% \% 48-63 \mathrm{~Hz}$; $0.6 \mathrm{~A}, 55 \mathrm{~W}$ at 115 Vac   For 230 Vac see Option 028	$115 \mathrm{Vac} \pm 10 \%, 48-63 \mathrm{~Hz} ;$ $0.6 \mathrm{~A}, 55 \mathrm{~W}$ at 115 Vac   For 230 Vac see Option 028	$115 / 230 \mathrm{Vac}, 48-63 \mathrm{~Hz}$ 0.9 A, 90 W at 115 Vac 115/230 Vac switch
Constant Current   Remote   Programming	Voltage Control (Accuracy: $0.5 \%$ of output current $+.04 \%$ of range)	Range A	$200 \mathrm{mV} / \mathrm{mA}$	$1 \mathrm{~V} / \mathrm{mA}$	$10 \mathrm{~V} / \mathrm{mA}$
		Range 8	$20 \mathrm{mV} / \mathrm{mA}$	$100 \mathrm{mV} / \mathrm{mA}$	$1 \mathrm{~V} / \mathrm{mA}$
		Range C	$2 \mathrm{mV} / \mathrm{mA}$	$10 \mathrm{mV} / \mathrm{mA}$	$100 \mathrm{mV} / \mathrm{mA}$
	Resistance Control (Accuracy: 1\% of output control $+.04 \%$ of range)	Range A	$400 \mathrm{ohms} / \mathrm{mA}$	2 K ohms/mA	$10 \mathrm{Kohms} / \mathrm{mA}$
		Range B	40 ohms/mA	$200 \mathrm{ohms} / \mathrm{mA}$	1 K ohm/mA
		Range C	$40 \mathrm{hms} / \mathrm{mA}$	$20 \mathrm{hms} / \mathrm{mA}$	100 ohms/mA
Voltage Limit Remote Programming	Voltage Control (Accuracy: 20\%)		$1 \mathrm{~V} / \mathrm{V}$	IV/V	$1 \mathrm{~V} / \mathrm{V}$
	Resistance Control		870 ohms/ N	440 ohms/V	$820 \mathrm{ahms} / \mathrm{V}$
	Accuracy		20\%	20\%	15\%
Output Impadance ( R in parallel with C )*		Range A	$\mathrm{R}=330 \mathrm{Meg}, \mathrm{C}=500 \mathrm{pF}$	$\mathrm{R}=1330 \mathrm{Meg}, \mathrm{C}=10 \mathrm{pF}$	$\mathrm{R}=10,000 \mathrm{Meg}, \mathrm{C}=900 \mathrm{pF}$
		Range 8	$R=33 \mathrm{Meg} . \mathrm{C}=0.005 \mu \mathrm{~F}$	$\mathrm{R}=133 \mathrm{Meg}, \mathrm{C}=100 \mathrm{pF}$	$\mathrm{R}=1,000$ Meg. $\mathrm{C}=700 \mathrm{pF}$
		Range C	$\mathrm{R}=3.3 \mathrm{Meg}, \mathrm{C}=0.05 \mu \mathrm{~F}$	$\mathrm{R}=13.3 \mathrm{Meg}, \mathrm{C}=1000 \mathrm{pF}$	$\mathrm{R}=100 \mathrm{Meg}, \mathrm{C}=1500 \mathrm{pF}$
Ripple and Noise: Ims/p-p (dc to 20 MHz )   Eilher output terminal can be grounded		Range A	$0.40 \mu \mathrm{~A}$ rms/ $/ \mu \mathrm{A} \mathrm{P} \cdot \mathrm{p}$	$0.20 \mu \mathrm{~A} \mathrm{mms} / 0.5 \mu \mathrm{~A} \rho-\mathrm{p}$	$50 \mu \mathrm{~A} \mathrm{~ms} / 2 \mu \mathrm{~A} \rho-\mathrm{D}$
		Range B	$4.0 \mu \mathrm{Arms} / 40 \mu \mathrm{~A} p \cdot \rho$	$2.0 \mu \mathrm{~A} / \mathrm{ms} / 7.5 \mu \mathrm{~A}$ D-D	$0.5 \mu \mathrm{Arms} / 25 \mu \mathrm{~A} \mathrm{p}-\mathrm{D}$
		Range C	$40 \mu \mathrm{Arms} / 250 \mu \mathrm{~A}$ P-P	$20 \mu$ A rms $/ 100 \mu$ A p-p	$5 \mu \mathrm{~A} \mathrm{rms} / 500 \mu \mathrm{~A} p-\mathrm{o}$
Programming Speed: from 0 to $99 \%$ of range switch setting with a resistive load. **(Output Current Modulation)			$500 \mu \mathrm{~s}$	$500 \mu 5$	1 ms
Meter Ranges (Accuracy 2\% of full scale)			6, $60,600 \mathrm{~mA}: 60 \mathrm{Vdc}$	3, 30, $300 \mathrm{~mA} ; 120 \mathrm{Vdc}$	1.2, 12, $120 \mathrm{~mA} ; 360 \mathrm{Vdc}$
Price			$\$ 475$	\$475	\$600

*This network is a simpliffed representation of a complex network. The formula $Z=R X_{c} / \sqrt[1]{R^{2}+X_{c}}{ }^{1}$ is used for frequencies up lo 1 MHz by substiluting the values given for $R$ and $C$. Above 1 MHz , the output impedance is greater than the lormula would indicala-load uansieni overhools are less than $20 \%$ of range selling for a full load change with a $I_{\mu}$ sec. rise time.
*Output current can be modulated $100 \%$ up 10100 Hz ; Dercent moduation desreases linearly to $10 \%$ al 1000 Hz . POWER SUPPLIES

Options are customer-requested, factory-performed modifications to standard instruments. A list of all options available on Hewlett-Packard ds power supplies is given below. To determine which options ace available for a particular supply, refer to the appropriate product page.

## Options

001: $208 \mathrm{Vac} \pm 10 \%$, 3-phase input, 57.63 Hz , no charge.
002: 230 V ac $\pm 10 \%$, 3 -phase input, 57.63 Hz , no charge,
003: $460 \mathrm{~V} \mathrm{ac} \pm 10 \%$, 3 -phase input, 57.63 Hz .6464 C , 6466C, 6469C, 6472C, 6475C, 6477C, 6479C. 6483C, $\$ 200$; all other models, no charge.
005: 50 Hz ac input. $6110 \mathrm{~A}, 6516 \mathrm{~A}, 950.6453 \mathrm{~A}, 6456 \mathrm{~B}$, $6459 \mathrm{~A}, 712 \mathrm{C}, \$ 25.6464 \mathrm{C}, 6466 \mathrm{C}, 6469 \mathrm{C}, 6472 \mathrm{C}$, $6475 \mathrm{C}, 6477 \mathrm{C}, 6479 \mathrm{C}, 6483 \mathrm{C}$, no charge; all other models, $\$ 10$.
005/011: internal overvoltage protection crowbar. Refer to product pages for prices.
007: ten-turn output voltage control. $6205 \mathrm{~B}, 6227 \mathrm{~B}, 6228 \mathrm{~B}$, 6253A, 6255A, \$50; all orher models. \$25.
008: ten-turn output current control. 6227B, 62288, 6253A, $6255 \mathrm{~A}, \$ 50$; all other models, $\$ 25$.
009: ten-turn output voltage and current controls. Consists of Options 007 and 008 on same instrument. 6227 B , $6228 \mathrm{~B}, 6253 \mathrm{~A}, 6255 \mathrm{~A}, \$ 90$; all other models, $\$ 45$.
010: chassis slides. Attached to supply at factory. 6253 A , $6255 \mathrm{~A}, 6427 \mathrm{~B}, 6428 \mathrm{~B}, 6433 \mathrm{~B}, 6434 \mathrm{~B}, 6438 \mathrm{~B}, 6439 \mathrm{~B}$, $6443 \mathrm{~B}, 6448 \mathrm{~B}, \$ 125.6453 \mathrm{~A}, 6456 \mathrm{~B}, 6459 \mathrm{~A}, \$ 195$; all other models. $\$ 50$.
013: three-digit graduated decadial voltage control. Includes single 10 -tum control. $6205 \mathrm{~B}, 6227 \mathrm{~B}, 6228 \mathrm{~B}, 6253 \mathrm{~A}$, 6255A, $\$ 120,6207 \mathrm{~B}, 6209 \mathrm{~B}, 6220 \mathrm{~B}, 6224 \mathrm{~B}, 6226 \mathrm{~B}$, $6294 \mathrm{~A}, 6299 \mathrm{~A}, 6515 \mathrm{~A} . \$ 35$; all other models, $\$ 60$.
014: three-digit graduated decadial current control. Includes single 10 -turn control. $6227 \mathrm{~B}, 6228 \mathrm{~B}, 6253 \mathrm{~A}, 6255 \mathrm{~A}$, $\$ 120.6220 \mathrm{~B}, 6224 \mathrm{~B}, 6266 \mathrm{~B}, \$ 35$; all other models, $\$ 60$.
016: $115 \mathrm{~V} \mathrm{ac} \pm 10 \%$, l-phase input. Factory modification replaces 230 V transformer with 115 V transformer, $\$ 75$.
017: $208 \mathrm{~V} \mathrm{ac} \pm 10 \%$, 1 -phase input. Modification replaces 115 or 230 V transformer with 208 V transformer, 575.
018: $230 \mathrm{Vac} \pm 10 \%$, 1 -phase input. Modification replaces 115 V transformer with 230 V transformer. 6110A, 6282A, 6285A, 6286A, 6290A, 6291A, 6296A, 6516A, \$50; all other models, $\$ 75$.
020: voltage programming adjust. Allows the voltage programming coefficient and zero output voltage to be adjusted via an access hole in the rear panel, $\$ 25$.
021: current programming adjust. Allows the current programming coefficient and zero output current to be adjusted via an access hole in the rear panel, $\$ 25$.
022: voltage and current programming adjusts. Consists of Options 020 and 021 on same instrument, $\$ 45$.
023: rack kit for mounting one 6464C-6483C supply in standard 19" rack, \$25.
026: $115 \mathrm{Vac} \pm 10 \%$, single phase input. Factory modification reconnects power transformer (and other components where necessary) for 115 V operation, $\$ 10$.
027: 208 V ac $\pm 10 \%$, single phase input. Factory modifica-
tion reconnects power transformer (and other components where necessary) for 208 V operation. 6259 B , $6260 \mathrm{~B}, 6261 \mathrm{~B}, 6268 \mathrm{~B}, 6269 \mathrm{~B}, \$ 15$; all other models, $\$ 10$.
028: 230 V ac $\pm 10 \%$, single phase input. Factory modification reconnects power transformer (and other components where necessary) for 230 V operation, $\$ 10$.
031: $380 \mathrm{Vac} \pm 10 \%$, 3 -phase input, $57.63 \mathrm{~Hz}, \$ 275$.
032: $400 \mathrm{~V} \mathrm{ac} \pm 10 \%$, 3.phase input, $57.63 \mathrm{~Hz}, \$ 275$.
040: interfacing for multiprogrammer operation. Prepares standard Hewlett-Packard supplies for resistance programming by the 6940A Multiprogrammer or 6941A Extender. $6220 \mathrm{~B}, 6224 \mathrm{~B}, 6226 \mathrm{~B}, 6256 \mathrm{~B}, 6259 \mathrm{~B}, 6260 \mathrm{~B}$, $6261 \mathrm{~B}, 6263 \mathrm{~B}, 6264 \mathrm{~B}, 6265 \mathrm{~B}, 6266 \mathrm{~B}, 6267 \mathrm{~B}, 6268 \mathrm{~B}$, $6269 \mathrm{~B}, 6271 \mathrm{~B}, 6274 \mathrm{~B}, \$ 60 ; 6101 \mathrm{~A}, 6102 \mathrm{~A}, 6111 \mathrm{~A}$, $6112 \mathrm{~A}, 6113 \mathrm{~A}, \$ 30$.

## Accessories

14513A: rack kit for mounting one $31 / 2^{\prime \prime}$ high, half rack ( $81 / 2^{\prime \prime}$ wide) supply, $\$ 20$.
14515A: rack kit for mounting one $51 / 4^{\prime \prime}$ high, half rack ( $81 / 2^{\prime \prime}$ wide) supply, $\$ 23$.
14525À: rack kit for mounting two $51 / 4^{\prime \prime}$ high. half rack ( $81 / 2^{\prime \prime}$ wide) supplies, $\$ 12$.
14523A: rack kit for mounting two $31 / 2^{\prime \prime}$ high, half rack ( $81 / 2^{\prime \prime}$ wide) supplies, $\$ 10$.
14521A: rack kit for three 6211A-6118A supplies, $\$ 25$.
Option s01: rack kit for mounting two 6211A-6218A supplies (includes one fíler panel), $\$ 3 \mathrm{~s}$.
Option J02: rack kit for mounting one 6211A-6218A supply (includes two filler panels), \$35.
6950A, Optlon J47: filler panel for one 6211A-6218A supply. Used with rack kit 14521A, \$10.
14545A: set of 4 casters for one 6464 C 16483 C supply, $\$ 35$.

## Specifications definitions

Load regulation: voltage load regulation is given for a load current change equal to the current rating of the supply. Current load regulation is given for a load voltage change equal to the voltage rating of the supply.
Line regulation: given for a $10 \%$ change in line voltage at any output voltage and current within rating.
Ripple and noise: stated as $\mathrm{mm} / \mathrm{p}-\mathrm{p}$ ( $\alpha c$ to 20 MHz ), at any line voltage and under any load condition within rating.
Temperature coefficient: output change per degree Centigrade change in ambient following 30 minutes warm-up.
stability: total drift in output over 8 hour interval under constant line, load, and ambient after 30 min. warm-up.
Resolution: minimum outpot voltage or current change that can be obtained using front panel controls.
Output impedance (typical): represented by a resistance in series with an inductance (values in spec tables).
Load transient vecovery: time required for output voltage recovery to within specified level of nominal output voltage following a change in output current equal to current rating of the supply or 5 amps, whichever is smaller.
Programming speed: typical time required to non-repetitively program from zero to within $99.9 \%$ of the maximum rated output voltage, or from the maximum rated output voltage to within $0.1 \%$ of that voltage above zero.


## Description

Digitally Controlled Power Sources are complete digital-toanalog links between a computer (or other digital source) and any application requiring a fast, accurately settable source of de or low frequency ac power. Initially, these applications may be thought of as requiting a digital-to-analog converter with augmented output power capability, a digitally controlled power supply, or a digitally concrolled waveform synthesizer. However, such applications generally require more than a programonable power supply or the simple randem combination of a D/A converter and an operational amplifer. Interface circuitry must be added to insure compatability between the computer and the D/A converter, and isolation must be provided between input and output. Other functions required include reference and $\mathrm{B}+$ sources, internal storage to increase computer operating efficiency and minimize programming overshoots, programmable current limiting protection for the output power amplifier and the load, and feedback signals to inform the computer of the voltage source status.

Plug-in cards for the Digitally Controlied Power Sources determine the logic format (BCD or binary), logic sense, and logic leveis required to program the instruments. This modular construction provides a variety of standard and special interface options for your present computer, and faciliates modification of your DCPS for use with future computers or other digital data sources.
Digitally Controlled Voltage Sources have programmable current latches and gross current limits to protect the load, whether the instrument is acting as a power source or power sink. Analog input cerminals allow an external de or ac voitage to be summed with the programmed de voltage.
Digitally Controlled Current Sources have an active guard that minimizes leakage currents between output leads to the unit under test. Model 6145 A is equipped with a 4 -digit pushbutton current adjust and 1 .digit voltage limit control that make the instrument ideal for either bench or systems use as an accurate current source for test, control, and calibration.

General specifications

	61288	6129B	61308	6131 B	$\begin{gathered} \text { B140A } \\ 6145 A(B C O \text { Only) } \end{gathered}$
DC OUTPUT:   Bisary Instruments (Option J20, 062, or 064) X1 Range	$\begin{aligned} & -16.384 \text { to } \\ & +16.3835 \mathrm{~V}, 12.5 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & -18.384 \mathrm{tD} \\ & +18.3835 \mathrm{~V}, 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & -16.384 \text { to } \\ & +16.3835 \mathrm{~V}, 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & -16.384 \text { to } \\ & +16.3835 \mathrm{~V}, 0.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & -16.38410 \\ & +16.3835 \mathrm{~mA}, 100 \mathrm{~V} \end{aligned}$
Xio fanga	-	$\begin{aligned} & -5010 \\ & +50 \vee, 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & -50 \mathrm{ta} \\ & +50 \mathrm{~V}_{1} \mathrm{~A} \end{aligned}$	$\begin{aligned} & -10010 \\ & +100 \mathrm{~V} \cdot 0.5 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & -163.8410 \\ & +163.835 \mathrm{~mA}, 100 \mathrm{~V} \end{aligned}$
8421 BCD Instruments (Option 061 or 063) X1 Range	$\begin{array}{r} -9.999 \mathrm{~V} 10 \\ +9.999 \mathrm{~V} .12 .5 \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{r} -9.999 \mathrm{~V} \text { to } \\ +9.999 \mathrm{~V} .5 \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{r} -9.999 \mathrm{~V} \text { to } \\ +9.998 \mathrm{~V}, 1 \mathrm{~A} \\ \hline \end{array}$	$\begin{array}{r} -9.999 \mathrm{~V} \% \\ +9.998 \mathrm{~V}, 0.5 \mathrm{~A} \\ \hline \end{array}$	$\begin{gathered} -9.999 \mathrm{~mA} \text { to } \\ +9.999 \mathrm{~mA}, 100 \mathrm{~V} \end{gathered}$
X10 Range	-	$\begin{aligned} & -50 \text { to } \\ & +50 \mathrm{~V} .5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & -50 \text { to } \\ & +50 \mathrm{~V}, 1 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline-99.99 \mathrm{~V} 10 \\ & +99.99 \mathrm{~V}, 0.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & -99.99 \mathrm{~mA} 10 \\ & +99.99 \mathrm{~mA}, 100 \mathrm{~V} \\ & \hline \end{aligned}$
GESOLUTION:   Binary Instrument	XI Aange: 0.5 mb		XI Ranga: 0.5 mV   XIO Range: 5 mV		XI Flange: 500 nA   X 10 Range: $5 \mu \mathrm{~A}$
8421 日CO Instrumens	X1 Aange: 1 mV		$\begin{aligned} & \text { XI Range: } 1 \mathrm{mV} \\ & \text { X10 Aange: } 10 \mathrm{mV} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { X1 Riange: } 1 \mu \mathrm{~A} \\ & \times 10 \text { Range: } 10 \mu \mathrm{~A} \\ & \hline \end{aligned}$


	$6128 B$	$6129 B$	$6130 B$	6731 B	$\begin{gathered} 6140 \mathrm{~A} \\ \text { 6145A (BCD Only) } \end{gathered}$	
8ASIC ACCURACY (90 DAYS):   Accuracy at $23^{\circ} \mathrm{C}=3^{\circ} \mathrm{C}$, 115 Vac input, no load, following 30 minutes warm-up	X1 Range: 1.5 mV	Xi Range: 1.5 mV   X10 Range: 15 mV	XI Range: ImV   X10 Rangs: 10 mV		$X \mid$ Renge: $1 \mu A \pm .005 \%$   X10 R8п98: $10 \mu \mathrm{~A} \pm 005 \%$	
PROGRAMMING TIME:   For output to sattla within $0.1 \%$ ol programmed change	350450C	300,				
STABILITY: DC output drift unde Binary lasauments	XI Gange: $500 \mu \mathrm{~V}$	X1 Range: 500uV   XIO Range: 2.5 mV		warm-up.   X1 Range: $500 \mu \mathrm{~V}$   X10 Range: 5 mV	$X 1$ Range: 500 nA $X 10$ 月วnge: $5 \mu \mathrm{~A}$	
8421 BCD Instruments	XI Pange: $300 \mu \mathrm{~V}$	$X 1$ Range: 300 JV   X10 Renge: 1.5 mV		XI Range: $300 \mu \mathrm{~V}$ X) 10 Range: 3 mV	$X$ ) Ranga: 50:nnA $X 10$ Rasnge: $5 \mu \mathrm{~A}$	
RIPPLE AND NOISE:   At any line \& load condition within rating	$\begin{aligned} & 20 \mathrm{mV} \mathrm{o-p} \\ & 8 \mathrm{mV} \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 12 \mathrm{mVp} \cdot \mathrm{p} \\ & 3 \mathrm{mV} \mathrm{~ms} \end{aligned}$	7 mV ค.p 3 mV ms		$\begin{array}{ll} X 1 \text { Range: } & \frac{\rho-p}{2 \mu A} \\ \text { X10 Range: } & 8 \mu A \end{array}$	$\begin{array}{\|l\|} \text { rms } \\ \hline 0.5 \mu A \\ 2 \mu A \end{array}$

## Weight

6128B, 6129B: net, 72 lbs ( 33 kg ) ; shipping. 78 lbs (35 kg). 6130B, $6131 \mathrm{~B}:$ net, $32 \mathrm{lbs}(15 \mathrm{~kg})$; shipping, $48 \mathrm{lbs}(22 \mathrm{~kg})$. 6140A, 6145A: net, $45 \mathrm{lbs}(20 \mathrm{~kg}$ ); shipping. $52 \mathrm{lbs}(24 \mathrm{~kg})$.

## Dimensions

6128B, 6129B: $16 \frac{1}{4} 4^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $213 / 8^{\prime \prime}$ deep ( $42,55 x$ $26,67 \times 54,3 \mathrm{~cm})$.
6130B, 6131B: $163 / 4^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $15 \frac{5 / 8 " \text { deep ( } 42.55 \times 1 .}{}$ $13,34 \times 39,69 \mathrm{~cm})$.
6140A, 6145A: $16 \frac{1}{4}$ " wide, $51 / 4$ " high. $191 / 2^{\prime \prime}$ deep ( $42,55 \mathrm{x}$ $13.34 \times 49,40 \mathrm{~cm})$.

## AC power Input

6128B, 6129B: $115 / 230 \mathrm{~V}$ ac, $18.63 \mathrm{~Hz} ; 6.4 \mathrm{~A}, 780 \mathrm{~W} @$ 115 V ac; $115 / 230 \mathrm{~V}$ ac switch-selected.
6130B, 6131B: ils V ac $\pm 10 \%$. $48.440 \mathrm{~Hz} ; 1.2 \mathrm{~A}, 100 \mathrm{~W}$.
6140A, 6145A: $115 / 230 \mathrm{Vac}, 48.440 \mathrm{~Hz} ; 1.2 \mathrm{~A}, 100 \mathrm{~W} @$ 115 V ac; $115 / 230 \mathrm{~V}$ ac switch-selected.

## Cooling

6130B, 6131日 are convection cooled.
6128B, 6I29B, 6140A, 6145A are forced air cooled.

## Software for Hewlets-Packard computers

(Refer to Hewletr-Packard programs catalog for prices, descriptions and ordering information).
14902 BCS Driver for HP DCPS
14903 Verification Routine for HP DCPS
14914 DOS/DOS-M Driver for HP DCPS

## Accessories available

14533B Pocket Programmer and 14534A Pocket Programmer 3-foot extension cable permits manual control for off-line service and manual calibration. Prlces: 14533B, \$97; 14534A, $\$ 50$.
14535A HP Computer Interface Kit includes 12661 A computer I/O card, 14539 A cable, verification software and BCS driver. Lip to eight DCPS's may be controlled from one 14535A.
Price: $\$ 1250$.
14536A Chaining Cable connects an additional DCPS to the existing chain of DCPS's. Price: $\$ 150$.

14539A Cable connects the frst DCPS in a chain of up to eight instruments to the 12661 A DVS programmer card for Hewlett-Packard computers. Price: $\$ 150$.
14544A Cable connects a DCPS to a DEC PDP-8/I computer, Includes instructions for constructing the interface from DEC logic modules. Prlce: $\$ 150$.
Price: Model 61288, 6129B, \$2700. Models 6130B, 6131B, \$1800. Model 6140A, \$2500. Model 6145A, ${ }^{1} \$ 2750$.
Note: standard or special option must be specified.
Standard options: (no additional charge, except for Option 028).

028; transformer tap change for 230 V ac $\pm 10 \%$. single phase input on 6130 B and 61318 . Price: $\$ 10$.
J20: binary interface for 12661 A DVS programmer $1 / 0$ card for Hewlett-Packard computers.
061: BCD interface for NPN open follector circuits.
062: binary interface for NPN open collector circuirs.
063: BCD interface for microcircuit logic levels.
064: binary interface for microcircuit logic levels.
Speclal optlons: if none of the standard interface options meet your requirements, quotations for special options may be obtained from your Hewrett-Packard feld engineer.
No standary optlons are available on Model 6145A which has 8CD mieroclicuit logle levels.

## Model 6933B D/A Converter

The Model 6933B Digital-Analog Converter is a complete D/A subsystem in one package. It is similar to the Models $61288,6129 \mathrm{~B}, 6130 \mathrm{~B}$, and 6131 B Digitally Controlled Power Sources except for its lower output rating ( $\pm 10 \mathrm{~V}$ ar 0.10 mA $\mathrm{BCD}: \pm 16 \mathrm{~V}$ BIN $)$ and the elimination of the programmable current latch feature.
Price: $\$ 1500$. Standard or special option must be specified.
Standard options: Options J20, 061, 062, 063, and 064 are the same as described for Models above and are available at no charge.
Special options: quotations for special options may be obtained from your Hewlett-Packard field engineer.


## MODULAR POWER SUPPLIES <br> 44 Models/3-48V/to 192W Output <br> Models 62003A-62048G



## Description

Models 62003A-62048G include forty-four modular power supplies covering eleven of the mast often used voltage ratings. Output voltage ratings are from 3 to 48 volts, with four out. put current ratings available at each voltage. For example, at $s$ volts there are $2.0,4.0,8.0$, and 16.0 ampere supplies available. Each nominal output voltage is adjustable over a $\pm 0.5 \mathrm{~V}$ or $\pm 5 \%$ range (whichever is greater), by means of a frontpanel accessible screwdriver control. All supplies deliver full output from 0 to $50^{\circ} \mathrm{C}$. with linear derating by only $50 \%$ at $71^{\circ} \mathrm{C}$. To supplement the standard output ratings, additional output ratings are also available on a special handling basis.
These serics-regulated supplies contain several prorective features including cur-back eype current limiting, over-temperarure protection, protected remote sensing. and reverse voltage/ reverse current protection. Overvoltage protection is available as a buile-in option.

The units are packaged in three uniform height and depth cases which are fractions of a standard 19 -inch rack width: $1 / 8$ width, $1 / 4$ width, and $1 / 2$ width. Combinations of the three packages can be mounted in an accessory rack mounting tray, or the supplies can be mounted individually. Additional rackmounting accessories and available options are described on page 206.

## Specifications

## Performance

Load regulation: less than $0.01 \%$ or 1 mV , whichever is greater, for a no load to full load (or vice versa) change in ourput current.
Line regulation: less chan $0.01 \%$ or 1 mV , whichever is greater, for change in ac input voirage from 104 to 127 V ac. (For 220 V and 2.10 V operation, the ac input voltage is from 190 to 233 V , or 208 to 254 V .
Ripple and noise: less than 1 mV mms, $2 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}(20 \mathrm{~Hz}$ to 20 MHz ).
Temperature coefficient: less than $0.01 \% /{ }^{\circ} \mathrm{C}$ over the temperature range from oro $50^{\circ} \mathrm{C}$.
Stablity: 0.1 of total drift in ds output voltage over 8 -hour interval.
Load transient recovery: oulput voltage recovers to within 15 mV of nominal output voltage in $50 \mu \mathrm{~s}$ following a load change from full to half load (or vice versa).

## General

AC input power: $104.127 \mathrm{~V} \mathrm{ac}$,48.63 Hz , single phase. See Options 101, 102, and 103 on page 205 for other line voltage ratings available.
Storage temperature: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating temperature: 0 to $50^{\circ} \mathrm{C}$ ambient. Output current is linearly derated to $50 \%$ of maximum at $71^{\circ} \mathrm{C}$ ambiens.

Cooling: convection cooled.
DC output isolation: output is isolated; either output terminal may be grounded.
Dimensions:
A-suffix Models: $1.91^{\prime \prime}$ W x $5.03^{\prime \prime} \mathrm{H} \times 12.25^{\prime \prime} \mathrm{D}$.
C. \& E-suffix Models: $3.94^{\prime \prime}$ W $\times 5.03^{\prime \prime} \mathrm{H} \times 12.25^{\prime \prime} \mathrm{D}$.
G.suffix Models: $8.11^{\prime \prime}$ W x $5.03^{\prime \prime} \mathrm{H} \times 11.50^{\prime \prime} \mathrm{D}$.

Weight (net/shlpping):
A-suffix Models: $6 \mathrm{lbs}(2,7 \mathrm{~kg}) / 8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
C.suffix Models: $10 \mathrm{lbs}(4,5 \mathrm{~kg}) / 12 \mathrm{lbs}(5,4 \mathrm{~kg})$.

Esuftlx Models: $13 \mathrm{lbs}(5,9 \mathrm{~kg}$ )/16 Jbs ( $7,3 \mathrm{~kg}$ ).
G-sufflx Models: $21 \mathrm{lbs}(9,5 \mathrm{~kg}) / 25 \mathrm{lbs}(11,3 \mathrm{~kg})$.

## Options

Refer to page 205 for complete list of options.
Output ratings

DC OUTPUT		MOOEL	PRICE*
NOMINAL VOLTAGE   (Minimum Adj. Span)	CURRENT AT $60^{\circ} \mathrm{C}$		
$3 \mathrm{~V}( \pm 0.5 \mathrm{~V})$	2A	62003A	589
	4.26A	62003C	\$125
	8.5 A	62003 E	\$145
	17A	62003G	\$196
4V( $\pm 0.6 \mathrm{~V})$	2 A	62004A	$\$ 89$
	4A	62004 C	\$125
	8A	$62004 E$	5145
	16A	820046	\$195
$5 \mathrm{~V}( \pm 0.5 \mathrm{~V})$	2A	62005A	589
	4A	62005C	\$125
	8A	6200EE	\$145
	16 A	82005G	\$195
$6 \mathrm{~V}( \pm 0.5 \mathrm{~V})$	1.76A	62006A	\$89
	3.75 A	B2006C	\$126
	7.5A	620065	\$145
	15.0A	B2006G	\$195
$10 \mathrm{~V}( \pm 0.5 \mathrm{~V})$	1.5 A	62010A	589
	3.25A	62010 6	\$125
	8.6 A	62010 E	\$145
	13.0A	62010G	\$195
12V ( $\pm 0.60 \mathrm{~V})$	1.5A	62012A	\$89
	3.0 A	62012C	\$125
	6.0A	62012 E	S145
	12.0A	62012G	\$195
15V $1 \pm 0.75 \mathrm{~V}$ )	1.25A	62016A	$\$ 89$
	2.5 A	62018C	\$125
	5,0A	62015 E	\$146
	10.0A	62015G	\$195
$18 \mathrm{~V}(50.90 \mathrm{~V})$	1.0 A	62018A	\$89
	2.25A	62018C	\$125
	4.5A	62018E	\$145
	9.0A	62018G	\$195
24 V (21.20V)	.75A	62024A	\$89
	1.75A	62024C	\$125
	3.75A	62024E	\$145
	7.5A	62024 G	\$195
$28 \mathrm{~V}( \pm 1.40 \mathrm{~V})$	.7A	62028A	\$89
	1.54	62028 C	\$125
	3.25A	62028 E	\$145
	6.5A	62028 G	\$195
48V ( $\pm 2.40 \mathrm{~V}$ )	.45A	62048A	\$89
	1.0A	62048 C	\$125
	2.0 A	62048 E	\$146
	4.0 A	62048G	\$195

* $O E M$ pricing ls avalable to onginal equipmant manufacturers.

Contact your local Hewlett. Psckard sales oflice.

# MODULAR POWER SUPPLIES <br> 9 Models, 4-28V/to 300W Output <br> Models 62604J-62628J 

 POWER SUPPLIES

## Description

Models 62604J-62628 are transistor switching.regulated power supplies whose dc oulputs include nine of the most often used voltage ratings. Output voltage ratings are from 4 V to 28 V . Each nominal output voltage is adjustable aver a $\pm 0.5 \mathrm{~V}$ or $\pm 5 \%$ range (whichever is greater), by means of a front-panel accessible screwdriver control. All supplies deliver full outpot from 0 to $50^{\circ} \mathrm{C}$, with linear derating by only $50 \%$ at $71^{\circ} \mathrm{C}$

Overvoltage, overcurrent, overtemperature, protected remote sensing. and reverse voltage protection are standard features of all models.

An advanced 20 kHz transistor switching design is employed in these units. The design takes full advantage of the foremost virtue of the switching regulator, namely efficiency, while holding down ripple and noise to levels that are compatible with most low-voltage applications including computer mainframes, digital systems, and systems for industrial process automation. At operating efficiencies up to $80 \%$, a relatively small percentage of power is converted to heat. This permits the use of a compact package while at the same time reducing heat generation that may affect other system components.

Units are packaged in a standard $5^{\prime \prime} H \times 8^{\prime \prime} \mathrm{W} \times 111 / 2^{\prime \prime} \mathrm{D}$ case. They may be used alone, in buried applications, or combined with other 62000 series supplies using an accessory rack mounting tray. A couplete line of rack mounting accessories is described on page 206.

## Specifications

## Performance

Load regulation: less than $0.15 \%$ for a load change from 0 to $15 \%$ of rated output, and less than $0.10 \%$ for a change from $15 \%$ to $100 \%$ of rated output.
LIne regulation: less than $0.10 \%$ for a change in ac input voltage from 104 to 127 V ac . (For 220 V and 240 V operation, the ac input voltage is from 190 to 233 V or 208 to 254 V , respectively.)
Ripple and noise: less than 20 mV rms, $30 \mathrm{mV} \mathrm{p}-\mathrm{p}(20 \mathrm{~Hz}$ to 20 MHz ).
Temperature coefficient: less than $0.02 \% /{ }^{\circ} \mathrm{C}$ over the temperature range from 0 to $50^{\circ} \mathrm{C}$.

DC output ratings

Model	DC Outpur	
	Nominal voltage (Mindmum adj. span)	Current   at $50^{\circ} \mathrm{C}$
$62604 J$	$4 \mathrm{~V}( \pm 0.5 \mathrm{~V})$	40.0 A
626051	$5 \mathrm{~V}( \pm 0.5 \mathrm{~V})$	40.0 A
625065	$6 \mathrm{~V}( \pm 0.5 \mathrm{~V})$	33.0 A
626101	$10 \mathrm{~V}( \pm 0.5 \mathrm{~V})$	25.0 A
62612J	$12 \mathrm{~V}( \pm 0.8 \mathrm{~V})$	23.0 A
62615J	$15 \mathrm{~V}( \pm 0.75 \mathrm{~V})$	20.0 A
62618 J	$18 \mathrm{~V}( \pm 0.90 \mathrm{~V})$	16.7 A
$62624 J$	$24 \mathrm{~V}( \pm 1.20 \mathrm{~V})$	12.5 A
$62628)$	$28 \mathrm{~V}( \pm 1.40 \mathrm{~V})$	10,7 A

Stability: less than $0.1 \%$ total drift in de outpur voltage oven 8 -hour interval.
Transient recovery: less than I ms for output voltage recovery to within $0.3 \%$ of setting following a load change from $100 \%$ to $50 \%$ or $50 \%$ to $100 \%$.
Qvershoot: turn-on transient is within regulation and ripple band. Turn-off is smooth exponential decay.
Carry-over time: output voltage remains within $2 \%$ of speci. fied nominal for a minimum of 30 ms under full load following removal of ac input power.

## General

AC input power: $104.127 \mathrm{~V} \mathrm{ac}$,48.440 Hz , single phase. See Options 101 and 102, on this page for other line voleage ratings available.
Storage temperature: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating temperature: 0 to $50^{\circ} \mathrm{C}$ ambient. Output current for continuous operation is derated linearly from full output at $50^{\circ} \mathrm{C}$ to $50 \%$ of outpur at $71^{\circ} \mathrm{C}$.
Coolling: convection cooled.
Dimensions: $8.14^{\prime \prime} W \times 5.03^{\prime \prime} \mathrm{H} \times 11.50^{\prime \prime} \mathrm{D}(207 \mathrm{~mm}$ W X $127 \mathrm{~mm} \mathrm{H} \times 292 \mathrm{~mm} \mathrm{D}$ ).
Weight: (net/shipping): $13 \mathrm{lbs}(6,6 \mathrm{~kg}) / 14.5 \mathrm{lbs}(8,2 \mathrm{~kg})$.
Price: Models 62604J-62628J, \$395.
(Quantity and OEM discounts are available. Contact your local Hewlett-Packard sales office.)

## Options

(All oprions apply to Models 62003A-62048G; only options 101 and 102 apply to Models 62604J-62628J.)
011, adjustable internal overvoltage protection crowbar $\$ 30$.
101, 190-233 V ac ( $220 \mathrm{~V} \mathrm{ac} \mathrm{nominal)} \mathrm{input} \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}$.
102, 208-254 V ac ( 240 V ac nominal) input .... . No charge
103, 104.127 ( 208.254 V ac field changeable) input ... $\$ 25$
104, includes overvoltage protection crowbar circuit, plus:
(1) external crowbar input; (2) output pulse initiated by crowbar condition; (3) access to summing junction for remotely pragramming power supply to zero $\pm 15 \mathrm{mV} . . \$ 40$


## Description

These single and dual output modular supplies are intended for applications requiring a fixed constant voltage source of dc. The nominal outpur voltage is regulated to $0.05 \%$ and may be offset from the design center by up to $\pm 10 \%$. All supplies are short circuit proof and will not be damaged by overload.

## Accessories for 62000 Series Modular Power Supplíes

Rack mounting tray, Model 62410A: for rack mounting any combination of modular supplies totaling a full unit rack width or less. Size $19^{\prime \prime}$ wide, $51 / /^{\prime \prime}$ high, $17^{\prime \prime}$ deep. Includes detachable handles, but without front panel. Price: $\$ 65$.


Rack mounting tray cooling unit, Model 62413A: provides filtered room temperature air at 45 CFM to rack tray. Suggested when tray is mounted in rack with inside tempera. ture over $50^{\circ} \mathrm{C}$ or for confined installations that would otherwise restrict natural convection cooling. $19^{\prime \prime}$ wide, $13 / 4^{\prime \prime}$ high, $17^{\prime \prime}$ deep. $120 / 220 / 240$ volts, $50 / 60 \mathrm{~Hz}$. Price: S12s.

Rack tray blank front ganel, Model 62411A: provides blank front cover for rack mounting tray. Price: $\$ 12$.

Rack tray blank rear panel, Model 62412A: permits customer to install own input/output connectors or other hardware. Price: $\$ 15$.

Rack tray ac distribution panel, Model 62415A: mounts on rear of rack mounting tray: includes ac input terminal strip and line cord. Price: $\$ 25$.

Rack tray slides, Model 62414A: provides easy access to rackmounted tray of supplies. Price: $\$ 50$.

Complete power systems: Healett-Packard will produce complete power systems, including modular power supplies, custom front and rear panels, and other desired accessories in accordance with custom requirements on a special handling basis. Contact your local Hewlett-Packard field engineer for further information.

## X.Y recorders

The Cartesian coordinate graph is one of the mose effective methods for presenting related data clearly. As a result, $\mathrm{X} \cdot \mathrm{Y}$ recorders have found wide application in areas from general purpose laboratory use to a specialized system read. out.

## Applications

$X-Y$ recorders are frequently used for the recording of spectra, since the sweeping device need not have a linear sweep as a function of time. Hewlett-Packard sweepers and spectrum analyzers-from audio through microwave-produce outputs directly compatible with HewlettPackard X.Y recorders. Sampling devices, such as fault locators. real-time spectrum analyzers, sampling oscillo. scopes and time domain reflectometers benefir from the signal averaging caused by the null detection recording method used in all Hewlett-Packard X•Y recorders, reducing the effect of wideband noise. The final graph is significantly more accurate, precise and easier to reproduce than oscillostope photos of the same event. An X.Y recorder is indispensable when permanent records are needed for such X vs. Y data as semiconductor device curves, hysteresis charts, or records of pliysical variables such as pressure vs. temperature.

Recorders are extremely effective where precise X•Y' plots are needed, either to obtain accurate data or to allow rapid interpretation of data. An X-Y recorder automatically and conveniently ploss the value of an independent variable versus a dependent variable, direcrly on conventional graph paper, working from readily derived electrical signals.

## Basic operation of X-Y recorders

The precision needed foc accurate X-Y graphs is accomplished in Hewlett-Pack. ard recorders by the use of physicaliy and electrically linear feedback clements (often called slidewires) coupled directly to the marking pen and the X -axis arm. Both $X$ and $Y$ axis slidewires are physically mounted along the traveling paths of the arm and pen carriage, avoiding any error-producing mechanical linkages.

The feedback generated from these slidewires is a voluge directly proportional to the position of the pen with respect to the "zero" position originally chosen. This voltage is balanced against the signal inpur by a differential amplifier. The output of the amplifier drives the pen morors, and the pen, until a null balance condition is reached. The accuracy of the final graph, then, is determined by the linearity of the slidewire and the ability of the servo system to drive the pen to the exact point desired (also called repeatability, deadband or resetcability). Hewlett-Packard specifications include such potential errors in a single accuracy specification.
$\mathrm{X}-\mathrm{Y}$ recordings may also be made from computer-generated data or other digital devices by the 7591 A Point Plotting System or the 7200 series Graphic Plotters. The 7591A accepts analog inputs through an external D/A converter or from analog outputs from systems such as Hewlett-Packard multichannel analyzers; the 7200 series receives data directly in digital form. Both ploters are compatible with HP 2100 series computers. X-Y plotters are also available for use with HP 9800 series calculators.

## Writing system

Most Hewlett-Packard recorders utilize a self-contained disposable pen/ink system which allows quick, easy pen changes for renewal or color change. Red, blue, green and black colors are available, and interchangeable between recorders using disposable pens.

## Autogrip paper holddown

Any graph paper may be used on Hewlert-Packard X.Y recorders, up to the $81_{2}^{\prime \prime} \times 11^{\prime \prime}$ or $11^{\prime \prime} \times 17^{\prime \prime}$ maximum size of the recorder chosen. Paper is held to the recording surface electrostatically with the Autogrip holddown system, which grips any paper tightly and silently without vacuum pumps or mechanical clips.

## Selecting an $X-Y$ recorder

Hewlett-Packard X-Y recorders are available in 2 basic chart sizes. Since all recorders will handle $81 / 2$ " $\times 11^{\prime \prime}$ paper, this choice must be determined by instrument size requirement or cost. Laboratory general-purpose recorders are available in both paper sizes, in single or two pen versions, and with built-in or plug-in preamplifiers. All recorders are available with metric or English staling.

Other selection considerations are sensitivity, speed and acceleration, or the need for an automatic chart advance. Also available are models for OEM or other dedicared applications. These are designed so that customized systems can be made in a production environment, and are available with functional discounts to OEM purchasers.

Hewlett-Packard X.Y Recorders

Desoription	Model	Chart SIze (In.)	Paga	Maximum Sanstitivity (mV/In.)	Other	Prloe
General Performance	$\begin{gathered} 7035 \mathrm{~B} \\ 136 \mathrm{~A} \\ 7001 \mathrm{~A} \end{gathered}$	$\begin{gathered} 81 / 2 \times 11 \\ 81 / 2 \times 11 \\ 11 \times 17 \end{gathered}$	$\begin{aligned} & 208 \\ & 216 \\ & 216 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.5 \\ & 0.1 \end{aligned}$	External Time Base Available Two Pen, Time Base Standard Time Base Standard	$\begin{array}{r} \$ 985 \\ 2850 \\ 2275 \end{array}$
High Performance	$\begin{aligned} & 7004 \mathrm{~B} \\ & 7034 \mathrm{~A} \\ & 7044 \mathrm{~A} \\ & 7055 \mathrm{~A} \\ & 7046 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 11 \times 17 \\ & 81 / 2 \times 11 \\ & 11 \times 17 \text { and } A 3 \\ & 11 \times 17 \text { and } A 3 \\ & 11 \times 17 \text { and } A 3 \end{aligned}$	$\begin{aligned} & 209 \\ & 209 \\ & 214 \\ & 214 \\ & 215 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.51 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	Uses Plug-ins Uses Plug-ins $\begin{array}{r} \text { - } \\ \text { Two } P \text { en } \end{array}$	$\begin{aligned} & 14451 \\ & 12951 \\ & 1350 \\ & 1675 \\ & 2650 \end{aligned}$
OEM	$\begin{aligned} & 7040 \mathrm{~A} \\ & 7041 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 11 \times 17 \text { and } A 3 \\ & 11 \times 17 \text { and } A 3 \end{aligned}$	$\begin{aligned} & 213 \\ & 213 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	Single Sensilivity, Selected by option	$\begin{array}{r} 890 \\ 1050 \end{array}$
Specialized	$\begin{aligned} & 7200 \text { Series } \\ & 9862 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 11 \times 17 \\ & 11 \times 17 \end{aligned}$	470		Computer Graphics For 9800 Series Calculators	$\begin{gathered} 3300.3575 \\ 2675 \end{gathered}$

10epends on plug-in selection.

## RECORDERS \& PRINTERS



The Model 7035B is a low cost, solid-state X.Y Recorder for general purpose applications. Each axis has an independent servo system with no interaction between channels. The recorder graphs two related functions from two de signals repre. senting the functions. The ultra-compact design is convertible to rack mounting by addition of two wing brackets (supplied). Metric scaling and calibration are optional.

The input terminals accept eirher open wires or plug-type connectors. Five calibrated ranges from $1 \mathrm{mV} / \mathrm{in}$. to $10 \mathrm{~V} / \mathrm{in}$. are provided in each axis. A vaciable range control permits sealing of signal for full scale deflection. Standard features include high input impedance cone megohm on all but the first (wo ranges), floated and guarded signal pair ioput. $0.2 \%$ accuracy, Autogrip electric paper holddonn, electric pen lift, adjustable zero set, lockable zero and variable range controls, and rear input connector. A plug in time base (Model 17108A) operates on either axis to provide five sweep speeds from 0.5 to $50 \mathrm{~s} / \mathrm{in}$.

Each closed-loop servo system employs a high-gain solidstate servo amplifier, Her-lert-Packard servo motor, long-life balance potentiometer, photochopper, low pass filter, guarded inputs, precision attenuator and balance circuit. Designed for easy maintenance, most components are mounted on a printed circuit board and accessible by removing only the rear cover. Both balance porentiometers are accessible for inspection or cleaning by removing a snap-on strip.

## Performance specifications

3nput ranges: English: 1, $10.100 \mathrm{mV} / \mathrm{in}$; 1 and $10 \mathrm{~V} / \mathrm{in}$; Metric: $0.4,4,40,400 \mathrm{mV} / \mathrm{cm}$ and $-1 \mathrm{~V} / \mathrm{cm}$. Continuous vernier between ranges.
Type of inputs: floated and guarded signal pair; rear input connector.
Input resistance:

Ranga	Input residance
$1 \mathrm{mV} / \mathrm{n} . \quad(0.4 \mathrm{mV} / \mathrm{cm})$	Potentiometric (essentially infinite al null)
Variable	$11 \mathrm{k} \Omega$
$10 \mathrm{mV} / \mathrm{in} . \quad(4 \mathrm{mV} / \mathrm{cm})$	100 ks
Variable	$100 \mathrm{k} \Omega$
$100 \mathrm{mV} / \mathrm{in} . \quad(40 \mathrm{mV} / \mathrm{cm}$ )	1 Ma
Variable	1 Ms
$1 \mathrm{~V} / \mathrm{in}, \quad(400 \mathrm{mV} / \mathrm{cm})$	$1 \mathrm{M} \Omega$
Variable	$1 \mathrm{M} \Omega$
	$1 \mathrm{M} \Omega$ $1 \mathrm{M} \Omega$

Input filter: $>30 \mathrm{~dB}$ at $60 \mathrm{~Hz} ; 18 \mathrm{~dB} /$ octave above 60 Hz .
Maximum allowable source impedance: no restricrions except on fixed $1 \mathrm{mV} / \mathrm{in}$. ( $0.4 \mathrm{mV} / \mathrm{cm}$ ) range. Up to $20 \mathrm{k} \Omega$ source impedance will not alter recorder's performance.
Accuracy: $\pm 0.2 \%$ of full scale.
Linearlty: $\pm 0.1 \%$ of full scale.
Resettability: $\pm 0.1 \%$ of full scale.
Zero set: zero may be set up to one full scale in any direction from zero index. Lockable zero controls.
Slewing speed; $20 \mathrm{in} . / \mathrm{s}$, $50 \mathrm{~cm} / \mathrm{s}$ nominal at 115 V .
Interference rejection: conditions for the following data are line frequency with up to $1 \mathrm{k} \Omega$ between the negative input and guard connection point.

Resge		DC (CMR)	$A C$ (CMR)
English	Metric	130	
$1 \mathrm{mV} / \mathrm{in}$.	$0.4 \mathrm{mV} / \mathrm{cm}$	130 dB	100 dB
$10 \mathrm{mV} / \mathrm{in}$.	$4 \mathrm{mV} / \mathrm{cm}$	110 dB	80 dB
$100 \mathrm{mV} / \mathrm{in}$.	$40 \mathrm{mV} / \mathrm{cm}$	90 dB	60 dB
$1 \mathrm{~V} / \mathrm{in}$.	$400 \mathrm{mV} / \mathrm{cm}$	70 dB	40 dB
$10 \mathrm{~V} / \mathrm{min}$.	$4 \mathrm{~V} / \mathrm{cm}$	50 dB	20 dB

## General specifications

Paper holddown: Autogrip electrostaric paper holddown grips any chart up to size of platen.
Pen ilft: electric pen lift capable of being remorely controlled.
Dimensions: $10.15 / 32^{\prime \prime}$ high, $171 / 2^{\prime \prime}$ wide, $13 / 4^{\prime \prime}$ deep ( 266 x $445 \times 121 \mathrm{~mm}$ ).
Weight: net. $18 \mathrm{lb}(8 \mathrm{~kg})$; shipping. $24 \mathrm{lb}(10,9 \mathrm{~kg})$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 60 Hz , approximately 45 VA.
Price: Model 7035 B
Options:
001: Merric calibration
$N / C$
003: Retransmitting potentiometer on X -axis $5 \mathrm{k} \Omega \pm 3 \%$

17108A Time Base


17108A
The 17108 A is a self-contained external time base designed ro plug directly inso the input terminals of the 7035 B and operate on either axis. An adapter supplied allows the use with a variety of Hewlett-Packard recorders. Any number of recorders may be driven simultaneously. provided the combined parallel input resistance is $20 \mathrm{k} \Omega$ or more.

## Specifications

Sweep speads: $0.5,1,5,10,50 \mathrm{~s} / \mathrm{in} .(0.2,0.4,2,4,20 \mathrm{~s} / \mathrm{cm}$.
Accuracy: $5 \%$ of recorder full scale.
Linearity: $0.5 \%$ of full scale ( $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ ).
Output voltage: 0 to 1.5 V .
Power: replaceable mercury battery ( 100 hr ).
Price: 17108A
$\$ 175$
17108AM (metric)
$\$ 175$

## HIGH PERFORMANCE Plug-in versatility and fast response Models 7004B and 7034A

The 7004B and the 7034 A are Rexible to meet the constantly changing requirements of laboratory measurements. Plug-in modules and a variety of accessories form a versatile high-performance X.Y Recorder. Circuitry common to ali plug-in modules (power supplies, interfaces, etc.) is located in the main frame. This allows the user to purchease additional low-cost plug.ins to expand the measurement capabilities of the system. The plug-in approach allows the user to purchase only the capabilities required.
With an acceleration of more than $1500 \mathrm{in} / \mathrm{s}^{2}$, and slewing speed of $30 \mathrm{in} / \mathrm{s}$, the 7004 B and 7034 A record more phenomena than earlier X.Y recorders.

These recorders use the most advanced technology available.

They use all-silicon integrated circuitry and the proven Auto. grip electrostatic paper holddown.

Guarded input circuits are provided to utidize the superior performance fully. Guarding eliminates the effects of unwanced ac and dc common-mode voltages which can be troublesome in low level recording signals from thermocouples, strain gages and similar sources.

Plug.in modules provide a versatile X-Y Recorder for a variety of applications. If your application changes, the needed measurement capability is available by simply adding an inex. pensive plug.in. In addition to these advantages, their high dynamic performance allows recorders to be used in practically any X-Y Recorder application.


## Performance specifications

Number of plug-ins: frame will accept the equivalent of four single-width plug-ins, two per axis.
Type of input: floating and guarded signal pair. Available at the front panel or at the rear connector.
Zero set: zero may be set $\pm 1$ full scale from zero index.
Zero check switches: pushbutton zero check switch in each axis allows verification of recorder's zero position withour removal or shorting of the input signal.
Mainframe accuracy: $0.2 \%$ of is.
Range vernier: lockable, covers 2.5 times range setting.
Slewing speed: more than $30 \mathrm{in} / \mathrm{s}(75 \mathrm{~cm} / \mathrm{s})$ independent of line voltage and frequency.
Acceleration: more than $1500 \mathrm{in} . / \mathrm{s}^{2}\left(3800 \mathrm{~cm} / \mathrm{s}^{2}\right)$.
Reference stabllity: better than $0.003 \% /{ }^{\circ} \mathrm{C}$.
Terminal based linearity: $\pm 0.1 \%$ of \{s.
Resettability: $\pm 0.05 \%$ of fs .

## General specifications

Paper holddown: Autogrip paper holddown grips charts of any size up to size of platen.
Pen lift: local and remote concrol (contact closure or TTL).
Dimensions: 7004B: $171 / 2^{\prime \prime}$ wide, $171 / 2^{\prime \prime}$ high, $13 / 4^{\prime \prime}$ deep ( $445 \times 445 \times 121 \mathrm{~mm}$ ). $7034 \mathrm{~A}: 171 / 2^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $43 / 4^{\prime \prime}$ deep $(445 \times 267 \times 121 \mathrm{~mm})$.
Weight: $7004 \mathrm{~B}:$ net, $28 \mathrm{lbs}(12,7 \mathrm{~kg})$ : shipping, $42 \mathrm{lbs}(19,0$ kg ). $7034 \mathrm{~A}: n \in \mathrm{c}, 16 \mathrm{lbs}(7,3 \mathrm{~kg})$; shipping, $31 \mathrm{lbs}(14,1 \mathrm{~kg}$ )
Power: 115 or 230 volts ac $\pm 10 \%, 50$ to 400 Hz , approxi. mately 85 VA (depending on the plug-ins used).

## Price

Model 700 \&B- $11^{\prime \prime} \times 17^{\prime \prime}$ \$1445
Model 7034A.812" $\times 11^{\prime \prime} \$ 1295$
Options
001 Metrically scaled and calibrated N/C
002 X-axis setransmitting porentioneter, $5 \mathrm{k} \Omega \pm 0.1 \%$ linearity ( 7004 B only)
\$ 75
004 Power supply for 17005 - 04 incremental chart advance ( 7004 B only)
$\$ 30$

## RECORDERS \& PRINTERS

## PLUG-IN MODULES

For recorder Models 7004B and 7034A


The DC Coupler couples the input signal to the recorder main frame. The input signal range of $100 \mathrm{mV} / \mathrm{in}$ ( $50 \mathrm{mV} /$ cm ) may be adjusted to $250 \mathrm{mV} / \mathrm{in}(125 \mathrm{mV} / \mathrm{cm})$ with a vernier control on the recorder front panel.


The DC Pre-amplifier is a stable, low noise, do amplifier. The 14 calibrated input ranges are supplemented by a vernier control on the recorder front panel to provide a continuously variable range from $0.5 \mathrm{mV} / \mathrm{in}$. ( $0.25 \mathrm{mV} / \mathrm{cm}$ ) to $25 \mathrm{~V} / \mathrm{in}$. ( $12.5 \mathrm{~V} / \mathrm{cm}$ ).


The Time Base plug-in makes X.T or Y.T recordings possible. It employs all-silicon solid-state construction including the latest integrated circuits. Standard features include eight speeds, automatic reset and pen lift at completion of sweep, and remote start control. A vernier control on the recorder front panel extends the sweep speed through $250 \mathrm{~s} / \mathrm{in}$. (125 $\mathrm{s} / \mathrm{cm}$ ).


The Null Detector plug.in provides closed-loop piorting of data in point form, at up to 50 pps. Plotting is accomplished with the Model 17012B/C Point Plotter. The 17012B/C cable plugs into a jack on the 17173A panel and the plotting head is substituted for the recorder pen.

Upon receipt of a seek signal and after the recorder reaches balance. the Null Detector commands the 17012B/C Point Plotter to plot and initiates a plot-complete pulse.

## 17170A Specifications

Input range: a single fixed calibrated range of $100 \mathrm{mV} / \mathrm{in}$. ( 50 $\mathrm{mV} / \mathrm{cm})$.
Input resistance: constant, $1 \mathrm{M} \Omega$.
Common-mode rejection: 120 dB at dc and 70 dB at 50 Hz and above with 100 ohms berween low side and guard connection point with source impedance $10 \mathrm{k} \Omega$ or less.
Price: Model 17170A
$\$ 35$

## 17171A Specifications

Input ranges: English: $0.5,1,2,5,10,20,50 \mathrm{mV} / \mathrm{in} ., 0.1,0.2$, $0.5,1,2,5,10 \mathrm{~V} / \mathrm{in} . ;$ Metric: $0.25,0.5,1,2.5 .5,10,25 \mathrm{mV} /$ $\mathrm{cm}, 0.05,0.1,0.25,0.5, h, 2.5,5 \mathrm{~V} / 6 \mathrm{~m}$.
Input resistance: $1 \mathrm{M} \Omega$.
Maximum alkowable source resistanca

Range	Max. Souroe Resistanoe
$0.5 \mathrm{mV} / \mathrm{in} \cdot(0.25 \mathrm{mV} / \mathrm{cm})$	$10 \mathrm{k} \Omega$
$1 \mathrm{mV} / \mathrm{in} .(0.5 \mathrm{mV} / \mathrm{cm})$	$20 \mathrm{k} \Omega$
$2 \mathrm{mV} / \mathrm{in} .(1.0 \mathrm{mV} / \mathrm{cm})$	$40 \mathrm{k} \Omega$
$5 \mathrm{mV} / \mathrm{in} .(2.5 \mathrm{mV} / \mathrm{cm})$	$100 \mathrm{k} \Omega$
$10 \mathrm{mV} / \mathrm{in} .(5.0 \mathrm{mV} / \mathrm{cm})$	$200 \mathrm{k} \Omega$
$20 \mathrm{mV} / \mathrm{in} .(10.0 \mathrm{mV} / \mathrm{cm})$	$400 \mathrm{k} \Omega$
$50 \mathrm{mV} / \mathrm{in} .(25 \mathrm{mV} / \mathrm{cm})$ and up	1 Ms

Comman-mode rejoction: 120 dB at dc and 100 dB a: 50 Hz and above with 100 ohms between low side and guard connection point (at $0.5 \mathrm{mV} / \mathrm{in}$. or $0.25 \mathrm{mV} / \mathrm{cm}$ ). On other ranges $C M B$ decreases 20 dB per decade step in attenuation.
System accuracy: $\pm 0.2 \%$ of full scale.
Zero dritt: $<1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ with a maximum of $2 S \mu \mathrm{~V}$ from 0 to $55^{\circ} \mathrm{C}$.
Prlce: Model 17171A $\$ 295$
Option: 001 merrically scaled N/C

## 17172A Specifications

Sweep speeds: English: 0.5, 1, 2, 5, 10, 20, 50, $100 \mathrm{~s} / \mathrm{in}$ : Metric: $0.25,0.5,1,2.5,5,10,25,50 \mathrm{~s} / \mathrm{cm}$.
System accuracy: $\pm 1 \%$ of full scale on the six fastest ranges, $\pm 2.5 \%$ on the remaining two ranges.
Terminal based tinearity: $\pm 0.5 \%$ of fall scale.
Price: Model 17172A
Option: 001 merrically scaled

## 17173A Specifications

Plot rate: up to 50 plots/s.
Enabledisable: required disable voltage +3 volrs minimum 20 $\div 20$ rolts maximum. Required enable volage: 0 V de or no connection. Other roltage combinations available on request.
Muting; local or remote.
Plotting accuracy: $\pm 0.25 \%$ of full scale.
Input: all inputs, except analog inputs, are available through rear input connectors in the module. Analog inputs are applied to the input terminals of the main frame. Mating connector supplicd.
Price: Model 17173A
$\$ 250$

## Options

001.	-3 to +20 V enable, 0 V disable	add $\$$	25
002.	-3 to -20 V disable. 0 V enable	add $\$$	25
003.	-5 to -20 V enable. 0 V disabie	add S	25

## PLUG-IN MODULES For recorder Models 7004B and 7034A



The DC Offset plug-in provides the recorder with the capabilities of recording small signals superimposed on a steadystate do voltage. The offset plug-in suppresses the steady-state de voltage allowing recorder sensitivity to be increased.


The Filter plug-in rejects ac input sigoal components. Insertion of the 17175A in front of any other signal conditioning input module will improve normal mode rejection.


The Scanner plugein electrically scans between two inputs, similar to the chopped mode on an oscilloscope, and provides the capability of plotting two dependent variables vs. one independent variable. The Scanner plug-in, utilizing the Model 17012B/C high speed poins plotter, can scan two selectable inputs (module or main frame) in two scan modes (multiplexing both inputs or singularly). The scan rate is adjustable from 0.1 $\mathrm{s} / \mathrm{scan}$ to $4 \mathrm{~s} / \mathrm{scan}$.


The DC Attenuator offers a stable, passive attenuator with eight ranges. A vernier control on the recorder control panel allows continuously variable settings between fixed ranges of the 17178 A .


## 17174B Specifications

Offset: less than 1 mV to approximately 1 vole.
Controls: two lockable, ten turn high resolution controls (less than 1 mV to approximately 10 mV and less than 1 mV to approximately 1 V). An offset polarity switch allows upscale or downscale zero offset.
Otfset voltage stabliky: greater than $0.005 \% 1^{\circ} \mathrm{C}$.
Insertlon loss: less than $0.05 \%$.
Price: Madel 171748

## 17175A Specifications

Input voltage range: -5 to $+50 \mathrm{~V} d \varepsilon_{1} 10 \mathrm{~V}$ ac maximum peak-topeak.
Maximum source Impedance: $1 \mathrm{k} \Omega$, higher impediance decreases filter response.
Rejection: more than $s \mathrm{~S} \mathrm{~dB}$ ar 50 Hz and higher ( $1 / 4 \mathrm{a}$ rise time) or more than 70 dB at 50 Hz and higher ( 1 s rise time). Front panel selectable.
Insertion loss: 1\%; fiter may be switched out with no change in insertion loss.
Price: Model 17175A $\$ 100$

## 17176A Specifications

Input: module inpur; front panel miniature binding pors isolared from ground (high and low only). Main frame inputi utilizes existing input connecrors on main frame.
Attenvator: fixed attenuator in decade steps from Xi to X0.001. Variable attenuator provides concinuous coverage.
Input impedance: $100 \mathrm{k} \Omega$.
Accuracy: $0.2 \%$ of full scale.
Scan rate: adjustable from 0.1 to $4 \mathrm{~s} / \mathrm{scan}$.
Price: Model 17176A \$ 375

## 17178A Specifications

Input ranges: English: $0.1,0.2,0.5,1,2,5,10,20 \mathrm{~V} / \mathrm{in}$.: Metric. $0.05,0.1,0.25,0.5,1,2.5,5,10 \mathrm{~V} / \mathrm{cm}$.
Input resistance: $1 \mathrm{M} \Omega$.
Common-mode rejection: 120 dB at dc and 70 dB at 50 Hz and above with 100 ohms between low side and point where the guard is connected (at $100 \mathrm{mV} / \mathrm{in}$. or $50 \mathrm{mV} / \mathrm{cm}$ ). On other ranges CMR decreases 20 dB per decade step in attenuation.
Systern accuracy: $\doteqdot 0.2 \%$ of full scale.
Price: Model 17178A \$ $\$ 25$
Option: 001 metrically scaled N/C

## 17012B/C Specifications

The 7004 B or 7034 A , equipped with the 17012 B or 17012 C Point Plotter respectively, is capable of point plotting when used with the appropriate plug.in. The 17173A Null Detector plug-in allows rapid point ploteing for applications such as a high speed readout for a multichannel pulse height analyzer. The 17176A Scanner plug-in allows plotting of taro inputs on a single axis to form a $\mathrm{X} \cdot \mathrm{Y}_{1}, \mathrm{Y}$, or $\mathrm{X}_{1}, \mathrm{X}_{2} \cdot \mathrm{Y}$ recorder.

Plotring rate is up to 50 points per second; power is sup. plied from the recorder.
$\begin{array}{cc}\text { Prica: Model 17012B (fits Model 7004B) } & \$ 95 \\ \text { Model } 17012 \mathrm{C} \text { (fits Model 7034A) } & \$ 95\end{array}$
Model 17012C (fits Model 7034A) \$95

## RECORDEAS \& PRINTERS

PLUG-IN MODULE; INCREMENTAL CHART ADVANCE; POINT PLOTTING SYSTEM

## AC/DC Converter/DC Preamplifier



## Model 17177A

The 17173 A plug-in combines in a single unit the ability to record both ds and ac signais. The average-responding ac mode features an extremely flat frequency response from 5 Hz to 100 kHz . This double-ridth module may be used in either axis.

## Specifications

Input ranges: $5 \mathrm{mV} / \mathrm{in}$. to $20 \mathrm{~V} / \mathrm{in} .(2.5 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm})$ in $1,2,5$ steps.
Minimurn usable input (ac only): $\pm 0.2 \%$ of full scale.
Maximum allowable input: 300 V peak.
Type of input: floating and guarded signal pair. Rear inputs nor available.
input impedance: $1 \mathrm{M} \Omega$ shunted by less than 40 pF .

## Incremental chart advance Modes 17005A



The 17005 A is a versatile accessory for the 7001 A and 700.8-001. Several types of chart advance modes are of fered. The frame advance mode, in which the chart advance permits successive X.Y plots to be made during unattended operation, indexes to within $0.005^{\prime \prime}(0.13 \mathrm{~mm})$ of the original chart location. The time base mode converts the recorder from X.Y to strip chart recorder operation, while the incremental rrode advances the chare in small incremenes in response to an external signal.

## Speciflcations

Frame advance mode
Advance distance: 24 in ( 60 cm ): time: less than 20 s .
Accuracy: $\pm 0.005 \mathrm{in},(0,0125 \mathrm{~cm})$ non-cumulative.
Time base mode
Speeds: 1. 5, 10, 50, $100 \mathrm{~s} / \mathrm{in}(0.4,2,4,20,40 \mathrm{~s} / \mathrm{cm}$ ).
Accuracy: $\pm 2 \%$.
incremental advance mode
Plot density: 200, 100, 50, 20, 10 plors/in. ( $80,40,20,5,4$ plots/(m).
Max advance rate: $100,90,50,20,10$ plats/s.
Accuracy: $\pm 0,002 \mathrm{in} .(0,005 \mathrm{~cm})$ non-cumulatice.
Power: supplied by recorder.
Weight: net, 11 lbs ( 5 kg ) : shipping. $16 \mathrm{lbs}(7,3 \mathrm{~kg}$ ).
Price: Model 17005A
Options:
001 Far: fold adapter
002 Metric scale
\$ 125
004 Cormpatibility with 7004 B -Option 004

Maximum allowable source resistance: $10 \mathrm{k} \Omega$.
Common mode rejection: 80 dB at dc and 50 Hz and above with $100 \Omega$ between low side and guard connection point and at $5 \mathrm{mV} / \mathrm{in} .(2.5 \mathrm{mV} / \mathrm{cm})$. On other ranges CMR decreases 20 dB per decade step in attenuation.
Rise/fall time (ac only, $10.90 \%$ )
Slow response ( 5 Hz to 100 kHz ): 2.5 s maximum.
Fast response ( 50 Hz to 100 kHz ): 0.5 s maximum.
Calibration (ac only): responds to average value of input waveform; calibrated in rms value of sine wave.
Accuracy ( $\%$ of full scale):
ds $\pm 0.5 \%$;
ac (fast response) $\pm 0.25 \%$ from 150 Hz to $50 \mathrm{kHz} . \pm 0.5 \%$
from 50 Hz to 150 Hz and 50 kHz to 100 kHz ;
ac (slow response) $\pm 0.25 \%$ irom 30 Hz to $50 \mathrm{kHz}, \pm 0.5 \%$ from $s \mathrm{~Hz}$ to 30 Hz and 50 kHz to 100 kHz .
Linearlty (ac only, \% of full scale and above $0.5 \%$ of full scale): $\pm 0.25 \%$ from 50 Hz to $50 \mathrm{kHz}, \pm 0.35 \%$ from 5 Hz to 50 Hz and 50 kHz to 100 kHz .
Warm-up time: 3 minutes nominal.
Zero drift (referred to input): $\pm 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
Offset: up to one full scale of offset by use of recorder's zero.
Slze: double width, occupies both plug-in spaces in axis.
Price: HP 17177A. $\$ 600$. Option 001 Mecric scaled, N/C.


The 7591A is a fast and economical way to point plor analog data from computers, pulse height analyzers, signal averagers, and multi-channel analyzers. It plots on any size of sheet paper up to $11 \times 17 \mathrm{in}$. or on roll or fanfold paper. The chart ad. vance features include frame and incermental advance with a position accuracy of $\pm 0.005$ inch. Closed.loop plotting rates of up to 3000 plots/minute are attainable.

## Specifications

Plot rate: Up to 50 plots/s. Limined by amplitude excursion of re. corder.
Price: Model 7591A (includes 7004B-004, 17173A, 17012B, and 17005A-004)-one additional plug-in is required for each axis. $\$ 2810$

## Options:

001 Metrically scaled and calibrated
N/C
002 X -axis retransmitting potentiometer,
$5 \mathrm{k} \Omega, \pm 0.1 \%$ linearity
add \$ 75
003 Fan fold adapter (used with 17005A)
008 7591A withnut 17005A (Option 004)
Incremental Chart Adrance
add \$ 129

# SPECIAL PURPOSE For OEM and dedicated applications Models 7040A, 7041A 

The 7040A and 7041A X.Y recorders are designed specif. cally for dedicated, single-purpose recording applications. The 7040A is a medium-speed unit for the majority of uses, while the 7041 A is a high-speed unit featuring exceptionally fast acceleration for applications where recording time is critical or incoming data is at a high rate. Both units use the same rugged cast aluminum mainframe which forever eliminates the need for critical mechanical adjustments, the Autogrip holddown system which is silent and trouble-free with no moving parts, and a quick-change disposable pen.

Over 40 inexpensive options allow the recorder to be easily customized for nearly any specific task. Most can be easily and quickly installed or changed in the field should the recording requirement change. If some manual control is needed, a control panel (Option 038) may be added which provides the basic recorder functions such as zero set, servo, pen and chart handling. Other options include a time base, a plug-in X-axis event marker, TTL logic remote contro! and retransmitting potentiometers for both axes. The 7040 series option system avoids the cost and potential reliability problems associated with the extra, unused components ahen using a general. purpose recorder in a dedicated application.

A functional and quantity discount is available for both units when qualified for the OEM purchase agreement.

## Specifications

Input ranges: single range from $0.5 \mathrm{mV} / \mathrm{in}$. to $1 \mathrm{~V} / \mathrm{in}$. ( 0.2 to $500 \mathrm{mV} / \mathrm{cm}$ ), specified by option shoice.
Type of input: floating, I Mor on all ranges, 200 V de plus peak ac max; internal polarity switch; inpuls through rear barrier strip or optional connector.
Common mode rejection: $100 \mathrm{~dB} \mathrm{dc} ; 80 \mathrm{~dB}$ at line frequency.
Slewing speed
7040A: $20 \mathrm{in} . / \mathrm{s}(50 \mathrm{~cm} / \mathrm{s}) \mathrm{min}$.
7041A: $30 \mathrm{in} . / \mathrm{s}(75 \mathrm{~cm} / \mathrm{s}) \mathrm{min}$.
Acceleration (peak)
7040A: Y axis $1000 \mathrm{in} . / \mathrm{s}^{2}$; X axis $500 \mathrm{in} / \mathrm{s}^{2}$.
7041A: $Y$ axis $3000 \mathrm{in} . / \mathrm{s}^{2}$; X axis $2000 \mathrm{in} . / \mathrm{s}^{2}$.
Accuracy: $\pm 0.2 \%$ of full scale.
Sweep: optional, single range.
Zero set: excernal concrol provided by user; front panel controls available as Option 038.
Paper holddown: Autogrip electric paper holddown grips charts $11^{\prime \prime} \times 17^{\prime \prime}$ and international A3 size or smalier,
Pen lift: electric pen lift controlled remotely by contact closure; TTL logic level provided by Option 039.
Dimensions: $14^{\prime \prime}$ high, $19^{\prime \prime}$ wide. $61 / 2$ " deep ( $356 \times 483 \times 165$ $\mathrm{mm})$; rack mounting structure integral with unit.
Weight: net, $29 \mathrm{lbs}(13,2 \mathrm{~kg})$; shipping, $37 \mathrm{lbs}(16,8 \mathrm{~kg})$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz , approx 130 VA . Prices Model 7040A $\$ 890$
Model 7041A
$\$ 1050$
Note: OEM discounts available on both models.


Optional Control Panel


Inpur range (specify one range option for each axis; must be both English or both metric).

| X | Y | Range | Price | X | Y | Range | Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001 | 007 | $0.5 \mathrm{mV} / \mathrm{in}$. | $\$ 30$ | 013 | 019 | $0.2 \mathrm{mV} / \mathrm{cm}$ | $\$ 30$ |
| 002 | 008 | $1 \mathrm{mV} / \mathrm{in}$. | $\$ 30$ | 014 | 020 | $0.5 \mathrm{mV} / \mathrm{cm}$ | $\$ 30$ |
| 003 | 009 | $10 \mathrm{mV} / \mathrm{in}$. | $\$ 30$ | 015 | 021 | $5 \mathrm{mV} / \mathrm{cm}$ | $\$ 30$ |
| 004 | 010 | $100 \mathrm{mV} / \mathrm{in}$. | $\mathrm{N} / \mathrm{C}$ | 016 | 022 | $50 \mathrm{mV} / \mathrm{cm}$ | $\mathrm{N} / \mathrm{C}$ |
| 005 | 011 | $500 \mathrm{mV} / \mathrm{in}$. | $\mathrm{N} / \mathrm{C}$ | 017 | 023 | $100 \mathrm{mV} / \mathrm{cm}$ | $\mathrm{N} / \mathrm{C}$ |
| 006 | 012 | $1 \mathrm{~V} / \mathrm{in}$. | $\mathrm{N} / \mathrm{C}$ | 018 | 024 | $500 \mathrm{mV} / \mathrm{cm}$ | $\mathrm{N} / \mathrm{C}$ |

Note: other ranges available on special order,
Sweep range (specified by option choice, X axis only; accuracy $\pm 1 \%$ of full scale $\pm 0.1 \% /{ }^{\circ} \mathrm{C}$ max; TTL logic start and reser).

	Sweep	Price		Sweep	Price
025	$1 \mathrm{~s} / \mathrm{in}$.	$\$ 125$	030	$0.5 \mathrm{~s} / \mathrm{cm}$	$\$ 125$
026	$5 \mathrm{~s} / \mathrm{in}$.	$\$ 125$	031	$1 \mathrm{~s} / \mathrm{cm}$	$\$ 125$
027	$10 \mathrm{~s} / \mathrm{in}$.	$\$ 125$	032	$5 \mathrm{~s} / \mathrm{cm}$	$\$ 125$
028	$50 \mathrm{~s} / \mathrm{in}$.	$\$ 125$	033	$10 \mathrm{~s} / \mathrm{cm}$	$\$ 125$
029	$100 \mathrm{~s} / \mathrm{in}$	$\$ 125$	034	$50 \mathrm{~s} / \mathrm{cm}$	$\$ 125$

Note: other sweep ranges available on special order.
035 Event marker, upper margin of X axis $\$ 75$
036 X axis retransmitting potentiometer ( $19.2 \mathrm{k} \Omega$ ) \$ 50
037 Y axis retransmitting potentiometer ( 13.1 kg ) \$ 50
038 Control panel; for line, pen lift, chart, servo standby, zero, and zero check; add $13 / 4$ " ( 44 mm ) to height
$\$ 125$
039 TTL logic remote control; for pen lift and servo standby; also event marker if installed
040 Reat connector; X. Y input signals and retrans. mitting potentiometers, time base controls, Autogrip servo standby, pen lift, event marker and Option 039 control lines brought to a single locking connector
041 Side trim panels and dust cover ( $14^{\prime \prime}$, for standard unit)
042 Side trim panels and duse cover ( $193 / 4^{\prime \prime}$, for unit with Option 038 installed)


The 7044A and 7045A are general-purpose laboratory X-Y recorders, designed specifically to be the most reliable and versatile recorders in the field.

Both recorders are solid, functional, and dependable; both offer outstanding dynamic performance. The 7044 A is a medium-speed recorder designed for most general-use applications. For difficult signal applications, the 7045 A offers higher speed and $Y$-axis acceleration exceeding $3000 \mathrm{in} . / \mathrm{sec}^{2}$ ( $7620 \mathrm{~cm} / \mathrm{sec}^{2}$ ). This high acceleration allows the 7045 A to faithfully reproduce an extremely wide range of fast changing input signals.

Standard features include the AUTOGRIP paper holddown system which solidly grips any size paper up to $11 \times 17 \mathrm{in}$, as well as the standard European size A3. There is also the disposable ink pen that produces a clean, crisp, continuous trace. Four easy to change colors are available to permit easy trace identification.

## Performance specifications

Input ranges: $0.5,1,5.10,50 \mathrm{mV} / \mathrm{in} ; 0.1,0.5,1,5,10 \mathrm{~V} / \mathrm{in}$. (metric calibration a vailable in $0.25,0.5,2.5,5,25 \mathrm{mV} / \mathrm{cm}$; $0.05,0.25,0.5,2.5 .5 \mathrm{~V} / \mathrm{cm})$. Continuous vernier between ranges.
Type of input: floating, 500 V dc or peak ac maximum. Polarity reversal switch located on front panel, guard in. ternally connected. Inputs through front panel s-way binding posts or optional rear connector.
Input resistance: 1 megohm constant on all ranges.
Common mode: 110 dB dc and 90 dB at 50 Hz and above (exceeds 130 dB dc and 110 dB ac under normal lab environmental conditions) with 1 k ohm berween HI and LO terminals, CMR voitage applied between ground and LO, and atrenuator on most sensitive range. CMR decreases 20 dB per decade step in attenuation.

## Slewing speed:

7044 A - $20 \mathrm{in} . / \mathrm{sec}(50 \mathrm{~cm} / \mathrm{sec})$ minimum.
$7045 \mathrm{~A}-\mathrm{Fast}$ Response, $30 \mathrm{in} . / \mathrm{sec}(76 \mathrm{~cm} / \mathrm{sec}$ ) minimum. Slow Response, $15 \mathrm{in} . / \mathrm{sec}(36 \mathrm{~cm} / \mathrm{sec})$ typical.

Acceleration (peak):
$7044 \mathrm{~A}-\mathrm{Y}$-axis $1000 \mathrm{in} / \mathrm{sec}^{2}$ ( $2540 \mathrm{~cm} / \mathrm{sec}^{2}$ ), X-axis 500 in. $/ \mathrm{sec}^{2}\left(1270 \mathrm{~cm} / \mathrm{sec}^{2}\right)$.
7045 A - (Fast Response only) Y-axis $3000 \mathrm{in} . / \mathrm{sec}^{2}$ ( 7620 $\left.\mathrm{cm} / \mathrm{sec}^{2}\right)$. X-axis $2000 \mathrm{in} / \mathrm{sec}^{2}\left(3080 \mathrm{~cm} / \mathrm{sec}^{2}\right)$.
Accuracy: $\pm 0.2 \%$ of full scale $\left( \pm 0.01 \% /{ }^{\circ} \mathrm{C}\right)$.
Linearity (terminal based): $\pm 0.1 \%$ of full scale.
Resettebility: $0.1 \%$ of full scale.
Overshoot: 7044A-2\% of full scale (maximum). 7045A$1 \%$ of full seale (maximum).
Zero set: zero may be placed anywhere on the ariting area or electrically off seale up to one full scale from zero index.
Environmental (operating): $0^{\circ}$ to $95^{\circ} \mathrm{C}$ and $<95 \%$ relative humidity ( $40^{\circ} \mathrm{C}$ ).

## General specifications

Writing mechanism: servo actuated ink pen.
Writing area: $10^{\prime \prime} \times 15^{\prime \prime}(25 \mathrm{~cm} \times 38 \mathrm{~cm})$.
Paper holddown: Autogrip electric paper holddown grips chart $11^{\prime \prime} \times 16.5^{\prime \prime}$ and European size A3 ( $29.7 \mathrm{~cm} \times 42 \mathrm{~cm}$ ) or smaller. Special paper not required.
Pen lift: electric (remote, Option 007, via contact closure or TTL level).
Drmensions: $153 / 4^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $61 / 2^{\prime \prime}$ deep ( $400 \times 483 \times$ 165 mm ); fack mounting structure integral with unit.
Power: 115 or $230 \mathrm{~V} \mathrm{ac} \pm 10 \%$. 50 to $400 \mathrm{~Hz} ; 7044 \mathrm{~A}, 135 \mathrm{VA}$; $7045 \mathrm{~A}, 175 \mathrm{VA}$.
Weight: net, $30 \mathrm{lb}(13,7 \mathrm{~kg})$ : shipping, $42 \mathrm{lb}(19,1 \mathrm{~kg})$.
Prices: 7044A. \$1350; 7045A, \$1675.

## Options

Opt 006: Metric Calibration, N/C.
Opt 001: Time Base, add $\$ 200$.
Sweep rates: $0.5,1,5,10,50,100 \mathrm{sec} / \mathrm{in}$. (metric calibra. tion is $0.25,0.5,2.5,5,25,50 \mathrm{sec} / \mathrm{cm})$.
Accuracy: $\pm 1 \%$ of fuill scale at $25^{\circ} \mathrm{C}( \pm 0.1 \%)^{\circ} \mathrm{C}$ maximum).
Linearity (terminal based) : $\pm 0.5 \%$ of full scale at $25^{\circ} \mathrm{C}$ ( $\pm 0.04 \% /{ }^{\circ} \mathrm{C}$ maximum).
General: switchable to either X or Y axis. Start and reset by front panel control, remote (requires cear connector option) by momentary contact closure to ground or TTL levels. Automatic reset at full scale, recycle accomplished by continuous start signal.
Opt 002: Event Markerl, add $\$ 75$. Writes in upper margin, aligned with X -axis position, approximately 0.05 in . ( 0.13 cm ) excursion completed 50 msec after application of sig-
nal. Controlled remotely by contact closure to ground or by TTL levels (Opt 005).
Opt 003: Retransmitting Potentiometers ( $\mathbf{X}$-axis) ${ }^{2}$, add $\$ 50$.
Opt 004: Rerransmitting Potentiometers (Y:axis) I, add $\$ 30$.
Resistance: 19.2 k ohm $\pm 10 \%$ (X-axis). 13.1 k ohm $\pm 10 \%$ ( $Y$-2xis).
Linearity (terminal based) : $\pm 0.1 \%$ of full scale.
Contact resistance: $\ddagger k$ ohm (maximum).
Opt 005: TTL Level Remote Controly, add $\$ 50$. Allows TTL level cemote control (contact closure ( 0.2 mA ) to ground of TTL levels) of Autogrip, servo standby, and (7045A only) X and Y response mode.
Opt 007: Rear Connector, \$50. Connects X and Y input sig. nals, pen lift, event marker, $X$ and $Y$ retransmitting potentiometers, time base and TTL controls.

[^20]
# TWO PEN $X=Y_{1}, Y_{2}$ Simultaneous Plotting of Three Parameters Model 7046A 

RECORDERS \& PRINTERS

The 7046A is a general purpose 2.pen laboratory X.Y recorder, designed to assure high quality recordings and yet to maintain the ruggedness, reliability, and high performance required of a laboratory recordec. This solid, functional, and dependable general purpose unit offers dynamic performance that surpasses all other 2 -pen recorders by offering Y -axis acceleration exceeding $2500 \mathrm{in} . / \mathrm{sec}^{2}\left(6350 \mathrm{~cm} / \mathrm{s}^{2}\right)$. This high accelecation plus virtually no overshoot allows the 7046A to faithfully reproduce an extremely wide range of fast-changing input signals.

Standard features include the AUTOGRIP paper holddown system which solidly grips any size paper up to $11 \times 17$ in., as well as the standard European size A3. The new thin line disposable pens feature a visible ink supply and permit a trace separation of 0.05 in . ( 1.2 mm ). These pensavailable in three colors-produce clean, crisp, continuous traces.

## Performance specifications

Input ranges: $0.5,1,5.10,50 \mathrm{mV} / \mathrm{in} . ; 0.1,0.5,1,5,10 \mathrm{~V} / \mathrm{in}$. (merric calibration available in $0.25,0.5,2.5,5,25 \mathrm{mV} / \mathrm{cm}$; $0.05,0.25,0.5,2.5,5 \mathrm{~V} / \mathrm{cm})$. Continuous vernier between ranges.
Type of input: folating, 500 V de or peak ac maximum. Polarity reversal switch lacated on frone panel, guard internally connected. Inputs through front panel binding posts or optional rear connector.
Jnput resistance: 1 megohm constant on all ranges.
Common mode: 110 dB de and 90 dB at 50 Hz and above exceeds 130 dB dc and 110 dB ac under normal lab environmental conditions) with 1 k ohm between HI and IO terminals, CMR voltage applied between ground and LO, and attenuarot on most sensitive range. On other ranges. CMR decreases 20 dB per decade step in attenuation.
Slewing speed: Fast Response, $30 \mathrm{in} . / \mathrm{s}$ ( $76 \mathrm{~cm} / \mathrm{s}$ ) minimum; Slow Response, $15 \mathrm{in} . / \mathrm{s}(36 \mathrm{~cm} / \mathrm{s}$ ) typical.
Acceleration (peak, fast response only):
$Y$-axes $2500 \mathrm{in} / \mathrm{s}^{2}\left(6350 \mathrm{~cm} / \mathrm{s}^{2}\right)$, X-axis $1500 \mathrm{in} / \mathrm{s}^{2}(3800$ $\mathrm{cm} / \mathrm{s}^{2}$ ).
Accuracy: $\pm 0.2 \%$ of full scale $\left( \pm 0.01 \% /{ }^{\circ} \mathrm{C}\right)$.
Linearity (rerminal hased): $\pm 0.1 \%$ of full scale.
Resettability: $0.1 \%$ of full scale.
Overshoot: $1 \%$ of full scale (maximum).
Zero set: zero may be placed anywhere on the writing area or electrically off scale up to one full scale from zero index.
Environmental (operating): 0 to $95^{\circ} \mathrm{C}$ and $<95 \%$ relative humidity ( $40^{\circ} \mathrm{C}$ ).

## General specifications

Writing mechanism: servo actuated ink pens, offset by 0.05 in . $(0,12 \mathrm{~cm})$ in X direction.
Writing area: $10^{\prime \prime} \times 15^{\prime \prime}(25 \mathrm{~cm} \times 38 \mathrm{~cm})$.
Paper holddown: Autogrip electric holddown grips charts $11^{\prime \prime} \times 16.5^{\prime \prime}$ and standard European DIN A3 (29.7 cm x 42 cm ) or smaller. Specia! paper not required.
Pen lift: electric (remote, Option 008, via contact closure or TTL level).


Dimensions: $173 /$ " $^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $6.13 / 16^{\prime \prime}$ deep (441 x $483 \times 273 \mathrm{~mm}$ ) ; rack mounting structure inegral with unit.
Power: 115 or 230 volts ac $\pm 10 \%, 50$ to $400 \mathrm{~Hz}, 175$ VA.
Weignt: net, $35 \mathrm{lb}(16 \mathrm{~kg})$; shipping, $47 \mathrm{lb}(21,4 \mathrm{~kg})$.
Price: Model 7046A, $\$ 2650$.

## Options

Opt 007: Metric Calibration, N/C.
Opt 001: Time Base, $\$ 200$.
Sweep rates: $0.5,1,5,10.50,100 \mathrm{~s} / \mathrm{in}$. (metric calibration is $0.25,0.5,2.5,5,25,50 \mathrm{~s} / \mathrm{cm}$ ).
Accuracy: $\pm 1 \%$ of ful! scale ac $25^{\circ} \mathrm{C}\left( \pm 0.1 \% /{ }^{\circ} \mathrm{C}\right.$ maximum).
Linearity (terminal based) : $\pm 0.5 \%$ of full scale at $25^{\circ} \mathrm{C}$ ( $\pm 0.04 \% /{ }^{\circ} \mathrm{C}$ maximum).
General: switchable to X -axis. Start and reset by front panel control, remote (requires rear connector option) by momentary contact closure to ground or TTL levels. Automatic resek at full scale, recycle accomplished by contin. nous start signal.
Opt 002: Event Markers, \$75. Writes in upper margin, aligned with X -axis position of Y pen, approximately 0.05 in . ( 0,12 cm ) excursion completed 50 ms after application of signal. Controlled remotely by contact closure to ground or by TTL levels.
Opt 003: Retransmitting Porentiometers ${ }^{1}, \mathrm{X}$ axis, $\$ 50$.
Opt 004: Y, axis, \$0.
Opt 005: $Y_{2}$ axis, $\$ 50$.
Resistance: 19.2 k ohms $\pm 10 \%$ ( X -axis); 13.1 k ohms $\pm 10 \%$ (Y-axis).
Linearity (terminal based) : $\pm 0.1 \%$ of full scale,
Contact resistance: 4 k ohms (maximum).
Opt 006: TTL Level Remote Control', \$75. Allor's TTL level remote control (contact closure ( 0.2 mA ) to ground or TTI levels) of Autogrip, servo standby, and $\mathrm{X}, \mathrm{Y}_{1}, \mathrm{Y}$ : response mode.
Opt 008: Rear Connector, \$75. Connects input signals, pen lift, event marker, retransmitting potentiometers, time base, and TTL controls.
${ }^{1}$ Requires rear connector option.

## RECORDERS \& PRINTERS

Two Pen X-Y,$Y_{2}$ —Model 136A


The 136 A is a two-pen X-Y $\mathrm{Y}_{1}, \mathrm{Y}_{0}$ graphic recorder available with English or metric scaling for bench or rack mounting. Features include a built-in time base on the $X$ axis with 5 calibrated sweeps. 11 input voltage ranges with a continuous vernier that scales input voltages to fit the paper, a full-scale zero set and suppression, and local and remote pen lift. Twopen capability makes these recorders extremely useful for plotring 3 parameters simultaneously. The two pens traverse the full X axis with no more than 0.1 inch hocizontal separation.

## Specifications

Jnput ranges: $0.5,1,5,10,50 \mathrm{mV} / \mathrm{in}$; $0.1,0.5,1,5.10,50$ $\mathrm{V} / \mathrm{in}$.; merric models: $0.2,0.5,2,5,20,50 \mathrm{mV} / \mathrm{cm} ; 0.2$, $0.5,2,5,20 \mathrm{~V} / \mathrm{cm}$. Variable range mode all positions
Input resistance: one megohm at null on all bixed ranges. Variable range mode, 100,000 ohms on four most sensitive ranges and one megohm on all orhers. Potentiometric input is available on the four most sensitive ranges of the X axis

TWO PEN \& HIGH GAIN X-Y RECORDERS
Record $Y_{1}, Y_{2} f(x)$; high gain with high CMR
Model 136A; Model 7001A
by removal of an internal strap and on both $Y$ axes by a front panel switch.
Maximum allowable source impedance: up to $10 \mathrm{k} \Omega$ source impedance will nor alter recorder's performance on the four loxest ranges. No source impedance restrictions on above $10 \mathrm{mV} / \mathrm{in}$.
Time sweeps: (on X axis only) $0.5,1,5,10,50 \mathrm{~s} / \mathrm{in}$; merric: $0.2,0.5,2,5,20 \mathrm{~s} / \mathrm{cm}$. Accuracy. $5 \%$ of full scale.
Accuracy: $0.2 \%$ of full scale.
Linearity: $0.1 \%$ of full scale.
Resettability: $0.1 \%$ of full scale on all ranges.
Reference stability: better than $0.002 \% /{ }^{\circ} \mathrm{C}$.
Slewing speed: 60 Hz operation: $20 \mathrm{in} . / 5(50 \mathrm{~cm} / \mathrm{s})$ on the $X$-axis; $15 \mathrm{in} . / 5(38 \mathrm{~cm} / \mathrm{s})$ on $Y_{1}$ and $Y_{2}$ axes max.
50 Hz operation: $16 \mathrm{in} . / \mathrm{s}$ ( $40 \mathrm{~cm} / \mathrm{s}$ ) on the X axis; $12 \mathrm{in} . / \mathrm{s}$ $(30 \mathrm{~cm} / \mathrm{s})$ on the $Y_{1}$ and $Y_{2}$ axes max.
Paper holddown: Autogrip paper holddown electrostatically grips charts of any size up to size of platen.
Pen lift: local and remote.
Power: 115 or $230 \mathrm{~V}, 50$ or $60 \mathrm{~Hz}, 130 \mathrm{VA}$.
Dimensions: $1.3^{\prime \prime}$ high. $171 / 8^{\prime \prime}$ wide, $6.3 / 16^{\prime \prime}$ deep ( $355 \times 454 \times$ 157 mm ).
Weight: net, $34 \mathrm{lb}(15,45 \mathrm{~kg})$ : shipping, $47 \mathrm{lb}(21,3 \mathrm{~kg})$.
Price: 136A (English). 136AM (metric). $\$ 2850$.
Options:
002 Rear input connectors (supplied with mating connectors)
add $\$ 15$
003 sk retransmitring potentiometerX axis
add $\$ 100$ 004 Disposable pen tips N/C

## $100 \mu \mathrm{~V} /$ Inch Sensitivity-Model 7001A



The 7001 A X.Y recorder has high sensitivity, high common mode rejection and specially guarded and shielded input cir. cuitry. Units are available for bench ( 7001 A ) or rack mounting ( 7001 AR ), and with metric or English scaling.

Sareep feacures include auromatic reser, adjustable sweep length and automatic recycling. The time base may be switched to operate on either axis. Zero offset for each axis may be presee in 5 -inch calibrated steps up to 4 scale lengths on the $Y$ axis and 3 scale lengths on X with concinuous adjustability between steps. Zero check pushbutton switches are provided on each axis. Input impedance is 1 M ? at null on all ranges, with potentiometric input possible on the 6 most sensitive ranges by internal strap or optional front panel switch.

## Specifications

Input ranges: 19 ranges, $0.1 \mathrm{mV} / \mathrm{in}$ to $20 \mathrm{~V} / \mathrm{in}$. in a $1,2,5$ sequence ( $0.05 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$ in a $1,2.5,5$ sequence). Continuous vernier between ranges.

Type of input: floating and guarded signal pair.
Maximum allowable source impedance: $10 \mathrm{k} \Omega$ on first 6 ranges; no restrictions on ranges above $5 \mathrm{mV} / \mathrm{in}$.
interference rejection: dc CMR 140 dB on first 3 ranges; 120 $d B$ at power line frequency on first 2 ranges.
Time sweeps: $0.5,1,2,5,10,20,50,100 \mathrm{~s} / \mathrm{in} .(0.25,0.5,1$, $2.5,5,10,25,50 \mathrm{~s} / \mathrm{cm})$. Accuracy $\pm 20 \%$.
Accuracy: $\pm 0.2 \%$ full scale.
Reference stability: better than $0.005 \% /{ }^{\circ} \mathrm{C}$.
Slewing speed: $20 \mathrm{in} . / \mathrm{s}$ each axis at $60 \mathrm{~Hz} ; 16 \mathrm{in} . / \mathrm{s}$ at 50 Hz .
Paper holddown: Autogrip paper holddown electrostatically grips charts of any size up to size of platen.
Pen lift: local and remote.
Power: $115 / 230 \mathrm{~V}$, 50 to 60 Hz , approximately 120 VA .
Dimensions: bench: $61 z^{\prime \prime}$ high, $17^{1 / 2} 2^{\prime \prime}$ wide, $17^{\prime \prime}$ deep ( 164 x f45 x $\left\{32 \mathrm{~mm}\right.$ ) ; rack: 17-7/16" high $\times 19^{\prime \prime} \times 53 / 8^{\prime \prime}(443 \times$ $483 \times 136 \mathrm{~mm}$ ).
Weight: net, 35 lbs ( $15,9 \mathrm{~kg}$ ); shipping, $46 \mathrm{lbs}(20,9 \mathrm{~kg}$ ).
Price: $7001 \mathrm{~A} / \mathrm{AR}$ (English), 7001 AM/AMR (metric), $\$ 2275$. Options:

001	Potentiometric switch (first 6 ranges)	$\$ 55$
004	X axis retransmitting potentiometer $(5 \mathrm{k} \Omega)$	$\$ 75$
005	Rear input terminals	$\$ 50$
006	Y axis retransmitting potentiometer $(5 \mathrm{k} \Omega)$	$\$ 75$
007	Recransmitting potentiometers on both axes	$\$ 150$
009	Event marker ( X axis)	$\$ 100$
010	Disposable pen tips	$\mathrm{N} / \mathrm{C}$

004 X axis retransmitting potentiometer ( sk ) $\quad \$ 75$
005 Rear input terminals $\$ 50$
006 Y axis retransmitting potentiometer ( $5 \mathrm{k} \Omega$ ) \$ 75
007 Revransmitting potentiometers on both axes \$150
009 Event marker ( X axis) $\$ 100$
010 Disposable pen tips N/C

Much of the instrumentation which extends, refines or supplements human perception produces information in the form of electrical analog signals. Records of such dara are, of course, necessary. Electrical data acquired in serial fashion, comprising a chain of meaningful changes in a signal, record naturally on continuous instruments such as stcip chart recorders. The character of the signal will determine the appropriate récording instrument. Permanent records of slowly changing analog values are conveniently made by Hewlett-Packard servo-driven strip chart recorders; oscillographic recorders (see page 225) can handle signals from de to 150 Hz .
parallel-input digital data may also be directly recorded using the Model 580A or 58:A Digital to Analog Con. verter. Outputs from mose HervettPackard counters, digital voltmeters and other digital measuring devices are converted to analog signals for recording on any strip chart recorder.


## Strip chart recorders

Laboratory and industrial recorders are available that produce records in rectilinear coordinates with considerable ac-curacy-typically $0.2 \%$. Tro-pen models permit both channels to realize the full resolution of the chart width simulta. neously, since the pens can overlap on the same chart without interference.

Selection of a servo-driven srrip chact
recorder depends upon the specific application. Highest sensitivity is offered by the 7100 series plug-in recorders ( $7100 \mathrm{~B}, 7101 \mathrm{~B}, 7127 \mathrm{~A}, 7128 \mathrm{~A}$ ) with choices to $100 \mu \mathrm{~V}$ full scale. Another plug-in measures temperature directly from a thermocouple input. The 7100 B and 71018 offer 12 chart speeds, the 5" Model 680 eighr speeds and the 7127 A and $7128 A$ four speeds.

For OEM or other dedicated applica. tions, the 7123 and 7143 offer the utmost reliability at lowest cost. Both utilize a linear notor servo system with only one moving part, achieving reliability through simplicity. Many options are available to customize the recorder for a particular task. OEM discounts are available on all Hex'lett-Packard servo-driven strip chart recorders.

Options are available on all units to match a particular application. Some of the most popular are:
Event markers-to register external events in time selationship to the chars recording.
Retransmitting potentiometers - additional sliderifes which provide an elecrrical output proportional to the pen position for controlling external devices.
Limit switches-to provide control or alarm signals when the recorder pen reaches a pre-set limit.
Chart integrator-a second recotding on the same chart which counts the inte. gral of the main signal.

## Basíc operation

Each Hewlett-Packard servo-driven surip chart recorder uses an individual electrical servo system for each channel employed. All servos are similar. Each consists of a basic balancing circuit. plus auxiliary elements for instrument versarility.
A basic porentiometric servo recorder, illustrated in the block diagram, shows
a single range recorder in its simplest form. $V_{\text {In }}$ is the input signal voltage to the recorder and is applied to the input of the amplifier causing the motor to be driven. The motor rotates, causing an electrical tap at $\mathrm{V}_{\mathrm{b}}$ to be adjusted to a point where $V_{b}$ equals $V_{1 n}$. At this point, the input voltage to the amplifier is zero, and the motor stops. This is considered a balanced condition and the degree of balance attained is largely a function of the amplifier's gain. If the input voltage $\left(\mathrm{V}_{1 n}\right)$ changes, the balancing action is repeated.

Controls and circuits used to provide versatility are:

1. Srepped attenuators for each axis so that input voltages from the micro. volt range to 500 volts can be handled directly.
2. Variable attenuators provide continuous adjustment to allow' a cransducer's output to correspond directly to the paper's coordinates in the desired units of measurement ( $p s i,{ }^{\circ} \mathrm{C}$, etc.).
3. Zero controls allow the plotring origin to be placed anywhere on the paper or suppressed electrically off the paper.

## Types of writing systems

Hewlect-Packard strip chart recorders provide three types of writing systems: ink, electric and thermal writing. Thermal and ink writing are used on HewletrPackard oscillographic recorders.
Electric writing as well as ink is available on all Hewlett-Packard servo-driven strip chart recorders. With the elimination of ink reflling, long term unattended recording with maximum reliability is possible. Hewlett-Packard low voltage electric writing features crisp, clean, permanent records with the advantage of instant start-up. The record is not sens:tive to light or pressure, thus eliminating special handling; it is permanent without processing.

Hewlett-Packard servo-driven strip chart recorders

Dosoription	Model	Char W\|rith (lm.)	Page	Maximum   Span (mV)	Chart Speods	Other	Price
General Purpose (One-Channel)	$\begin{aligned} & 680 \\ & 71018 \\ & 7127 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 5 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & 223 \\ & 218 \\ & 218 \end{aligned}$	$\begin{aligned} & 5 \\ & 0.1! \\ & 0.1 \end{aligned}$	$\begin{array}{r} 8 \\ 12 \\ 4 \end{array}$	Plug-ins   Plug-ins	$\begin{gathered} \$ 900 \\ 10001 \\ 8501 \end{gathered}$
General Purpose (Two-Channel)	$\begin{aligned} & 71008 \\ & 7128 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 218 \\ & 218 \end{aligned}$	$\begin{aligned} & 0.1^{1} \\ & 0.1^{1} \end{aligned}$	$\begin{array}{r} 12 \\ 4 \end{array}$	Plug-ins Plug-ins	$\begin{aligned} & 15001 \\ & 13501 \end{aligned}$
OEM	$\begin{aligned} & 7130 A \\ & 7123 A \\ & 7143 A \end{aligned}$	$\begin{gathered} 10 \\ 10 \\ 5 \end{gathered}$	$\begin{aligned} & 222 \\ & 220 \\ & 220 \end{aligned}$	1 1	12 12 12		1250 750 695

Depends on Plug-in Selection.
${ }^{2}$ Two and tour speed options available.

# 10 in. PLUG-IN RECORDERS <br> Ink and electric writing <br> Models 7100B, 7101B, 7127A, 7128A 



Ten-inch strip chart recorders are widely used in laboratory and industrial applications. Hewlett-Packard strip chart recorders feature high performance, low cost, and solid-state construction for reliability, compactness, and light weight. Models 7100 B and 7128 A have two servo pen drives and require two input modules. The 71018 and 7127 A are single pen units and take one inpur module. Ordering information should specify basic frame and exact inpur modulcs required.

Each main frame is equipped with selectable chart speeds ( 4 for 7127A, 7128A; 12 for 7100B, 71018 ) and a modular chart magazine. The chart magazine will swing our to a $10^{\circ}$ or $30^{\circ}$ angle for convenient note writing. An optional integrator that computes the area under the chart curve is available.

## Specifications

## Performance spacifications

Recording mechanism
Ink: servo actuated ink pen drive.
Electrle: a stylus with associated electronics and electro-sensitive paper are furnished.
Chart dimensions: (ink writing) $120^{\circ}$ chart rolls, $11^{\prime \prime}$ wide with $10^{\prime \prime}$ ( 250 mm ) calibrated writing width. (Electric writing) $100^{\prime}$ chart rolls, $11^{\prime \prime}$ wide with $10^{\prime \prime}$ ( 250 mm ) calibrated writing width.
Chart speeds: 7100B/7101B (English): 1,2 in./hr; $0.1,0.2$, $0.5,1,2 \mathrm{in} . / \mathrm{min} ; 0.1,0.2,0.5,1,2 \mathrm{in} . / \mathrm{s} .7100 \mathrm{BM} / 7101 \mathrm{BM}$ (Metric) : $2.5,5,15,30 \mathrm{~cm} / \mathrm{hr} ; 1.25,2.5,5,15,30 \mathrm{~cm} / \mathrm{min}$; 1.25, 2.5, $5 \mathrm{~cm} / \mathrm{s} .7127 \mathrm{~A} / 7128 \mathrm{~A}$ (English): $1 / 4,1 / 2,1,2 \mathrm{in} /$ min.
Linearity: terminal based, $0.1 \%$ of full scale.
Resettebillty: $0.1 \%$ of full scale.
(Other specifications listed under plug.in modules.)

## General specifications

Power: 115 or $230 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 69 \mathrm{VA}$ for 7100 B and 7128A; 42 VA for Models 7101 B and 7127A. 115 or 230 V , 50 Hz models available as option.

Dimensions: 71008/7101B series (cabinet): 11.31/32" high, $171^{\prime \prime}$ wide, $81 / 4^{\prime \prime}$ deep ( $304 \times 445 \times 210 \mathrm{~mm}$ ). $7100 \mathrm{BR} /$ 7101 BR (rack): 8.23/32" bigh, $19^{\prime \prime}$ wide, 81/4" deep ( 222 x 483 x 210 mm ). 7127A/7128A series (cabinet): $9-3 / 32^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $81 / 4^{\prime \prime}$ deep ( $231 \times 425 \times 210 \mathrm{~mm}$ ). (tack: brackets supplied) $8.23 / 32^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $81 / 4^{\prime \prime}$ decp ( $222 \times$ $483 \times 210 \mathrm{~mm}$ ).

Weight: 7100 B series: ner, $28 \mathrm{lb}(12,7 \mathrm{~kg})$; shipping, 39 lb ( $17,7 \mathrm{~kg}$ ). 7101 B series: net, $28 \mathrm{lb}(12,7 \mathrm{~kg})$; shipping, 33 $\mathrm{lb}(17,3 \mathrm{~kg}) .7127 \mathrm{~A}$ series: net, $25 \mathrm{lb}(11,4 \mathrm{~kg})$; shipping, $35 \mathrm{lb}(15,9 \mathrm{~kg}) .7128 \mathrm{~A}$ series: net, $28 \mathrm{lb}(12,7 \mathrm{~kg})$ : shipping, $38 \mathrm{lb}(17,3 \mathrm{~kg})$.
Prices
Dual channai: 7100BR (English), 7100BM/BMR (metric) \$1500; 7128A (English only) \$1350.
Single channel: 7101B/8R (English), 7101 BM/BMRR (metric) \$1000; 7127A (English only) $\$ 850$.

Opkions

$\begin{array}{\|l\|l\|} 71008 \\ 71018 \end{array}$	$\begin{aligned} & 7127 A \\ & 7128 A \end{aligned}$	Desaripiton	Addifional prloe	
			$\begin{aligned} & 71008 \\ & 73018 \end{aligned}$	$\begin{aligned} & 7127 \mathrm{~A} \\ & 7128 \mathrm{~A} \end{aligned}$
004	014	5kn retransmitting potentiometer (channel 1)	50	\$50
005	001	High-low limit swilches (channel I)	50	50
006	008	Remote control of electric pen lift	50	50
007	002	Remote on-off chart control	25	25
010	003	50 Hz operation	N/C	N/C
011	013	Locking glass door	50	50
012	004	Event marker (ink) left side	35	35
014	006	Event marker (ink) both sides	70	70
015	007	Integrator (7127A, 7101B series or channel 2 of $7128 \mathrm{~A}, 7100 \mathrm{~B}$ series)	795	795
016	015	5ks retransmitting potentiometer (channel 2)	50	50
017	009	High-low limit switches (channel 2)	50	50
018	010	High-low limit switches (both channels)	100	100
019	017	Electric writing	75	75
020	020	Scate with "0" right sido	N/C	$\mathrm{N} / \mathrm{C}$
022	022	Event marker ( (lec) left sids	35	35
023	023	Event markers (elec) both sides	70	70
024	024	Disposable pen tips (servo pens only)	N/C	N/C
025	025	Soft zero right side	N/C	N/C
-	026	GC compatibility	-	N/C
-	011	Carrying handle	supplied	25
-	016	Retransmitting potentiometer (both channels)	-	100
-	H01	6. $12,24,48 \mathrm{in} / \mathrm{hr}$.	-	N/C
-	H02	1/2, 3, 6, $12 \mathrm{in} . / \mathrm{hr}$.	-	$\mathrm{N} / \mathrm{C}$

Note: 7100B. 7101B: Option 015 is rot compatible with options $014,016,019,022$, or 023 . Options 015,019 , and 025 require special paper. 7127A. 7128A: Options 006. 015, 016, 017. 022 , or 023 cannot be installed when instrument is equipped with Option 007. Options 007, 017, and 02s require special paper. Elecric and ink writing systems are nor compatible. Event markers must be of same type as the main writing system.


## Multiple Input Span Modules

The Models 17500 A ( 9 mV full scale) and 17501A ( 1 mV full scale) Multiple Span plug.ins offer high input resistance and a continuously variable span control. Common mode rejection is high and input impedance is one megohm at null on all calibrated spans.


## Temperature Modules

The Model 17502A Temperature Measuring Input Module has a single span selecrable to match almost any commonly used thermocouple. Corrections for changes in ambient remperature are made within the module, eliminating need for a remote compensation junction. Non-linear thermocouple ourput is converted in the module ro a linear funcrion of rempera. ture permitting use of standard ruled graph paper.


## High Sensitivity Modules

The 17505A High Sensitivity Input Module expands the sensitivity capability to $100 \mu \mathrm{~V}$ full scale. Maximum sensitivity allows input signal variations smaller than $1 \mu V$ to produce accurate measurable recordings. The 17506 A plug-in may be ordered with any single span from $100 \mu \mathrm{~V}$ to 100 V full scale. Both feature floating inputs up to 500 V dc.

## 17500A/17501A Specifications

Voltage spans: 17500A: $5,10,50,100,500 \mathrm{mV} ; 1,5,10,50,100$ $V$ full scale. $17501 \mathrm{~A}: 1,2,5,10,20,50,100,200 \mathrm{mV} ; 0.5,1$, $2,5,10,20,50,100 \mathrm{~V}$ full scale.
Accuracy: $\pm 0.2 \%$ of full scale.
Input resistance: 1 megohm at null on all fixed calibrsted and variable spans except $100 \mathrm{k} \Omega$ in the variable mode on the four most sensitive spans on the 17500A only. Porentiometric operation is available on the 17500 A on the four most sensitive spans and to the ITSO1A on the six most sensitive spans.
Interference rejection: dc common mode; 120 dB on the four most sensitive spans of the 17500 A and the three most sensitive of the 17501 A . Line frequency, 100 dB on the four most sensitive spans of 17500A and the three most sensitive of 17501 A .
Zero-set: adj, full scale, plus one full scale of suppression. 5 scales of zero suppression available on the 17501 A .
Maximum source Impedance: up to $10 \mathrm{k} \Omega$ source impedance will not alter the recorder's performance on the four most sensikive spans of the 17500A and the six most sensitive of the 17501A. No source impedance restrictions on spans above 100 mV is.
Reference stabllity: $0.005 \% /{ }^{\circ} \mathrm{C}$.
Welght: ner, $2 \mathrm{lb}(0,9 \mathrm{~kg})$; shipping, $5 \mathrm{lb}(2,2 \mathrm{~kg})$.
Prices
Model 17500A $\$ 325$ Model 17501A $\$ 375$

## Options

001 five-scale zero suppression (17501A only) S 50
002 calibrated for use with integrator ( $8^{\prime \prime}$ span) N/C

## 17502A Specifications

Voftage spans: single span to match cold-junction thermocouples of types $J, K, R, S$, and $T$ at ranges as listed on the data sheet.
Accuracy: $\pm 0.5 \%$ or $\pm 1{ }^{\circ} \mathrm{C}$, (whichever is greater); refer to NBS CIR S61, daled 1955.
Input resistance: potentiometric.
Interference repection: dc common mode, 120 dB ; line frequency, 100 dB .
Weight: net, $4 \mathrm{lb}(1,8 \mathrm{~kg})$; shipping, $7 \mathrm{lb}(3,2 \mathrm{~kg})$.
Price: Model 17502A

## 17505A/17506A Specifications

Voltage spans: 17505A: .1. 2, .5, 1. 2, 5, 10, 20, 50. 100,200 , $500 \mathrm{mV}: 1,2,5,10.20,50,100 \mathrm{~V}$ full scale. 17506A: any one of the above spans (specify).
Accuracy: $\pm 0.25 \%$ of full scale.
Input resistance: $1 \mathrm{M} \Omega$ at null.
Interference rejection: dc CMR: 120 dB on mose sensitive span. Line [requency CMR: 100 dB on most sensitive span. Line frequency normal mode: 17505 A : switchable, 60 dB or 100 dB . 17506A: 100 dB
Zero set: $+2,-1.5$ scales. Optional calibrated offset of +1 to -10 scales in one scale steps on I7505A.
Zero stability: $\pm 1 \mu \mathrm{~V}$ after one hour.
Maximum source impedance: $10 \mathrm{k} \Omega$ on nine most sensitive spans; no source impedance restrictions on spans above 100 mV fs.
Referance stabillty: $0.005 \% /{ }^{\circ} \mathrm{C}$.
Weight: net, $2 \mathrm{lbs}(0,9 \mathrm{~kg})$; shipping, $5 \mathrm{lbs}(2,2 \mathrm{~kg})$
Price

Model 17505A	$\$ 400$
Model I7506A (specify vnltage span)	$\$ 250$
Additional range cards for 17506A	$\$ 25$

Adcitional range cards for 17506A
$\$ 250$
Optians
001 Calibrated offser: +1 to -10 scales in one scale steps.
Accuracy $\pm 0.25 \%$ per step. ( 27505 A only.) $\$ 100$
002 Calibrated for integracor use ( $8^{\prime \prime}$ span) $N / C$
00350 Hz operation $\quad$ N/C

# 10 in. AND 5 in. RECORDERS <br> Linear motor drive-dedicated applications Models 7123A/B and 7143A/B 



The 7123A/B and 7143A/B Surip Chart Recorders were developed specifically for dedicated recording applicarions. High reliability and exceptional performance plus a multirude of op. tions allow cuscom tailoring to each application. These $31 / 2$ inch high recorders conserve rack spacc but still incorporate an effective chart drive and chare viewing systern.

The $7123 \mathrm{~A} / \mathrm{B}$ uses chart paper with a 10 inch wide grid, the 3143A/8 accommodates paper with a $s$ inch grid. The suffix A denores a recorder for use at 60 Hz line frequency; $B$ denotes 50 Hz .

## Reliability

Reliability is the keynote. Maximum reliability was achieved through the development of a unique linear servo motor. The motor enabled the design of a servo drive system with only one moving part-the motor slider/pen assembly. This single moving part replaces the many cables, pulleys, and gears found in a conventiona! servo system.

The entire radial field of the motor is produced by a perma. nent magnet, resulting in low power consumption and vistually no interna! remperature rise. In addition, the motor can be driven continuously off scale with no audible noise and no possibility of damage to the recorder.

The raditional weak link of servo recorders has been eliminated. A conductive film potentiometer is used in place of the conventional wirewound slidewire. This conductive film potentiometer results in an order of magnitude increase in feed.back element life.

## Electric writing

Electric writing (Option 036) is avallable to further enhance reliability and convenience. Using electrosensitive paper, the low voltage elecric writing system provides a crisp, clear trace, eliminating the need for ink refiling and pen priming. The recorded trace is permanenk, chemically stable, and insensitive to pressure and moisture. Totally mattended operation is acheivable.

## Precise response

The linear motor also provides extremcly quick response, producing full scale response in less than $1 / 4$ second ( $1 / 3$ second for $7123 \mathrm{~A} / \mathrm{B}$ ). In addition, non-mechanical tachometer feedback is incorporated. The tachometer and the high gain solid state servo amplifier allow the units to faithfully reproduce the input signal and respond to step inputs with less than $1 \%$ overshoot.

## Versatile chart drive

A unique chart drive and viewing system is incorporated. The system allows the paper to be rolled up, or to be fed out and conveniently sorn of for inspection or fling. In addition, a slanted viewing/writing area is incorporated to facilitate both viewing and note making. Chart paper may be manually advanced at any time arithout gear changing or performance interruption.

## Minimum panel height

The unique linear motor and chart drive/viewing system combine to make a recorder that requires only $31 / 2$ inches of rack heighr. This low silhouetre provides the user with additional rack space without sacrificing recorder capability.

## Low cost

The basic price is low. Additional savings are available when qualified for the OEM Purchase Agreement.

## Flexibility with options

With almost 50 options available, the $7123 \mathrm{~A} / \mathrm{B}$ and $7143 \mathrm{~A} / \mathrm{B}$ can be "designed" to fir youz exact requirements. Most options are modular and options such as span and chayt speed can be changed in the field if the need arises.

## Performance specifications

Input ranges: single span, 1 mV thru 100 V (specificd by option)
Type of Input: single ended, foating.
Input resistance: $1 \mathrm{M} \Omega$ constant on all spans.
Maximum allowable source resistance ( $\mathrm{R}_{\mathbf{r}}$ ): $10 \mathrm{k} \Omega$.
Normal mode rejectlon (at line frequency): $>6 \mathrm{~dB}$.
Common mode rejection: $>100 \mathrm{~dB}$ at ds and $>80 \mathrm{~dB}$ at line frequency.
Response tima: $7143 \mathrm{~A} / \mathrm{B}:<1 / 3 \leqslant(<1 / 2 \mathrm{~s}$ for spans belou 1 V$)$. 7123A/B: <1/3 s ( $<1 / 2$ s for spans below l V).
Overshoot: < $1 \%$ of full scale.
Accuracy (including linearity and deadbend): $7123 \mathrm{~A} / \mathrm{B}: \pm 0.25 \%$ of full scale. $7143 \mathrm{~A} / \mathrm{B}: \pm 0.5 \%$ of full scale.
Zero drlit: $< \pm 0.2 \mu \mathrm{~V} /{ }^{3} \mathrm{C} \pm 0.007 \%$ of full scale $/{ }^{\circ} \mathrm{C}$.
Linearity (terminal based): $\pm 0.1 \%$ full scale.
Reference stabllity: $\pm 0.002 \% /{ }^{\circ} \mathrm{C}$.
Chart speeds: speed devermined by option chaice.
Chart speed accuracy: synchronous with line frequency'.
Zero set: left hand, adjustable $\pm 1$ full scale (righ hand optional).

Environmental (operating): $0^{\circ} \mathrm{C}$ w $95^{\circ} \mathrm{C}<95 \%$ relativg hu. midity ( $25^{\circ}$ to $40^{\circ} \mathrm{C}$ ).

## General specificatlons

Writing mechanlsm: serio actuxted it $k$ pen (electric writing op. tional)
Grid width: 7123A/8 $10^{\prime \prime}$ or $25 \mathrm{~cm} .7143 \mathrm{~A} / \mathrm{B} \mathrm{s}^{\prime \prime}$ or 12 co.
Chart length: 95 ft or 28,5 meters (electic option ss fit or 16.5 meters).
Pen lift: manual (electric optional).
Power: $7123 \mathrm{~A} / 7143 \mathrm{~A}: 11 \mathrm{~s} / 230 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$, $45 \mathrm{VA} .7123 \mathrm{~B} /$ $7143 \mathrm{~B}: 115 / 230 \mathrm{~V} \pm 10 \%$, 50 Hz , 45 VA
Dimenslons: $7123 \mathrm{~A} / \mathrm{B}: 31 / 2^{\prime \prime}$ high, $17^{\prime \prime}$ wide, $191 / 4^{\prime \prime}$ deep ( 89 x $432 \times 489 \mathrm{~mm}) .7143 \mathrm{~A} / \mathrm{B}: 31 / 2 " h i g h .81 / 2^{\prime \prime}$ wide. $191 / 4^{\prime \prime}$ deep ( $89 \times 216 \times 489 \mathrm{~mm}$ ).
Weight: $7123 \mathrm{~A} / \mathrm{B}:$ net. $42 \mathrm{lb}(19 \mathrm{~kg})$; shipping, $31 \mathrm{lb}(23 \mathrm{~kg})$ $7143 \mathrm{~A} / \mathrm{B}:$ net, $25 \mathrm{lb}(11.3 \mathrm{~kg})$ : shipping, $33 \mathrm{lb}(15 \mathrm{~kg})$.
Price: $7123 \mathrm{~A} / \mathrm{B}: ~ \$ 750.7143 \mathrm{~A} / \mathrm{B}: \$ 69 \mathrm{~s}$
Note: OEM discounts available.


- Actuated by contact closure to ground. Closed clicult current 1.5 mA (max), open círcult voltage +1.5 V (max).
*- Requires Option Power Supply (Option 041).



## RECORDERS \& PRINTERS

10-INCH TWO-PEN RECORDERS
Ink Writing
Models 7130A, 7130B


The 7130 A and 7130 B are single-span, 10 -inch, two-pen. strip chart recorders. The 7130 A operates on a 60 Hz line: 7130 B on 50 Hz . Input spans from 1 mV to 100 V are available and chart speeds in either single or multiple speeds are available. The chart paper has a 10 -inch ( 25 cm ) writing width and feeds from the top to the bottom over a platen that can be tilted at one of three angles. The tilting platen facilitates both viering and making of notations by hand. Low cost, peak performance, and top reliability are featured, plus a sclection of over fifty options to allow custom tailoring to each application.

## Performance Speclflcations

Input ranges: single span, 1 mV thru 100 V (specined by optuen)
Type of input: single ended, finaine.
Input reslstance: I Megohm constant on all spans.
Maximum allowable source reslstance $\left(R_{s}\right)$ : no restriction.
Normal mode rejection (at line frequency): $>40 \mathrm{~dB}$.
Common mode rejectlon: $>120 \mathrm{~dB}$ at do and $>90 \mathrm{~dB}$ at line irequency.
Response time: < $1 / 2$ ser.
Overshoot: $<2 \%$ of full scale.
Accuracy (including linearity and deadband): $\pm 0.2 \%$ of full scale.
Linearity (eerminal based): $\pm 0.1 \%$ of full scale.
Chart speeds: speed determined by option choice.
Chart speed accuracy: synchronous with line frequenc;
Zero set: lafl hand, adjustable $\pm 1$ full scale (right hand optional).
Environmental (operation): $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, $<93 \%$ relative hu. midity $\left(40^{\circ} \mathrm{C}\right)$

## General specifications

Writing mechanism: servo actuated ink pens.
Grid width: 10 " or 25 cm .
Chart length: 100 ft or 30 meters.
Pen lift: manual (electric optional).
Power: $7130 \mathrm{~A}: 115 / 230 \mathrm{~V} \pm 10 \%$. $60 \mathrm{~Hz}, 120 \mathrm{VA}$. $7130 \mathrm{~B}: 119 / 230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}, 120 \mathrm{VA}$.
Dimensions: $7^{\prime \prime}$ high. $17^{\prime \prime}$ wide, $133 / 8^{\prime \prime}$ deep $(178 \times 422 \times$ 340 mm ).
Weight: net, $27 \mathrm{lb}(12.5 \mathrm{~kg})$; shipping, $38 \mathrm{lb}(17.4 \mathrm{~kg})$.
Price: 7130 A or 7130 B :
Note: OEM discounts araibable.

## Options

Span: speciff one for pach channel, from scale determined bi choice of English or metric charl speed.

Option				Option			
Span	Ch 1	Ch 2	Price	Span	Ch1	Ch 2	Price
1 mV	001	501	5150	1 V	005	508	$\mathrm{~N} / \mathrm{C}$
5 mV	002	502	150	5 V	009	509	$\mathrm{~N} / \mathrm{C}$
10 mV	003	503	100	10 V	010	510	$\mathrm{~N} / \mathrm{C}$
50 mV	004	504	100	50 V	011	511	$\mathrm{~N} / \mathrm{C}$
100 mV	005	505	100	100 V	012	512	$\mathrm{~N} / \mathrm{C}$
500 mV	006	506	100				

Note: additional spans are available on special nrder.
Chart speed, specific one ortion:

Speed	Option	Price	Speed	Option	Price
$6 \mathrm{in} . / \mathrm{min}$	016	$N / C$	$19 \mathrm{~cm} / \mathrm{min}$	022	$N / C$
$4 \mathrm{in} . / \mathrm{min}$	017	$N / C$	$10 \mathrm{~cm} / \mathrm{min}$	023	$N / C$
$1 \mathrm{in} . / \min$	018	$N / C$	$5 \mathrm{~cm} / \mathrm{min}$	024	$N / C$
$E / 2 \mathrm{in} . / \mathrm{min}$	019	$N / C$	$3 \mathrm{~cm} / \mathrm{min}$	025	$N / C$
$1 / 4 \mathrm{in} . / \mathrm{min}$	020	$N / C$	$15 \mathrm{~cm} / \mathrm{hr}$	026	$N / C$
$1 \mathrm{in} . / \mathrm{hr}$	021	$N / C$	$3 \mathrm{~cm} / \mathrm{hr}$	027	$N / C$

Speed
$1.2,4,6 \mathrm{in} / \mathrm{min}$
$1 / \mathrm{x}, 1 / 2,1,2, \mathrm{in} / \mathrm{min}$
$2.5 .5,10,15 \mathrm{~cm} / \mathrm{min}$
$1.25 .2 .5,5.10 \mathrm{~cm} / \mathrm{min}$

Option	Price
045	$\$ 180$
046	150
$048^{* 2}$	180
049	150

Chart speed control:
60:1 speed reducer

Option	Price
028	540
029	40
030	40
0.31	40
032	20
$033 *$	20

Pen lift control:
Reminte ${ }^{\text {s }}$
Independent (mechanical)

Option	Price
$036 * *$	$\$ 40$
034	$N / C$
007	30
$037^{* *}$	40
$537^{* *}$	40

Ch 1 Ch 2 Price
0.40 S40 \$50
$044 \quad 544$
Limit Swieches

014	$N / C$
015	$N / C$
042	65
052	10
056	10

056
10
lnput Filter ( 1.500 mV )
Event Marker
Right hand
Lef( hand

Righe Hand Zero
Hard (scale, 10 to 0 )
Suft (scale, 10 10-0.5)
Rack Slides
Rack Mounting Bracke:s
Rear Cuncrol connector

041
40
Opeion 032, 033.036, 037.
048 and 537)

[^21]- Requires Option Power Supply (Option C41).


The Models 680 and 680 M 5 -inch strip-chart recorders provide a wide range of performance for general or special. ized use. The 680 is equipped with multi-range input, multispeed chart transport, full-range zero set, and electric pen lift, features essential for general purpose applications. The instrument is available with standard (English) or metric scaling ( 680 M ). It is useful as a monitor for instrumentation with dc outputs and for digital devices utilizing D-A converters.

The recorder features modular construction with all-transistor circuitry, high accuracy, fast response, synchronous motor chart drive, and full-view tilting chart magazine. Standard features include instant chart speed transfer, local and remote pen lift control, tear-off or chart roll storage, and cartridge-fed ink pen. Optional electric writing provides crisp, clean, permanent secords for long-term unattended recording.

## Specifications

## Performance specifications

Recording mechanism:
Ink: servo-actuated ink pen.
Electro sensitlve: a stylus and associated electronics for electrosensitive paper are furnished in place of the ink pen.

## Chart dimensions:

Ink: $6^{\prime \prime}$ by $100^{\prime}$ roll charts, $5^{\prime \prime}(12 \mathrm{~cm})$ writing width. Approximately $4^{\prime \prime}$ by $6^{\prime \prime}$ visible chart area during operation.
Electrosensitive: $6^{\prime \prime}$ by $65^{\prime}$ roll charts. $5^{\prime \prime}$ ( 12 cm ) writing width.
Resporse time: one-half second or less for full scale.
Chart speeds: eight synchronous-motor-controlled speeds at $1,2,4,8 \mathrm{in} . / \mathrm{min} ; 1,2,4,8 \mathrm{in} . / \mathrm{hr}$. Metric model: $2.5,5,10,20 \mathrm{~cm} / \mathrm{min} ; 2.5,5,10,20 \mathrm{~cm} / \mathrm{hr}$.

Spans: ten calibrated spans of $5,10,50,100$, and 500 $\mathrm{mV} ; 1,5,10,50$, and 100 V full scale. Metric model has spans of $6,12,60,120$, and $600 \mathrm{mV} ; 1.2,6,12$, 60 , and 120 V . An extra span of 1 mV , full scale, is available at extra cost ( 1.2 mV on metric model).
Input: input resistance is 200,000 ohms per volt ( 166,666 ohms/volt on metric models), full scale, through 10 volt span; 2 megohms on all others. Potentiometric input on most sensitive span permits operation with essentially zero current drain at null. Constant $100 \mathrm{k} \Omega$ input resistance on all spans optionally available on both models.
Reference stability: $\pm 0.005 \% /{ }^{\circ} \mathrm{C}$.
Zero set: continuously adjustable over full recorder span.
Accuracy: better than $0.2 \%$ of full scale.
Resettablilty: $0.1 \%$ of full scale.
LInearity: $0.1 \%$.
Interference rejection: dc common mode rejection better than 100 dB on the most sensitive range.
General specifications
Pen lift: local and remote.
Power requirements: $115 / 230 \mathrm{~V}, 60 \mathrm{~Hz}, 22 \mathrm{VA} .50 \mathrm{~Hz}$ models available at no extra cost, (Option 10).
Dimensions: $61 / 2^{\prime \prime}$ high, $85 / 8^{\prime \prime}$ deep, $73 / 4^{\prime \prime}$ wide ( 165 x $219 \times 197 \mathrm{~mm}$ ). Rack mounting requires 7 " ( 178 mm ) of vertical space.
Weight: net, 11 lb ( 5 kg ); shipping, 17 lb ( $7,6 \mathrm{~kg}$ ).
Accessory kit supplied: spare pen, syringe, remote pen lift mating connector, pen cleaning wire, slidewire cleaner and lubricant, 8 ink cartridges ( 4 red and 4 blue), and one roll of chart paper.
Price: Model 680 (English) or 680M (Metric) $\$ 900$

## Options:

001 With installed $5 \Omega, 0.1 \%$ linearity retransmitting potenciometcr
add \$ 50
002 With ink event marker installed add $\$ 35$
003 With installed high-low limit switches add $\$ 90$
008 With $16 / 1$ instead of $60 / 1$
speed reducer
add \$ 25
009 With remote chart drive switch add $\$ 25$
010 For 50 Hz operation
$N / C$
013 For operation with 7560 A, 7561A add $\$ 25$
014 Glass door with lock add $\$ 45$
015 Electric writing (special paper required) add $\$ 100$
016 Electric writing event marker add \$ 45
018 Disposable pen tips
N/C
H01 1 mV span added (HOL-680) add $\$ 50$ 1.2 mV span added ( H 01.680 M ) add $\$ 50$

H02 $100 \mathrm{k} \Omega$ input resistance, all spans add $\$ 75$
Note: ink and electric systems are not combatible. Event markers must be the same type as the main writing system. Options HO and HO not compatible.

Digital-to-Analog Converters make possible automatic, high-precision analog records from electronic counters, digital voltmeters and other devices providing the proper 4 -line $B C D$ output code. These converters operate directly with HP Quartz Thermometers, HP Nuclear Scalers and most HP solid-state counters; output kits are available for HP vacuum tube counters. Since the digital-to-analog converters tolerate a wide range of input voltages, they are suitable for use with other tube and solid-state devices.

Output signals for strip-chart or $x-y$ recorders of both the potentiometer and galvanometer types are available, and controls for recorder calibration and zero adjustment are provided. A 50 -pin connector accepts 4 -line data from a maximum of nine decade counting units. This information is transferred to storage binary units upon receipt of a command pulse from the counting source. The stored data are then translated and weighted to provide the proper analog output voltage or cuirent.

Any three successive digits (or the right-hand two) of the input may be chosen for analog output. By selecting the two or three least significant digits, analog records of high resolution and accuracy may be obtained with conventional strip chart and $X-Y$ recorders. For example, recording the three right-hand digits of eight- or nine-column data can provide an analog record with resolution of 1 part in $10^{8}$.

Since the data in three successive columns can range only from 000 to 999 , automatic zero-shifting is inherent in the output, keeping the record "on scale" at all times. As an example, consider successive readings of: 000, 120, 257, 496, 732, 998, 1024. Except for the last reading, the analog record would proceed up-scale to 998 ( $99.8 \%$ of full scale). Recording of the 1024 value would be made at 024 ( $2.4 \%$ of full scale). The quick transition of the pen from 998 to 024 would serve to indicate that the range has been shifted up by 1000 . Down-scale shifts of zero are similarly indicated.

## Specitications, 580A, 581A

Accuracy: $0.5 \%$ of full scale or better.
Potentiometer output: 100 mV full scale: minimum load resis. tance 20 K : calibrate control; dual banana plugs front and rear; typical 5 mV residual output at " 000 ".
Galvanometer output: 1 mA full scale into 1500 ohms; zero and calibrate controls; phone jack front and rear.
Driving source: parallel entry 4 .line BCD 4.2-2.1 (9 digits maximum) ; " 1 " state +4 to +75 volts with reference to " 0 " state.
Reference voitages: reference voltages required for both the " 0 " and " 1 " state, reference voltages not to exceed $\pm 150 \mathrm{~V}$ to chassis.
Command pulse: positive or negative pulse, $20 \mu \mathrm{~s}$ or greater in width, 6 to 20 volts amplitude.
Transfer time: 1 millisecond.
Power: 115 or 230 volts $\pm 10 \%$, so to 1000 Hz , 11 W.
Options: please specify one of the following input code options (Option 001, 002, or 003):
001: 1-2-2-4 BCD code " 1 " state positive; " 1 " state +4 to +75 V with reference to " 0 " state. No additional cost.
002: 1-2-4-8 BCD code " 1 "' state positive (voltages same as above). No additional cost.
003: 1-2.4-8 BCD code " 2 " state negative; " 0 " state +4 to
+75 V with reference 10 " I " state. No additional cost.
004: Special input cable 10513 A for HP integrated circuit counters (e.g., $5221 \mathrm{~B}, 5216 \mathrm{~A}, 5331 \mathrm{~A} / \mathrm{B}, 5332 \mathrm{~A} / \mathrm{B}$, 5325 A ) in lieu of $562 \mathrm{~A}-16 \mathrm{C}$ input cable normally sup. plied. Add \$15.00.

## Dimensions:

580A (rack mount) : $163 / 4$ " reide, $3 \cdot 15 / 32$ " high, $111 / 4^{\prime \prime}$ deep ( $425 \times 88 \times 286 \mathrm{~mm}$ ).
581A: 7.25/32" wide, $6.3 / 32^{\prime \prime}$ high, $8^{\prime \prime}$ deep ( $198 \times 155 \times$ 203 mm ).
Weight:
580A: net: $13 \mathrm{lbs}(6 \mathrm{~kg})$ shipping: $16 \mathrm{lbs}(7,2 \mathrm{~kg})$
581A:
net: $8 \mathrm{lbs}(3,5 \mathrm{~kg})$
shipping: $13 \mathrm{lbs}(6 \mathrm{~kg})$.
Accessory furnished: $562 \mathrm{~A} \cdot 16 \mathrm{C}$ Cable, $6^{\prime}(1830 \mathrm{~mm})$ long with an Amphenol 57-30500 connector at each end. See also Option 004.

## Prica:

Model 580A, $\$ 675$.
Model 581A, \$675.



580A

A wide need exists in data recording for continuous, highly visible records of analog signals. Permanent records of sig. nals from dc to 150 Hz can be made conveniently and reliably using HewlettPackard oscillographic recorders.

## Writing systems

Both ink and thermal writing systems are availabic. Jnk writing systems incorporate an ink supply that operates at low pressure, ensuring uniform traces at all chart speeds and over all points of the waveform. The recording fluid, a permanent ink, permits high resolution copying of recorded data. The disposable ink cartridges are easily and cleanly replaced.
Thermal writing systems use a heated stylus technique to produce chart traces on heat-sensitive Permapapere. Features include an absolutely reliable writing method, a resolution of a cycles per mm of paper travel even at small amplitudes, and unattended operation for greatly exrended time periods with an optional 1000 foot paper supply.

## Ink writing recorder systems

Two basic ink writing recorder syscems exist. The first is the new 2 channe!

7402A. a portable general purpose re. corder which uses the 17400 Series plug. in preamplifiers. The second basic recorder system consists of the rack mounted 8 -channel 7858 B and 7878 A . The 7858 B uses the 8800 Series of plug. in preamplifiers whereas the 7878A uses bank amplifiers, either the 8820A or the 8821A.

## Thermal writing recorder systems

There are two basic thermal writing recorder systems. One is the portable 2 -channel 77028; the second consists of the rack mounted, 6,8 , and 16 channel systems.

## Plug-in preamplifiers

Tro plug-in series are available, the 17400 Series and the 8800 Series. The new and still expanding 17400 Series is presently used with the 2 -channel portable oscillographic recorder. The 8800 Series is used with all other recording systems that accepr plug-in signal conditioners. This series may also be used independently of the recorder as lab preamplifiers, when used with the bench-top porver supply available as an option with each unit.

## Bank amplifiers

Two bank amplifers are available for general purpose applications where the versatility of plug ins is not needed. Each model is available in 6 or 8 -channel versions.
The 8820A Low Gain Amplifier provides 7 input ranges from $50 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div in a $1,2,5$ sequence. Each inpur is single ended, with $1 \mathrm{M} \Omega$ inpur resistance, All channels have lockable, frontpanel gain vernier and zero position con. trols.
The 8821A has 12 input ranges from $1 \mathrm{mV} / \mathrm{div}$ to $50 \mathrm{mV} /$ div and $0.1 \mathrm{~V} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$. Input on the $\mathrm{mV} /$ div ranges is floating and guarded with 9 M $\Omega$ input resistance and 100 dB CMR at 60 Hz . On the $\mathrm{V} /$ div ranges the input is balanced to ground, with 4.5 M to ground on each side. CMR on these ranges is 66 dB at 60 Hz . Internal calibration of $\pm 20 \mathrm{mV}, \pm 1 \%$ on the $\mathrm{mV} /$ div canges and $+2 \mathrm{~V}, \pm 2 \%$ on the $\mathrm{V} /$ div ranges is standard.
Ordered separately, prices are: Model 8820A 6-channel, si220; 8-channel, $\$ 1250$; Model $8821 \mathrm{~A}, \$ 2300$ and $\$ 2500$.

Oscillographic recorder system specifications

	System	Number of Channels Chart Width	Writing Method	Preamplifier Configuratian	Amplifies Medel No.	Maximum Sensitivity (mV/djv)	$\begin{gathered} \text { Frequancy } \\ \text { Reqponsisf } \\ (-8 \mathrm{~dB}(\mathbb{C l} 10 \mathrm{~d}) \end{gathered}$	Rise Time $10 \%$ to $90 \%$ (ms, 10 dtv )	Voritcal Rack Space Requlramen
	7402A	$2 \times 50 \mathrm{~mm}$	Ink	Plug-in	$\begin{aligned} & 17400 \mathrm{~A} \\ & 177401 \mathrm{~A} \\ & 17402 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \frac{1}{20}^{.001} \end{aligned}$	$\begin{aligned} & 125 \mathrm{~Hz} \\ & 140 \mathrm{~Hz} \\ & 140 \mathrm{~Hz} \end{aligned}$	7.5 $(50 \mathrm{~mm})$   7 $(50 \mathrm{~mm})$   7 $(50 \mathrm{~mm})$	101/2"
	77028	$2 \times 50 \mathrm{~mm}$	Thermat	Plug-in	8801A 8802A 8803A	$\begin{aligned} & \hline 5 \\ & 1.001 \end{aligned}$	$\begin{aligned} & 125 \mathrm{~Hz} \\ & 125 \mathrm{~Hz} \\ & 90 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 7 \end{aligned}$	83/2"
  7858A	7414A	$4 \times 50 \mathrm{~mm}$	Thermal	Plug.in	$\begin{aligned} & 8801 A \\ & 8892 A \\ & 8803 A \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 1 \\ & .001 \end{aligned}$	$\begin{aligned} & 100 \mathrm{~Hz} \\ & 100 \mathrm{~Hz} \\ & 80 \mathrm{~Hz} \end{aligned}$	5 5 7	101/2"
	7706B	$6 \times 50 \mathrm{~mm}$	Thermal	Plug.in	8801A 8802A 8803A	$\begin{aligned} & \hline 5 \\ & 1_{.001} \end{aligned}$	$\begin{gathered} 125 \mathrm{~Hz} \\ 125 \mathrm{~Hz} \\ 90 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 5 \\ & 5 \\ & 7 \end{aligned}$	261/4 ${ }^{\text {N }}$
	7727A	$6 \times 50 \mathrm{~mm}$	Thermal	Bank	$\begin{aligned} & 8820 \mathrm{~A} \\ & 8821 \mathrm{a} \end{aligned}$	$\stackrel{50}{1}$	$\begin{aligned} & 125 \mathrm{~Hz} \\ & 125 \mathrm{~Hz} \end{aligned}$	5 5	24/2"
	7708B	$8 \times 40 \mathrm{~mm}$	Thermal	Plug-in	$\begin{aligned} & 8881 \mathrm{~A} \\ & 8802 \mathrm{~A} \\ & 8803 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 1.001 \end{aligned}$	$\begin{aligned} & 150 \mathrm{~Hz} \\ & 150 \mathrm{~Hz} \\ & 100 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 6.4 \end{aligned}$	26\%"
	78588	$8 \times 40 \mathrm{~mm}$	Ink	Plug-in	$\begin{aligned} & 8801 A \\ & 8802 A \\ & 8803 A \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 1.001 \end{aligned}$	$\begin{aligned} & 150 \mathrm{~Hz} \\ & 159 \mathrm{~Hz} \\ & 100 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 5.5 \end{aligned}$	311/2"
	7729A	$8 \times 40 \mathrm{~mm}$	Thermal	Bank	$\begin{aligned} & 8820 \mathrm{~A} \\ & 8821 \mathrm{~A} \end{aligned}$	$\begin{gathered} 50 \\ 1 \end{gathered}$	$\begin{aligned} & 150 \mathrm{~Hz} \\ & 150 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	241/2"
	7878A	$8 \times 40 \mathrm{~mm}$	Ink	Bank	$\begin{aligned} & 8820 A \\ & 8821 A \end{aligned}$	$\begin{gathered} 50 \\ 1 \end{gathered}$	$\begin{aligned} & 150 \mathrm{~Hz} \\ & 150 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \end{aligned}$	$2934^{\prime \prime}$
	7731A	$16 \times 20 \mathrm{~mm}$	Thermal	Bank	$\begin{aligned} & 8820 \mathrm{~A} \\ & 8821 \mathrm{~A} \end{aligned}$	$\begin{array}{r} 100 \\ 2 \end{array}$	$\begin{aligned} & 125 \mathrm{~Hz} \\ & 125 \mathrm{~Hz} \end{aligned}$	$4$	293\%"



Model 7402A is a portable, ink writing oscillographic recorder that secords on either two 50 mm channels or a single 100 mm channel. This unit also features instant drying ink, long-life pens, easy paper loading, and a new series of plug. in signal conditioners. These plug-ins, the 17400 Series, presently consist of a high gain, a medium gain, and a low gain DC Preamplifer-the first in a new and expanding series.

The pressurized inking system produces a clear, crisp trace that dries immediately on contact with che paper. The black ink color will photocopy with clarity, Solidly built, the pen is constructed of stainless-steel and provided with a tough carbide tip. Pens will last the life of the instrument; periodic lapping and force adjustments are not required.

The trace is recorded on an easy loading, 275 ft ( 84 m ) roll of chart paper, Four chart speeds are provided, selected by front panel pushbuttons. Remote control of the chart speed, also standard, includes the four chart speeds plus chart stop. Remote control is by either contact closure or TTL level.

The frame is modular in design, all major assemblies may be easily removed. All circuit boards are removable from the rear of the unit.


Dual 50 mm Trace


Performance specifications

	With 17400A	With 17401A	With 17402A
Input Ranges:	$1,2,5,10,20,50,100,200,500$    $500 \mathrm{mV} /$ div. 1, 2. 5'v/div. Continuous vernier between ranges.	1, 2, 5, 10, 20, 50, 100. 200, 500 miV div; 1, 2, 5 viciv. Continuous verrier between sanges.	20,50. $100.200,500 \mathrm{mV} / \mathrm{div}, 1,2,5$ V/div. Cantínuous vernier between ranges.
Type of Input:	Differential, glogted, sind guaided. Inputs thre rear connector.	Galanced. 10 -ground. Inputs thru rear connector.	S.nölle-ended. Inputs thras tear or front connetiors.
Maximum Allowable Input: (Cinsilinuous)	500 V dc on $10 \mathrm{mV} /$ div range and above; other ranges, 120 V dc or 120 $\checkmark$ ac ims ( 500 V pgak).	250 V rms on $500 \mathrm{mV} / \mathrm{c} \mathrm{v}$ and above: 115 V ims ( 230 V ims for 1 sec ) max on other ranges.	250 V ims on $500 \mathrm{mV} /$ div and above; 115 V ims ( 230 V (ms for 1 sec ) max on other ranges.
Input Resistanoe:	1 Megohm (minimum).	500 k ohims each side to ground.	1 Megohm
Common Mode Rejection: DC	150 dB;90 dB on 10 mv /div and above. $140 \mathrm{oB}: 80 \mathrm{oB}$ on $10 \mathrm{mV} /$ div and above. ( k ohm source unbal)	$\begin{aligned} & >50 \mathrm{~dB} \\ & >50 \mathrm{~dB} \\ & (100 \text { ohm source unbal) } \end{aligned}$	
Miximum Allowable Commion Mofe Voltide:	200 V dc or peak ac.	250 V dc or peak ac on 500 mV /div and above; other ranges 15 V dc or peskac.	
Frequency Response: 100 dy   50 div   10 dly	$+0 \%,-6 \%$ of full scale from dc to 27 Hz at $5 \mu \mathrm{~V} /$ div and above; 25 Hz at $2 \mu \mathrm{~V} / \mathrm{div}$; 24 Hz at $1 \mu \mathrm{~V} / \mathrm{div}$.   $-3 d 8 \mathrm{al} 46 \mathrm{~Hz}, 5 \mu \mathrm{~V}$ /div and above. $+0 \%$, $-6 \%$ of full scale trom de to 40 Hz at $5 \mu \mathrm{~V} /$ div and above; 28 Hz at 2 $\mu \mathrm{V} / \mathrm{div} ; 15 \mathrm{~Hz}$ at $1 \mu \mathrm{~V} / \mathrm{div}$.   -3 dB at $55 \mathrm{~Hz}, 5 \mu \mathrm{~V} /$ div and above.   -3 dB at 125 Hz at $5 \mu \mathrm{~V} / \mathrm{Civ}$ and above;   80 Hz at $2 \mu \mathrm{~V} / \mathrm{div} ; 45 \mathrm{~Hz}$ at $1 \mu \mathrm{~V} / \mathrm{div}$.	$=2 \%$ of full scale from de to 25 Hz   $=3 \mathrm{~dB}$ at 48 Hz .   $=25 \%$ of fuil scate from de to 40 Hz .   -308 at 55 Hz .   $-3 \delta B$ at 140 Hz .	$\pm 2 \%$ of full scale from dc to 25 Hz .   -3 dB at 48 Hz .   $\pm 2 \%$ of full scale from de to 40 Hz   -3 dB at 55 Hz .   -3 dB at 140 Hz .
Rise Tline: (Typleath $10 \%$ to $90 \%$ of 60 mon or. 100 mm defiection)	7.5 msec	7 msec	7 msec
Overstioct:	<2\% of full scale.	$2 \%$ of full scele.	$2 \%$ of full scale.
Acouraoy:	$\pm 0.75 \%$ of full scale $\pm 0.06 \% /{ }^{\circ} \mathrm{C}$	= $0.75 \%$ of full scale $\pm 0.06 \%)^{\circ} \mathrm{C}$	$\pm 0.75 \%$ or foll scale $=0.06 \% /{ }^{\circ} \mathrm{C}$
Lheierity:	= $0.6 \%$ of full scale.	$\pm 0.6 \%$ of full scale	$\pm 0.6 \%$ of full scale.
2802:	Adjustable 1030 mm either side of grid center. Position stability $\pm 0.1 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$.		
Zord Supprestan:	1. $10,100 \mathrm{~V}$ on $10 \mathrm{mV} /$ div range and above; other ranges $1,10,100 \mathrm{mV}$. Continuous calibrated vernier between suppression steps.	(OPTIONAL) $02,2,20 \mathrm{~V}$, continuous calibrated verdier bêtween suppressioni steps.	
Zero Suppresslai Accuraty ${ }^{12}$ :	$\begin{aligned} & \pm 0.5 \% \text { of suppression } \pm 0.5 \% \text { of full } \\ & \text { scale. } \\ & =0.02 \% /{ }^{\circ} \mathrm{C} \text {. } \end{aligned}$	$=0.5 \%$ of suppression $=0.5 \%$ of rull scigle. $\neq 0.02 \% /^{\circ} \mathrm{C} \text {. }$	
Chat spoeds:	1, 5, 25, $125 \mathrm{~mm} / \mathrm{sec}$. Front panel or remote selection, including STOP, via contact closure or TTL level.		
Charl Spled Aecurroye	=0.5\% plus power line frequency variation from $60 \mathrm{~Hz}_{2}$.		
Chart Wages:	$=0.25 \mathrm{~mm}$	$\pm 0.25 \mathrm{~mm}$	$=0.25 \mathrm{~mm}$
Env/rompent (apersting):	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ and $<95 \%$ relative humidily $\left(40^{\circ} \mathrm{C}\right.$.)		

## General specifications

Writho System:	Blue-black ink with rectlinear presenlation.	Prioss:		
Ink Capaoly:	55 cc replaceable, throw away cartridge. Sufficient for 12 months of typical operation.	7402A Mainframe (less plug-ins)		$\$ 1450$ 675
Munber of Chanelas:	Two 50 mm or one 100 mm channel plus one optional avent and one optional event/timer channel.	17401A Medium-Gain Preamplifier Option 001 (Zero Suppression)		$\begin{array}{ll}  & 225 \\ \text { add } & 125 \end{array}$
Cbarn Pateet iption	Two channels each 50 mm wide with 50 div or one channel 100 mm wide with 100 div, time lines every 1 mm . Chart lengit is 275 it ( 84 m ) with the last 20 ft . ( $6 . \mathrm{lm}$ ) indicated by a colored stripe.	17402A Low-Gain Preamplifier		145
		Options:		
Chant Take:Up:	External roll (optional).			
Olnienstors:	9-15/16" wide, $11 \cdot 3 / 16^{\prime \prime}$ high, 15-1/8" deep ( $252 \times 284 \times 384 \mathrm{~mm}$ ). Rack mounting height ( 0 pt 006) is $10.15 / 32^{\prime \prime}$ ( 266 mm ).		Both Event Marker and Event Marker/Timer 50 Hz Power Line Operation	160 $N / C$
Power:	115/230 $\mathrm{ac}=10 \%, 60 \mathrm{~Hz}, 140 \mathrm{VA}$.		Paper rake.Up (external)	110
Typleal Syith Whater:	Net $40 \mathrm{lb} .(18,4 \mathrm{~kg}$; shipping $59 \mathrm{lb} .(27,2 \mathrm{~kg})$.		Rack Mount Adaptor	50

[^22]
## RECORDERS \& PRINTERS

## hp

## 4-CHANNEL THERMAL TIP <br> Bench-top operation, plug-in preamps Model 7414A



Contained in a single benchtop package, the 7fita represents a unique combination of convenience, high performance and fexibility. Incorporated are thermal writing and positive position feedback plus the capability to accept the entire complement of the 8800 series plug-in signal conditioners. In addition to the benchtop package, the 19 -inch unit may be rack mounted or mounted in an optional mobile cart.

The thermal writing tip features high contrast writing, long stylus life, and rectilinear presentation. A closed-loop, contactless pen position feedback system results in $0.5 \%$ linearity. The system provides flat response ( $=0.5 \mathrm{~dB}$ ) to 50 Hz at full scale amplitude.
The 500 foot $Z$-fold pack loads in 30 seconds from the front with no threading. Z-fold allows for convenient data revien and storage. Nine pustbutton chart speeds are provided rang. ing from 0.25 to $100 \mathrm{~mm} / \mathrm{s}$.

## Specifications

Writing systern: thermal with rectilinear presentation.
Chart speeds: $0.25,0.5,1,2.5,5,10,25,50,100 \mathrm{~mm} / \mathrm{s}$; electrically selected by front panel pushbuttons.
Chart accuracy: speed, synchronous with line $\pm 1 \%$; weave, 0.5 mm .

Chart description: four channels, each 40 mm wide divided into 50 divisions, with time lines every $1 \mathrm{~mm}, \mathrm{Z}$ fold, heatsensitive Permapaper@, packs of 500 sheets, each sheer $11.9^{\prime \prime}$ ( 30.1 cm ) long and numbered on the right side for footage indication and indexing.
Limiting: factory set 1.5 mm outside grid. Settable, by internal screwdriver adjustment, from 2 mm ourside to 8 mm inside grid.
Markers: one event marker and one combination event/timer marker in second and fourth margins. Third event marker is optional.
Remote operation: rear connector provides for remore operation of chart drive and event marker.

## General

Power: $115 / 230 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 350 \mathrm{VA}$ (including signal conditioners). 50 Hz operation optional.
Weight: net, 112 lbs ( $50,5 \mathrm{~kg}$ ) ; shipping, $132 \mathrm{lbs}(59.5 \mathrm{~kg}$ ).
Dimensions: cabinet: $117 / 8^{\prime \prime}$ high, $201 / /^{\prime \prime}$ wide. $24^{\prime \prime}$ deep ( 302 x $311 \times 604 \mathrm{~mm}$ ) ; rack mount: $101 / 2^{\prime \prime} \times 19$ " $\times 24^{\prime \prime}$.
Price: Model 7414A (less preamplifiers) 84500

## Options

001 rack mount; includes slides and all mounting hardware. Deleres case N/C
00850 Hz operation
\$ 35
012 I channel decrease; extreme right hand channel deleted, blank panel installed for plug-in. Not comparible with Option 015
deduct \$ 200
015 extra event marker, installed between channels 2 and 3. Nor compatible with Option 012
$\$ 35$
054 installed in mobile cart. Includes paper take-up drawer
$\$ 450$



7702B

## Specifications

(Full performance specifications determined by choice of 8800 Series Preamplifier, see following pages.)
Chart speeds: four speeds standard ( $1,5,20$ and $100 \mathrm{~mm} / \mathrm{s}$ ) mechanically shifted and selected by front panel pushbuttons; other speed combinations available as options; pro. vision is made for optional remote control of chart drive from suitable 115 V ac soucce.
Timer-off-marker: separate stylus marks edge of chart with 1 s pulses in TIME position or aith line frequency pulses in MARK position; remote marking provision at reat connector by simple contact closure (115 V ac).
Front panel controls: individual stylus hear controls; pushbuttons for power, timer, marker and speed selection; individual galvanometer damping adjusments (screwdriver ad. just).
Paper: standard 200 ft zolls of 5 cm wide, 2 -channel Permapaper(6) ( $651-52$ ), easily loaded from the recorder front panel; 1-channel Permapaper® (651.51), may be used if only one channel is operated; orange, translucent Perma. paper ( $652-182$ ), is available for making multiple copies of recording on contact copier (ozalid).
Paper take-up: automatic paper rake-up standard equipment.
Power: $115 / 230 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$, approx $200 \mathrm{VA} ; 115 / 230 \mathrm{~V}$ $\pm 10 \%, 50 \mathrm{~Hz}$, available in Option 008.
Dimensions: rack mounted: $81 / 4^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $17^{\prime \prime}$ deep (222 x $483 \times 432 \mathrm{~mm}$ ): porrable case (Oprion 002): $10.7 / 16^{\prime \prime}$ high, $207 / 8^{\prime \prime}$ wide, $21 \cdot 13 / 16^{\prime \prime}$ deep ( $265 \times 530 \mathrm{x}$

576 mm ) ; mobile cart (Option 00S): 391/4" high, 263/4" wide, $201 / 2^{\prime \prime}$ deep ( $997 \times 680 \times 521 \mathrm{~mm}$ ).
Weight (approx): typical with 2 preamplifiers, rack mounted: $60 \mathrm{lb}(27,2 \mathrm{~kg}$ ) ner; $89 \mathrm{lb}(40,4 \mathrm{~kg})$ gross; portable case (Option 002) : $89 \mathrm{lb}(40.4 \mathrm{~kg}$ ) net; $135 \mathrm{lb}(60,8 \mathrm{~kg})$ gross; mobile cart (Option 005): 130 lb ( 59 kg ) net; 172 lb ( 77,4 kg ) gross.
Price: two channel thermal recorder, $115 / 230 \mathrm{~V}$ switch, 60 Hz , for rack mounting, uses 8800 Series Preampli-
hers, specify Portable Case or Mobile Cart by Option $\$ 2050$

## Options

002 Portable case add $\$ 195$
003 One channel decrease deduct $\$ 50$
005 Mobile cart (1062A) add \$195
00850 Hz operation add $\$ 50$
009 Speeds, 2.5, 5,25 and $50 \mathrm{~mm} / \mathrm{sec}(50 \mathrm{~Hz})$ add $\$ 75$
010 Speeds, $2.5,5,25$ and $50 \mathrm{~mm} / \mathrm{sec}(60 \mathrm{~Hz}) \quad \mathrm{N} / \mathrm{C}$
011 60:1 Speed Reduction ( 60 Hz ) add $\$ 185$ (includes one-minute marker)
012 60:I Speed Reduction ( 90 Hz ) add $\$ 185$
015 Extra Marker between channels add $\$ 76$
$01860 \mathrm{~Hz}, 2: 1$ reduction, speeds of 0.5, 2.5. 10 and $50 \mathrm{~mm} / \mathrm{sec}$
add \$ 175
$01950 \mathrm{~Hz}, 2: 1$ reduction, speeds of $0.5,2.5,10$ and $50 \mathrm{~mm} / \mathrm{sec}$
add \$ 175
Note 1: add price of preamplifiers to the above basic assembly prices for complete system cost; see following pages for specifications and prices.


7708B

Multichannel thermal recording systems are available with either bank preamplifiers (all preamps of same type) or with individual 8800 -series preamps for long-term system rersa. rility.

Galvanometer power amplifiers incorporate damping circuits to ensure recorder accuracy, current feedback to reduce drift and adjustable electrical limiting to prevent overloading and to protect the styli.

Four and six channel paper may be used for economy when recording less than the maximum number of channels. Perma. paper危 in opaque or translucent forms is available.

Systems may be obrained in RETMA standard mobile cab. inets, less cabinet for mounting in RETMA standard equipment cacks, or in portable cases.

## Specifications

(Overall system performance specifications are determined by choice of plug.in or bank amplifer. See page 225.)
Chart speeds; $0.25,0.5,1,2.5,5,10,25,50,100 \mathrm{~mm} / \mathrm{s}$, elec. trically shifted and selected by front panel pushbuttons; provision is made for remote operation of chart speeds and chart drive.
Event marker: right margin; buile.in timer provides 1 s timing marks; manual or remoce operation from contact closure. Optional event marker can be installed berweeo channels.
Front panel controls: individual scylus heat controls: pushbutton speed selectors; moror starting swirch; timer-otf. marker 5 witch.
Chart footage indicator: front panel indicator shows number of feet remaining on the supply roll.
Chart type: green or cranslucent Permapapcres. 200 ft long.

## General

Power: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$; approx 330 VA ; 773 LA requires approx 550 VA
Olmensions: mobile cabinet mount: 721/2" high. 2f" wide, $361 / 2^{\prime \prime}$ deep incl base ( $18.42 \times 610 \times 927 \mathrm{~mm}$ ) : rack nount: $19^{\prime \prime}$ wide, $241 / 8^{\prime \prime}$ deep, see height on page 225.

## Prices

Model 7706B	$\$ 5550$
Model 7708B	$\$ 6375$
Model i727A	$\$ 4600$
Model 7729A	$\$ 5000$
Model 7731A	$\$ 10000$

Options
001 less cabiner, for rack mouncing
7706B. 7708B detuct $\$ 395$

7727A, $7729 \mathrm{~A}, 7731 \mathrm{~A}$ deduct $\$-125$
002 less caninet, mounted in portable cases
7706B. 7708B
add $\$ 190$
772거, 7729A deduct 5 is
00850 Hz operation $\$ 50$
009230 V operation $\$ 100$
011 ( 60 Hz ) 9 additional speeds ( $\mathrm{mm} / \mathrm{min}$ ) \& 250
$012^{\text {i* }}$ one channel decrease deduct $\$ 50$
$013^{*}$ two channel decrease deduct $\$ 100$
$016(60 \mathrm{~Hz}) 2: 1$ increase of standard speeds $\$ 75$
017 ( 50 Hz ) 2:1 increase of standard speeds $\$$-5
020 with 8820 A amplifies
6 channel ( 7727 A ) $\$ 1250$
8 channel (7729A, i731A) \$ 1290
021 with 8821A amplifer
6 channel (7727A)
$\$ 2300$
8 channel (7729A, 7731A) \$ 2500
$024 *$ less -ifo Hz card (do nor order if using 8803A)
deduce $\$ 50$
025* less 2.100 Hz card (do nor order if using $8805 \mathrm{~A} / \mathrm{B}$ )
deduct $\$ 50$
$027(60 \mathrm{~Hz}) 21 / 2: 1$ reduction of standard speeds $\$ 140$
$028(50 \mathrm{~Hz}) 21 / 2: 1$ reduction of standard speeds $\$ 1.10$
029 ( 50 Hz ) 9 additional speeds ( $\mathrm{mm} / \mathrm{min}$ )
\$ 250
031-037\% extra marker between channels ; 31 be. tween 1 and 2. 32 between 2 and 3, ell.)
$040^{* *}$ de marker amp (for use with)
Options 031.037)
\$ 70

041** with hidden paper take-up
\$ 110
$\$ \$ 75$
$\therefore$ Applicable to 77068,7708 only.
*- Not applicable to 7731a.

AECORDERS \& PRIWTERS


The models 7858 B and 7878 A are eight-channel, modulated pressure ink recording systems. The systems feature contactiess position feedback from the pen tip, the convenience of Z -fold paper take-up, and the economy of ink-writing paper. All operating controls are front-panel accessible.

Fourteen chart speeds ( 0.025 to $200 \mathrm{~mm} / \mathrm{s}$ ) are standard, and conveniently seiectable by front-panel pushbuttons. A lefthand edge marker pen provides 15 or 1 min indications (also switch selected from front panel) for accurate time correlation. A right-hand marker pen permits event or time code monitoring. A front-panel warning light indicates when the ink supply is low and a new cartridge is required. An additional indicator can also be lighted at a remote location.

A remote connector on the recorder rear panel enables an operator to select the desired chart speed and to activate the

1 s or 1 min markers from a remore location. The functions are activated by simple contact closures.

Z-fold chart paper permits immediate access to any data without interrupting the recorder; it comes in 500 -sheet packs, perforaced so that individual sheets can be removed from the pack. Both roll and $Z$-fold paper are printed with eight 40 mm wide channels, so divisions/channel, with timing lines every millimeter. Rolls are 500 ft long, and Z -fold packs are 500 sheets $\times 30 \mathrm{~cm}\left(11.8^{\prime \prime}\right)$ per sheet.

The low pressure ink system is modulated to march the recording pen velocity and chart speed, assuring sharp, constant width traces under all signal input conditions. The recording Aluid is a permanent blue ink that dries capidly on coneact with the recording paper. The disposable ink cartridge can be replaced anytime-even while the system is operating- per. mitting uninterrupted tracings. One cartridge supplies over 1000 miles of eecorder line.

Systerns may be obtained in RETMA standard mobile cab. inets, less cabinet for mounting in RETMA standard equipment racks, or in portable cases.

## Specifications

(Overall system performance specifications are determined by choice of plug-in or bank amplifier. See page 22s.)
Ink system: disposable, plug-in cartridge can be replaced while operating system: $1 / 2$ hour reserve.
Chart speeds: $0.025,0.05,0.1,0.25,0.5 .1,2,2.5,5,10,25,50$, $100,200 \mathrm{~mm} / \mathrm{s}$, pushbutron selected
Paper takeup; internal roll accessible by pivoting writing table; $Z$-fold takeup is below recorder: no modification required to change between roll and Z -fold paper.
Limiting: electrical, from $\pm 12$ div (referenced from channel centerline) to beyond channel edge.
Remote operation; connector provided for remoze operation of chart drive, chart speed selector and timer/marker. Provides a positive voltage to indicate remote readiness.

## General

Power: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$, approx 600 VA . 50 Hz available as Option 008; 230 V operation as Oprion 009.
Weight: in cabinet with preamplifiers, approx 550 lbs ( 249 kg ).
Dimensions: mobile cabinet mount: $721 / 2^{\prime \prime}$ high, $24^{\prime \prime}$ wide, $361 / 2^{\prime \prime}$ deep incl base ( $1842 \times 610 \times 927 \mathrm{~mm}$ ) ; rack mount: $19^{\prime \prime}$ wide, $23^{\prime \prime}$ deep, see height on page 225.

## Prices

Model 78988 (cabinet, less preamplifiers) $\$ 10350$
Model 7878A (cabinet, less preamplifiers) \$ 9500
Optlons
001 less cabinet, for rack mounting deduct \$ 42 s
002 less cabinet, mounted in portable cases N/C
00850 Hz operation $\$ 50$
009230 V operation 100
012* one channel decrease deduct $\$ 200$
013 two channel decrease deduct $\$ 400$
020 with 8820 A amplifier ( 7878 A only) $\$ 1250$
02 I with 8821A amplifier (7878A only) \$ 2500
$024^{*}$ less 440 Hz card (do not order if using 8803 A )
deduct \$ 50
025 * less 2400 Hz card (do not order if using 8805A/B)
deducr \$
50

## RECORDERS \& PRINTERS



8803A
$1 \mu \mathrm{~V} / \mathrm{div}$

## DC Coupled Preamplifiers

The three de-coupled preamplifiers on this page are the primary general-purpose devices used to couple external sig. nals to the recorder. Each unit features a front-panel range switch and lockable gain vernier and zero position controls. Positive and negative zero offset is standard in all three units, with switchable ranges and a lockable, 10 -turn potentiometer with calibrated dial face. A switch-selected, internal $\pm 1 \%$ calibrator allows a quick check of system accuracy, and frontpanel screwodriver-set calibration controls are available in all three units. Fronr-Panel dc balance controls are provided on the 8801A and 8802A. but are not needed on the 8803A because of the floating and guarded input circuit. Each unit features an output phone jack for the monitoring of the input signal by other devices without additional signal loading, or when the preamplifier is used separately from the recorder as a bencli-top unit (Option 001 is the case and porver supply for separate use, and inciudes the 440 Hz photochopper supply when ordered with the 8803 A ). All units may be operated directly from the ourput of Hewletr-Packard linear velocity and linear displacement zransducers, or with other transducers utilizing de excitation.

## Specifications, Model 8801A

Input ranges: 5, 10. $20,50,100,200 \mathrm{mV} / \mathrm{div}: 0.5,1,2,5$ V/div. Accuracy $\pm 1 \%$.
Type of input: balanced to ground: $500 \mathrm{k} \Omega \pm 1 \%$ in parallel with approx 100 pF each side.
Common made rejection: 18 dB min , de to $140 \mathrm{~Hz} ; \pm 50 \mathrm{~V}$ max on $5,10,20 \mathrm{mV} / \mathrm{div}$ ranges; $\pm 500 \mathrm{~V}$ max all other ranges.
Frequency response and rise time: see chart on page 225.
Zero suppression: 0 to $\pm 10$ and $\pm 100 \mathrm{~V}$ for single-ended or differential signals ( $\pm 50 \mathrm{~V}$ max on $\mathrm{S}, 10,20 \mathrm{mV} / \mathrm{div}$ ranges) ; calibsated 10 .turn potentiometer with $\pm 0.1 \%$ reso. lution: accuracy $\pm 0.5 \%$ of suppression range, $\pm 1 \%$ of reading.
Callbration: internal, $+100 \mathrm{mV} \pm 1 \%$.
Price: Mode! 8801A
Option: 001 bench top unit with power supply and portable case

## Specifications, Model 8802A

Input ranges: $1,2,5,10,20,50,100,200,500,1000 \mathrm{mV} / \mathrm{div}$; accuracy $\pm 1 \%$.
Type of input: balanced to ground: $180 \mathrm{k} \Omega \pm 1 \%$ in parallel with approx 100 pF each side.
Common made rejection: 48 dB min, $\mathrm{d} c$ to 60 Hz on 1000 $\mathrm{mV} /$ div range, de to 150 Hz all other ranges; $\pm 12.5 \mathrm{~V}$ max on $1,2,5 \mathrm{mV} /$ dir ranges; $\pm 125 \mathrm{~V}$ max on $10,20,50$ $\mathrm{mV} /$ div ranges; $\pm 500 \mathrm{~V}$ max all other ranges.
Frequency response and rise time: see chart on page 225.
Zero suppression: 0 to $\pm 2$ and $\pm 20 \mathrm{~V}$ for single.ended or differential signals $( \pm 12.5 \mathrm{~V}$ max on $1,2.5 \mathrm{mV} / \mathrm{div}$ ranges); calibrated 10 -turn potentiometer with $\pm 0.1 \%$ reso. lution; accuracy $\pm 0.5 \%$ of suppression range. $\pm 1 \%$ of reading.
Calibration: internal, $+20 \mathrm{mV} \pm 1 \%$.
Price: Model 8802A
Option: 001 bench top unit with power supply and portable case
add S415

## Specifications, Model 8803A

Input ranges: 1 to $5000 \mu \mathrm{~V} /$ div and 10 to $5000 \mathrm{mV} / \mathrm{div}, 21$ ranges in a $1,2.5$ sequence. Accuracy $\pm 2 \%$.
Type of input: floating and guarded signal pair; 1 Mn on mV ranges.
Common mode rejection (dc): 160 dB min on $\mu \mathrm{V}$ ranges, 100 dB min on mV ranges: 1 k ? max source unbalance; $\pm 300$ $V \max$.
Common mode rejection (ac): 120 dB min on $\mu \mathrm{V}$ ranges, 60 dB on mV ranges ar $60 \mathrm{~Hz} ; 500 \mathrm{k} \Omega \mathrm{max}$ source untalance; $\pm 10 \mathrm{~V} \max , 1 \mu \mathrm{~V} /$ div: $\pm 20 \mathrm{~V} \max , 2 \mu \mathrm{~V} /$ div; $\pm 50 \mathrm{~V}$ max, $5 \mu \mathrm{~V} /$ div, 100 V max, $10 \mu \mathrm{~V} /$ div and $10 \mathrm{mV} / \mathrm{div}$; $\pm 220 \mathrm{~V}$ max all other ranges.
Frequency response and rise time: see chart on page 225.
Zero suppression: $\mu \mathrm{V}$ ranges: 0 to $\pm 1,10,100 \mathrm{mV}$; mV ranges: 0 to $\pm 1,10,100 \mathrm{~V}$; calibrated 10 -turn porentiomever with $\pm 0.1 \%$ resolution, accuracy $\pm 1 \%$ of suppression range.
Calibratlon: internal, $+200 \mu \mathrm{~V} \pm 1 \%$ on $\mu \mathrm{V}$ range, +200 $\mathrm{mV} \pm 1 \%$ on mV range.
Price: Model 8803A
$\$ 695$
Option: 001 bench-top unit with power supply and portable case
add $\$ 505$

# PREAMPLIFIERS Plug-in signal conditioners for recording Models 8805A, 8805B, 88068 



## 8806B Phase Senslitive Demodulator

The 8806B provides a de output proportional to the rms value of the input signal that is in phase or $180^{\circ}$ out of phase with respect to a reforence voltage. Plug-in modules provide various combinations of reference frequency ranges and phase shift capability

## Speciflcations, Model 8806B

mput ranges: $0.5,1,2,5,10,20,50,100,200,500 \mathrm{mV} \mathrm{rms} /$ div; reference voltage 3.133 V rms in two overlapping ranges, internal range switch.
Type of input: signal input: transformer isolated, floating and guarded, approx $1 \mathrm{M} \Omega_{\text {; }}$ refercoce input: differential, transformer coupled, approx $500 \mathrm{k} \Omega$ each side to ground.
Common mode rejection: 40 dB min to $10 \mathrm{~Hz}, 500 \mathrm{~V}$ rms max; quadrature tolerance 50 div max.
Reference frequency range: 50 Hz to 40 kHz in six bands with variable frequency plug-in; fixed frequency calibrated plug-ins $60 \mathrm{~Hz}, 400 \mathrm{~Hz}, 5 \mathrm{kHz}$.
Frequency response and rise time
Ref frequency: $60 \mathrm{~Hz}: 12 \mathrm{~Hz}, 50 \mathrm{~ms}$; $400 \mathrm{~Hz}: 65 \mathrm{~Hz}, 9 \mathrm{~ms}$; 5 kHz : same as 8801 A (see chart on page 225).
Phase shifter (plug.in)
Fixed frequency: $0^{\circ} .90^{\circ}$ dial; $2^{\circ}$ graduations in four quadrants; accuracy $\pm 3 \%$
Variable frequency: continuous $0.360^{\circ}$
Calibration: internal. 1 V rms at carrier zef frequency.
Price: Model 8806B
Options
001 bench-top unit with power supply and portable case
002 variable frequency phase shifter plug.in. 50 Hz to 40 kHz
003 calibrated phase shifter plug-in, $60 \mathrm{~Hz} \$ 150$
004 calibrated phase shitter plug-in, $400 \mathrm{~Hz} \$ 150$
005 calibrated phase shifter plug.in, $5 \mathrm{kHz} \quad \$ 150$

## RECORDERS \& PRINTERS

## PREAMPLIFIERS

## Plug-in signal conditioners for recording Models 8807A, 8808A, 8809A



## 8807A AC-DC Converter

The 8807A provides a dc voltage output proportional to the average value of a full wave rectified ac input signal. Range sensitivity is calibrated in terms of rms for sinusoidal waveforms. The input circuit is transformer coupled, floating and guarded for high common mode rejection. Calibrated fullrange zero suppression and variable scale expansion permit analysis of small excursions in large input signals. Option 001 extends the low frequency limit from 330 Hz to 50 Hz at the sacrifice of envelope rise time.

## Specifications, Model 8807A

Input ranges: $0.02,0.05,0.1,0.2,0.5,1,2,5,10, \mathrm{~V} \mathrm{rms} / \mathrm{div}$; accuracy $\pm 2 \%$; scale expansion: X1, 2, 5, $10,20 \pm 2 \%$.
Type of input: floating and guarded signal pair; approx $1 \mathrm{M} \Omega$ shunted by 10 pF and stray cable capacitance.
Input frequency range: standard model, 330 Hz to 100 kHz ; Option 001, 50 Hz to 100 kHz .
Common mode rejection: 60 dB min at $60 \mathrm{~Hz}, 40 \mathrm{~dB}$ min at 400 Hz , with up to $10 \mathrm{k} \Omega$ source unbalance: $\pm 500 \mathrm{~V}$ max.
Zero suppression: 0 to $100 \%$ of full scale, any range; calibrated 10 -curn potentiometer.

## Frequency response and rise time

Standard model: $54 \mathrm{~Hz}, 11 \mathrm{~ms}$.
Option 001: $9 \mathrm{~Hz}, 70 \mathrm{~ms}$.
Callbration: internal, l V $\pm 1 \%$; approx 500 Hz .
Price: Model 8807A
Options

> 00150 Hz to 100 kHz signal filter 002 dc plug-in co3 bench-top unit with power supply and portable case

N/C N/C
add $\$ 115$

## 8808A Logarithmic Preamplifier

The 8808A is an average detecting logarithmic converter. It is calibrated in decibles, where zero dB is taken as 1 V rms
at the input. The unit can operate over a 50 dB or 100 dB span allowing signals from $100 \mu \mathrm{~V}$ to 1 V rms to be recorded without changing tanges.

## Specifications, Model 8808A

Sensitivity ranges
50 dB span: bortom scale -80 to 0 dB below 1 V in 10 dB steps.
100 dE span: -80 to -50 dB below 1 V in 10 db sreps. Type of input: single ended, $1 \mathrm{M} \Omega$ min.
lnput frequency range: 5 Hz to 100 kHz slow response range; 500 Hz to 100 kHz fast range.
Rise time $10 \%$ to $90 \%$ ( 10 div ): fast response, 20.5 ms ( 875 $\mathrm{dB} / \mathrm{s}$ ) : slow response $2 \mathrm{~s}(9 \mathrm{~dB} / \mathrm{s})$.
Calibration: internal at approx $500 \mathrm{~Hz}:-80,-30,+20 \mathrm{~dB}$ referred to I V ; accuracy of -30 dB position $\pm 0.25 \mathrm{~dB}$.
Price: Model 8808A
$\$ 625$
Option: 001 bench-top unit with power supply and portable case
add $\$ 415$

## 8809A Signal Coupler

The 8809A inexpensively connects an extenal signal for recording. Available are front-panel output, lockable zero and gain controls, and switchable galvanomerer (1.5 1/R) or Hi 2 ( $>100 \mathrm{k}$ ) input impedance.

## Specifications, Model 8809A

Input range: adjustable from 20 to $50 \mathrm{mV} /$ div.
Type of input: switch selected. $1.5 \mathrm{k} \Omega \pm 2 \%$ or $100 \mathrm{k} \Omega \mathrm{min}$, single ended.
Frequency response and rise time: same as 8801A (see chars on page 225).
Calibration: invernal, $600 \mathrm{mV} \pm 2 \%$.
Price: Model 8809A
$\$ 125$
Option: 001 bench-rop unit with power supply and portable case

## CHART RECORDER SUPPLIES

## Graphic recorders

## Chart recorder suppiles

The following supplies are those most frequently used in recording applications. A complete list of avalable supplies may be obtained by contacting your local Hewlett-Packard sales and service office.

## X.Y recorder supplies



Disposable Pens (one pen recorders)

Color	Part Number   (package of 3)	Price
Red	5081.1190	$\$ 4.50$
Blue	5081.1191	$\$ 4.50$
Green	5081.1192	$\$ 4.50$
Black	5081.1193	$\$ 4.50$

Disposable Pens (two pen recorder-7046A)
Part Number Color (package of 3)
Red 5060.6662
Blue $\quad 5060.666$
Black $\quad 5060.6668$
Strip chart recorder supplies

Type	Description	Part Number	Price
lnk Writing			
English	5 in. $\times 95 \mathrm{ft}$	$9270 \cdot 1012$	\$2.10
Metric	$12 \mathrm{~cm} \times 28.5 \mathrm{~m}$	9270-1025	\$2.50
Electric Writing			
English	$5 \mathrm{in} \times 65 \mathrm{ft}$	9280.0136	\$4.90
Merric	$12 \mathrm{~cm} \times 19.5 \mathrm{~m}$	9270.1081	\$4.90
Chart Paper, 10-inch (71008, 71018, 7127A, 7128A)			
Type	Description	Part Number	Price
Ink Writing			
English	$10 \mathrm{in}. \times 120 \mathrm{ft}$	9270-1010	\$3.25
Metric	$25 \mathrm{~cm} \times 36 \mathrm{~m}$	9270.1037	\$3.25
Electric Writing			
English	$10 \mathrm{in}. \times 100 \mathrm{it}$	9270-1078	\$7.90
Merric	$25 \mathrm{~cm} \times 30 \mathrm{~m}$	9270-1082	\$7.90

Chart Paper, 10 -Inch (7123A/B)

Type   Ink Writing	Description	Part Number	Price
$\quad$ English	$10 \mathrm{in} \times 95 \mathrm{ft}$	$9280-0175$	$\$ 3.25$
Metric	$25 \mathrm{~cm} \times 28.5 \mathrm{~m}$	$9280-0176$	$\$ 3.2 \mathrm{~s}$
Electric Writing			
English	$10 \mathrm{in} \times 55 \mathrm{ft}$	$9280-0177$	$\$ 7.00$
Merric	$25 \mathrm{~cm} \times 16.5 \mathrm{~m}$	9280.0178	$\$ 7.00$

Chart Paper, 10 -inch (7130A)

Type Description Part Number	Prlce		
Ink Writing			
English	$10 \mathrm{in} \times 100 \mathrm{ft}$	9280.0264	$\$ 3.25$
Merric	$25 \mathrm{~cm} \times 30 \mathrm{~m}$	9280.0265	$\$ 3.25$

Recording ink, 3 ce Cartridge (680, 7100B, 71018, 7120A, 7128A)

Color	Part Number	Price
Red	$1530-1024$	$\$ .50$
Green	1530.1025	$\$ .50$
Black	$1530-0705$	$\$ .50$
Blue	1530.1034	$\$ .50$
Purple	1530.0984	$\$ .50$

Recording Ink, 5 cc Cartridge (7123A/B, 7130A, 7143A/B)

Colar	Part Number	Price
Blue	07143.61701	$\$ 1.50$
Red	$07143-61700$	$\$ 1.50$
Black	07143.61702	$\$ 1.50$

## Oscillographic recorder supplies

Chart Paper

Recorder Systern Description	Part Number Price
$7402 \mathrm{~A} \quad 2 \times 50 \mathrm{~mm} .275 \mathrm{ft}(84 \mathrm{~m})$	
roll	9280.0258\$ 5.00
$1 \times 100 \mathrm{~mm}, 275 \mathrm{ft}(84 \mathrm{~m})$	
roll	9280-0276\$ 9.00
7414A $4 \times 40 \mathrm{~mm}$	9270-0878\$25.00
7702 B ( $2 \times 90 \mathrm{~mm}, 200 \mathrm{ft}(96 \mathrm{~m})$	
roll	651.52 \$12.50
$7706 \mathrm{~B} / 7727 \mathrm{~A} 6 \times 50 \mathrm{~mm}$	651.57 \$21.80
$7708 \mathrm{~B} / 7729 \mathrm{~A} 8 \times 40 \mathrm{~mm}$	$651.58 \quad \$ 23.80$
$7731 \mathrm{~A} \quad 16 \times 20 \mathrm{~mm}$	651.201 \$24.65
7858B/7878A $8 \times 40 \mathrm{~mm}$, Z-Fold pack	9280.0067\$27.50
$8 \times 40 \mathrm{~mm}, 500 \mathrm{ft}(154 \mathrm{~m})$	
roll	9280-0066\$35.00

Recording Ink, Cartridge

Recorder	Part   System		
Description	Number	Prite	
7402 A	Blue.black,5S cc	$07402-60008$	$\$ 9.50$
$7858 \mathrm{~B} / 7878 \mathrm{~A}$	Blue, 4 oz	$5081-1188$	$\$ 3.00$

# PORTABLE TAPE RECORDER Laboratory Performance and Accuracy 3960 Series 



The HP Model 3960 is a portable and rugged, 4 .track, 3. speed, instrumentation magnetic tape recorder.

The tape transport assembly includes the capstan motor and two reel motors, record and reproduce heads, tape guides and tension arms, power supply, preamplifiers, meter system, and the contro!s. Flug-in solid-state circuit boards contain the necessary circuitry for FM Record/Reproduce, for Direct Record/ Reproduce, and for an accessory Voice Channel.

All tape drive components are mounted on a solid casting. The tape guides and the record and reproduce heads mount directly on the capstan bearing support, assuring permanent alignment.

Input and outpur connectors are located on the control panel. A single system connector on the rear panel also provides input/output connections

Standard Speeds (los)	Channel Conflyuration				
	4 FM	$\begin{aligned} & 2 \text { FM } \\ & 2 \text { DIr } \end{aligned}$	$\begin{aligned} & 3 \text { FM } \\ & \text { f Dir } \end{aligned}$	$\begin{aligned} & 1 \mathrm{FM} \\ & \text { 3 Dír } \end{aligned}$	4 Dr
$\begin{aligned} & 15,31 / 15 / 16 \\ & 15,3,1.5 \end{aligned}$	$\begin{aligned} & 3960 \mathrm{~A} \\ & 3960 \mathrm{D} \end{aligned}$	$\begin{aligned} & 39608 \\ & 3960 C \end{aligned}$	$\begin{aligned} & 3960 E \\ & 3960 \mathrm{H} \end{aligned}$	$\begin{aligned} & 3960 F \\ & 39601 \end{aligned}$	$\begin{aligned} & 39600 \\ & 3960 \mathrm{~K} \end{aligned}$

Note: Bias oscillator included in systems equipped with Direct electronics.

## Specifications

## Tape transport

Heads: 4-track Record and 4-track Reproduce.
Tape speeds: three electrically selected with 3 -position speed selector on front panel. Aoy 3 octal speeds of $15,71 / 2,33 / 4$, $17 / 8$, or $15 / 16$ ips or the decade speeds of 15,3 , and 1.5 ips may be optionally selected.

Tape speed accuracy: $\pm 0.2 \%$.
Operating modes: Forward and Reverse Record, Forward and Reverse Play, Fast Forward, Fast Rewind, Stop. Pushbutton selected.

Start and stop times (typlcal):

Tape Spred: (lps)	15	$3.3 / 4$	$15 / 16$
Start   (Seconds)	2.0	0.9	0.25
Stop:   (Seconds)	0.25	0.25	0.25

Rewind time (typical): 1800 -ft reel in 80 seconds; $2300 \cdot \mathrm{ft}$ reel in 130 seconds.

Braking: mechanical differential brakes, solenoid actuated. Brakes apply if power fails.

End-ot-tape sensingi tape drive is stopped by tension arms retracting at end of tape.

Reel revolutlon counter: 4 -digit revolution counter with pushbutton reset.

Flutter: measured in accordance with latest IRIG Standards.

Tape Speed   ( ps )	Pessband   $(\mathrm{Hz})$	Flutter   (\% p-p)
15	$0.2-2500$	0.35
$11 / 2$	$0.2-1250$	0.35
$31 / 6$	$0.2-625$	0.40
3	$0.2-500$	0.45
$1 / 3$	$0.2-312$	0.50
1.5	$0.2-250$	0.55
$15 / 16$	$0.2-156$	0.70

Direct electronics

## Passband and Signal-to-noise

Tape Speed ( $18 \$$ )	Pasiband $( \pm 3 \mathrm{~dB})$	SIqnal/ Nolse Rallo (dB)
$\begin{aligned} & 15 \\ & 71 / 2 \\ & 31 / 4 \\ & 3 \\ & 1 / 1 / 8 \\ & 1.5 \\ & 15 / 16 \end{aligned}$	$70 \mathrm{~Hz}-60 \mathrm{kHz}$   $50 \mathrm{~Hz}-30 \mathrm{kHz}$   $50 \mathrm{~Hz}-15 \mathrm{kHz}$   $50 \mathrm{~Hz}-12 \mathrm{kHz}$   $50 \mathrm{~Hz}-7.5 \mathrm{kHz}$   $50 \mathrm{~Hz}-6 \mathrm{kHz}$   $50 \mathrm{~Hz}-3.75 \mathrm{kHz}$	$\begin{aligned} & 38 \\ & 38 \\ & 38 \\ & 38 \\ & 38 \\ & 38 \\ & 38 \end{aligned}$

Input level: 0.1 volt rms to 10 volts rms.
Input impedance: 50 k ohms, or greater, shunted by 200 pF maximum, single-ended.

Output level: 0 to 5 volts peak-to-peak (adjustable).
Output impedance: 140 ohms maximum, single-ended.

FM electronics
Passband and Signals-to-nolse Ratlo

Tape Speod (lps)	Carter Cemier Frequency (kHz)	$\begin{gathered} \text { Passhand } \\ (k H z) \end{gathered}$	S/N Ratlo (dB)
15	27	0105	48
71/2	13.5	0102.5	48
$3 \%$	6.75	0 to 1.25	48
3	5.40	0101	48
1/8	3.38	0100.625	48
1.5	2.70	0100.5	47
15/16	1.69	0 to 0.312	46

Flutter compensation: standard on all models. Can be 5 witched on and off with slide switch behind front access door. Flutter compensation is permanently wired with Channel 2 as the reference.
Distortion: less than $1.5 \%$ at is through $17 / 8 \mathrm{ips} ; 2 \%$ at 1.5 and $15 / 16$ ips.
Linearity: $\pm 1 \mathrm{~m}_{\mathrm{k}}$ of $\mathrm{p}-\mathrm{p}$ ourput for best straight line through zero.
DC drift: $\pm 0.1 \%$ of peak-to-peak ouiput per degree Centigrade (Record-Reproduce).
input level: 1 volt peak-to-peak to 30 volts peak-to-peak.
Input impedance: 50 k ohms, or greater, shunted by 200 pF maximum. single-ended.
Output level: 0 to $s$ volts peak-ro-peak (adjustable).
Output impedance: 140 ohms maximum, single-ended.
Crystal reference: FM Center Frequencies for Reproduce calibration. Crystal accuracy is 100 parts per million ( $0.01 \%$ ) over specified environmental conditions.
DC callbration voltages: roiary swicch selects $\pm 10, \pm 5 . \pm 2.5$, or $\pm 1.414 \mathrm{~V}$ dc. Accuracy $\pm 2 \%$.
"E-to-E" mode: Electronics-to-Electronics made enables inpur signal to be automatically unasferred (bypassing heads) to output during Fast Forward, Rewind, or Stop.

## Signal monitoring

Peak readng meter: in Record, meter peads in perceneage of full deviation ( $40 \%$ ) or drive level on tape. In Reproduce, meter reads output voltage.
Meter modes: meter has two modes: In PEAK mode it reads peak of absolute valuc, including any dc components. In DC mode it reads de component of signal.
Meter accuracy: better than $\pm 1 / 2 \mathrm{~dB}$ for signals with 50 to $100 \%$ duty cycle; better than $\pm 1 \mathrm{~dB}$ for 1 to $50 \%$ dury cycle.
Power requirements: $115.230 \mathrm{Vac} \pm 10 \%, 48.440 \mathrm{~Hz}$. Con. sumption 80 watts. Also operates on 12 or 28 Vdc using accessory DC/AC Inverter (Model 13061A or 13061B).

## Environment

Temperature: operating $0^{\circ}$ to $+55^{\circ} \mathrm{C}$. $+10^{\circ}$ to $+40^{\circ} \mathrm{C}$ meeting all specs (tape limired). Non operating: $-40^{\circ}$ 10 $+75^{\circ} \mathrm{C}$.
Altitude: operating: 15,000 feet: Nonoperating: 25,000 feet. Humidity: $10 \%$ to $95 \%\left(+25^{\circ}\right.$ to $\left.+40^{\circ} \mathrm{C}\right)$, noncondensing. Shock: 30 g maxim:um ( 11 ms ) nonoperating.

## Physical characteristles

Mounting: supplied with portable case. Rack mounting kits available for standard 19 inch equipment racks and for HP Series 2940A Cabinets.

Size: $163 / 4^{\prime \prime}$ wide, $15^{\prime \prime}$ high, $73 / 8^{\prime \prime}$ deep ( $525 \times 381 \times 187 \mathrm{~mm}$ ),
Weight: 50 pounds ( 22.7 kg ).

## Typlcal models/prices

3960A: 4 Channels FM with 15, 33/4, 15/16 ips $\$ 4585.00$
3960G: 4 Channels Direct with $15,33 / 4,15 / 16 \mathrm{ips} ~ \$ 1270.00$

## Accessories furnished

1. Operation and Service Manual.
2. Male System Connector.
3. Extender Board.
4. Tro Jumper Cables (for FM Calibration).
5. Four Locking Knobs for RECORD LEVEL controls.
6. One empry 7 .inch piastic reel.
7. One 7 -inch reel containing 2300 feer of $1 / 4$-inch 1 -mil instrumentation tape.
8. One fuse for 230 Vac operation.
9. Onc Tuning Tool.
10. One BNC.BNC Tesr Cable.

## Accessories available <br> (field and factory instalied)

Accessory Klt, Model 13070A
$\$ 31.50$
(One kir inciuded at no charge with each 3960
Series Recorder.)
Remote Start/Stop Switch, HP Model 13060A $\$ 40.00$ Includes 8 -foot cable and mating connector.
Inverter ( 12 Vdc to 115 Vac ), HP Model 13061A $\$ 190.00$
Inverter ( 28 Vdc to 115 Vac ), HP Model 13061B $\$ 190.00$ Plug-in unit for battery operation. Includes porver inpur cable. fuses, and mating connector.
Tape Loop Adapter, HP Model 13062A
$\$ 370.00$
Holds a tape loop of from 5 to 30 feet.
Volce Channel, HP Model 13063A
$\$ 190.00$
Voice record and reproduce amplifier card for all tape speeds. Includes microphone.
Rack Mount Kit, HP Model 13065A
\$ 21.00
For stationary fush-mounting a 3960 in 19 -inch racks..
Fiberglass Transit Case, HP Model 13066A $\$ 375.00$ Moisture and dust prool. Protects against excessive uransportation shock and vibration.
Rack Slide Mounting KIt, HP Madel 13068A/B S165.00 For fush-mounting the 3960 in cabinets and racks. Allows 3960 to be pulled anay from rack and rotated $90^{\circ}$ for easy access to adjustments and replaceable parts. Model 13068A is for standard 19 inch racks; Model 13068B is the HP Series 2940 and 1073 cabinets.

## Options avallable

(Must be installed at factory during manufacturing)
Remote Control Option
$\$ 380.00$
Allows electronic switching of all modes except tape speed and power on-off. Control lines select all other recorder functions with a momentary-contact closure. Status lines indicate the appropriate recorder condition.
Tape Speed Servo Option
$\$ 350.00$ Provides the capability of controlling cape speed from a reference signal recorded on any of the four tracks. Minimum time base error is $\pm f$ usec at 15 ips and $\pm 25 \mu \mathrm{sec}$ at $15 / 16$ ips. The control pancl includes a switch for changing from tachometer mode to tape servo mode, and two indicator lights to indicate the mode in use.

# INSTRUMENTATION RECORDERS <br> Intermediate and Wide-Band Systems 3950 and 3955 Series 



The HP 3955 and 3950 Series Magnetic Tape Recorders provide highly fexible, yet easy-io-operate systems to record and/or reproduce electrical signals. Both 7. and 14 -channel capacity is available; plug.in electronics (Direct and FM) can be intermixed as desired. Maximum bandwidch of the 395 at 60 ips is 300 kHz for Direct recording. Maximum bandwidth of the 3950 at 120 ips is 1.5 MHz for standard unir and 2.0 MHz for 3950 Option 011.

Each 3955/3950 System includes a high performance tape transport and a number of interchangeable record and reproduce amplifiers, offering an extremely wide latitude in determining the exact system configuration. Seven or fourteen track capability in either of tro basic rape transports is available.

Monitoring meters, channel-select switches, and test-slgnal connectors on the record and reproduce mainframes allow the monitoring of a test signal on any desiced channel as well as the normal input and output signals.

All tape-drive controls for the system ate located on the ransport chassis. Pushbuttons are utilized throughout to obrain the desired mode of operation. Rear connections are provided for remote-control operation, accessories, and interconnecting cabling.

The 5 maller transport, which can handle tape reels up to $101 / 2^{\prime \prime}$ in diameter, provides economy as well as performance. This ransport is for applications requiring average recording times.

The larger transport accepts tape reels up to $1 \mathrm{~s}^{\prime \prime}$ in diameter to provide over 19 hours of recording time at a tape speed of $17 / 8 \mathrm{ips}$.

## Specifications

## Tape Transport

Tape speed accuracy: standard $\pm 0.25 \%$ of nominal speed selected, using line power of 117 V ac $\pm 10 \%, 60 \mathrm{~Hz}$ $\pm 0.03 \%$. With ac posier suppiy (HP Model 3680A): $\pm 0.25 \%$ of nominal speed selected, using line power of 117 $\mathrm{V} \mathrm{ac} \pm 10 \%$, with 47 to 63 Hz line frequency variations.

Absolute time base accuracy: with tape speed servo: absolute accuracy of reproduce data time base will be within $\div 0.01 \%$ of recorded data time base when using 200 kHz at 120 ips constant-amplitude reference (HP Model 3681A), and within $\pm 0.02 \%$ of recorded data time base when using 17 kHz modulated with 60 Hz reference. (HP Model 3681A Option 001).

Start time: at nominal speed in approximately 6 seconds. Flut. ter will be withio specifications in approximately 10 seconds at 60 and 120 ips and proportionally less time at lower tape speeds.
Stop time: less than 5 seconds from a manually operated "stop" command, end-of-tape, or power failure.
Rewind time: less than 4 minutes for 9200 feet of tape.
Braking: mechanical differential brakes which provide power fail-safe operation when engaged from any mode of operation or by power failure.

Flutter: measured in accordance with the latest IRIG standards:
$0.035 \%$ P-p from 0.2 Hz to $10 \mathrm{kHz} @ 120 \mathrm{ips}(3950$ Systems)
$0.030 \%$ P-F from 0.2 Hz to 10 kHz @ 60 ips ( 3955 Sys. tems)

Jitter: random jitter in the reproduce signal between any two events will be typically within the following 3 -sigma ( $99.7 \%$ ) peak-to-peak limits:
$120 \mathrm{ips} 0.3 \mu \mathrm{~s} @ 0.1 \mathrm{~ms}$ and $1.5 \mu \mathrm{~s} @ 1.0 \mathrm{~ms}$
$60 \mathrm{ips} 0.4 \mu \mathrm{~s} @ 0.1 \mathrm{~ms}$, and $2.0 \mu \mathrm{~s} @ 1.0 \mathrm{~ms}$
Interchannel time displacement error (ITDE): dynamic ITDE will be less than $\pm 0.5 \mu \mathrm{sec}$ at 120 ips or $\pm 1.0 \mu \mathrm{sec} @ 60$ ips between any two adjustment tracks on the same head stack.

Tape breakage sensor: rape breakage or end-of-tape, sensed by take-up reel kension-sensing arm, will stop tape drive.

Remote control: connector (mating connector supplied) on rear of tape transport assembly permits remote control of all transport operating controls.

Heads: the head assembly complies with latest IRIG standards including mechanical geometry, track numbering, azimuth, and polarity. Seven data tracks on $1 / 2$ inch tape; 14 data tracks on 1 -inch tape. An edge track is available on 3955A/ $B / C / D$ systems for voice annotation.

## Direct Electronics

Passband, Signal-to-Noise Ratio, and Rlsetime:

Intermediate Band			
Tape Speed (lps)	Passband ( $\pm 3 \mathrm{~dB}$ )		S/N Ratio (dB)
60	$300 \mathrm{~Hz} \cdot 300 \mathrm{kHz}$		40
30	$150 \mathrm{~Hz} \cdot 150 \mathrm{kHz}$		40
15	100 Hz - 75 kHz		40
71/2	$100 \mathrm{~Hz} \cdot 38 \mathrm{kHz}$		40
$33 / 4$	$100 \mathrm{~Hz} \cdot 19 \mathrm{kHz}$		40
17/8	$100 \mathrm{~Hz} \cdot 9.4 \mathrm{kHz}$		40
1.5 M Hz Wideband			
Tape	Passband* ( $\pm 3 \mathrm{~dB}$ )	S/N   Ratio   (dB)	
Speed (ips)			Rise Time ( $\mu \mathrm{SeC}$ )
120	$400 \mathrm{~Hz}-1.5 \mathrm{MHz}$	30	0.4
60	$400 \mathrm{~Hz}-750 \mathrm{kHz}$	29	0.8
30	$400 \mathrm{~Hz}-375 \mathrm{kHz}$	29	1.6
15	$400 \mathrm{~Hz} \cdot 187 \mathrm{kHz}$	28	3.2
71/2	${ }^{4} 000 \mathrm{~Hz} \cdot 94 \mathrm{kHz}$	27	6.4
33/4	$400 \mathrm{~Hz}-47 \mathrm{kHz}$	26	12.8
1 $/ 8$	$400 \mathrm{~Hz} \cdot 24 \mathrm{kHz}$	2.4	25.6
2.0 MHz Wideband			
120	$500 \mathrm{~Hz} \cdot 2 \mathrm{MHz}$	22	0.3
60	$500 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$	24	0.6
30	500 Hz - 500 kHz	25	1.2
15	500 Hz - 250 kHz	26	2.4
$71 / 2$	$500 \mathrm{~Hz} \cdot 125 \mathrm{kHz}$	26	4.8
$33 / 4$	$500 \mathrm{~Hz} \cdot 62 \mathrm{kHz}$	26	9.6
- Measured In accordance with IPIG Standards.			

## Envelope Delay

1.5 MHz Systems		
Tape Speed (ips)	Measurement Bandwidth	Delay*
120	$100 \mathrm{kHz} \cdot 1.5 \mathrm{MHz}$	500 ns p-p
60	$100 \mathrm{kHz} \cdot 750 \mathrm{kHz}$	1000 ns P.p
30	$100 \mathrm{kHz}-375 \mathrm{kHz}$	2000 ns P-P
2.0 MHz Systems		
120	100 kHz - $2 \mathrm{M} \mathrm{Mz}^{\text {c }}$	500 ns p-p
60	100 kHzz - 1 MHz	$1000 \mathrm{~ns} \mathrm{P} \cdot \mathrm{p}$
30	$100 \mathrm{kHz} \cdot 500 \mathrm{kHz}$	2000 ns p.p
-Measured In accordance with IRIG Standards.		

Input/Output Levels and Input/Output Impedances:

Speoifraiton	300 kHz Intermediate Band	1.5 MHz Widaband	2.0 MHz   WIdaban
Input Level (adjustable)	0.25 V ms to 10.0 V ems		
Input Impedance (unbalanced-toground)	1 kilohm shunted by 100 pF	1 kilohm shunted by 70 pF	
Output Level (adjustable)	$\begin{gathered} 1.0 \mathrm{~V} \mathrm{~ms} \\ \text { into } 100 \\ \text { ohms } \end{gathered}$	$\begin{gathered} 1.0 \mathrm{~V} \mathrm{rms} \\ \text { into } 75 \\ \text { ohms } \end{gathered}$	$\begin{aligned} & 0.5 \mathrm{~V} \mathrm{~ms} \\ & 75 \mathrm{omms} \end{aligned}$
Output Impedance (single-ended)	50 ohms $=20 \%$	75 ohms $\pm 20 \%$	

FM Electronics
Passband, Signal-to-Noise Ratlo, and Rise Time:

Low Band ( $\pm 40 \%$ Deviation)			
$\begin{aligned} & \hline \text { Tape } \\ & \text { Speed } \\ & \text { (Ips) } \end{aligned}$	Carrier Center Frequency (kHz)	$\begin{gathered} \text { Passband } \\ (\mathrm{kHz}) \\ (+0.5,-1.0 \mathrm{~dB}) \end{gathered}$	$\begin{aligned} & \mathrm{S} / \mathrm{N} \\ & \text { Ratio } \\ & \text { (dB) } \end{aligned}$
120	108	DC. 20	50
60	34	DC. 10	50
30	27	DC. 5	48
15	13.5	DC. 2.5	16
$71 / 2$	6.75	DC. 1.25	15
33/4	5.38	DC-0.625	44
17/8	1.69	DC.0.312	42


Intermediate Band ( $\pm \mathbf{4 0} \%$ Deviation)			
120	216	$\mathrm{DC} \cdot 40$	48
60	108	$\mathrm{DC} \cdot 20$	48
30	54	DC .10	46
15	27	DC .5	44
$71 / 2$	13.5	DC 2.5	43
33	6.75	DC .1 .25	42
$17 / 8$	3.38	DC .0 .625	41


Wideband Group ( ( $\mathbf{4 0 \%}$ Deviation)			
120	432	DC .80	47
60	216	DC .40	47
30	108	DC .20	46
15	54	$\mathrm{DC}-10$	43
$71 / 2$	27	DC .5	43
$33 / 4$	13.5	DC .2 .5	42
$17 / 8$	6.75	$\mathrm{DC}-1.25$	40


Wideband Group II ( $\pm 33 \%$ Deviation)				
Tape Speed (ip5)	Carrler Center Frequency ( kHz )	$\begin{gathered} \text { Passband } \\ (k \mathrm{~Hz}) \\ (+1,-3 \mathrm{~dB}) \end{gathered}$	S/N Ratio (dB)	Rise Time (usec)
120	900	400	36	1.25
60	450	200	36	2.5
30	225	100	35	5
15	112.50	50	35	10
71/2	56.29	25	33	20
33/9	28.12	12.5	33	40
17/8	14.06	6.25	30	80

LInearity, Input/Output Levels, Input/Output Impedances:

Spaolfigation	Low, Intermedlato, and WIdaband Group I	Low, Inlermedista, WIdaband Group I, and WIdeband Group 11
Linearity**	$\pm 0.5 \%$	$\pm 0.2 \%$
Input Level** (adjustable)	$\begin{aligned} & 1.4 \mathrm{Vp}-\mathrm{p}(0.5 \mathrm{Vms}) \\ & 30 \mathrm{Vp} \cdot \mathrm{p}(10 \mathrm{~V} \mathrm{rms}) \end{aligned}$	$\begin{gathered} 0.7 \mathrm{Vp}-\mathrm{p}(0.25 \mathrm{Vmms}) \\ 24 \mathrm{Vp}-\mathrm{p}(8.5 \mathrm{Vms}) \end{gathered}$
Inpul Impedance (unbalanced. to. ground)	20 kilohms shunted by 150 pF	$\begin{aligned} & \text { L kilohm } \\ & \text { shunted by } \\ & 200 \mathrm{pF} \end{aligned}$
Outout Level** (adjustable)	$\begin{aligned} & 0 \text { to } 2.8 \mathrm{~V} \text { p-g } \\ & \text { (1 } V \text { ims) into } \\ & 600 \text { ohms } \end{aligned}$	$\begin{aligned} & 0 \text { to } 2.8 \mathrm{~V} p-p \\ & (1 \mathrm{~V} \mathrm{~ms}) \text { inta } \\ & 75 \text { ohms } \end{aligned}$
Output Impedance <unbalanced-toground)	$6000 \mathrm{hms}=20 \%$	$750 \mathrm{mms}=10 \%$

*Referenced to best siralght lline,
*The frequency dovla!lon and tro output signal may be switched to elther yra portional.to, or inverseiy.proportionai-to $\mathbf{s}$ gnal Inout, allowing comotiblily portionalito, or nverseiy.proportiona
with both IR|G and non.IRIG systems.
Total Harmonic Distortlon:

Low Bands	$<1.5 \%$
Intermediate Bands	$<2.0 \%$
Wideband Group 1	$<2.5 \%$
Wideband Group II	$<2.5 \%$

F. Tape: One-mil instrumentation tape of either $1 / 2$ or 1 inch (used for final system testing before shipment) on precision reel.

## Accessories avallable:

Automatle Tape Degausser, HP Model 3603A
$\$ 1090$
Degausses magnetic tape to 90 dB below saturated recorded level. Automatic operation; complete erasure every time. Designed for continuous operation. Accepts $3^{\prime \prime}$ to $15^{\prime \prime}$ diameter reels; $1 / 4^{\prime \prime}$ to $1^{\prime \prime}$-wide tape. Use in rack or on table top.
Digital Reel Hub Adapter, HP Model 11572. \$ 17
Voice Channel, MP Model 3604A
$\$ 570$
Records voice commentaries along with data. Provides for edge-track or multiplex recording. Multiplex operation combines voice with data for recording on any direct record channel. Includes loudspeaker and retractable microphone.

AC Power Supply, HP Model 3680A
$\$ 1150$
Used to obtain crystal-controlled drive speed accuracy when system is operated from unstable frequency ( 47.63 Hz ) power source. The Internal Power Amplifier may be driven from either an internal crystal or an external frequency source. Ideal for laboratory or field ase, supplying up to 100 watts, 115 volts, at any frequency from 30 Hz to 1.5 kHz .

Tape Servo, HP Model 3681A (constant amplitude) \$1450 Generates IRIG-specified speed-control signal for recording on tape with data. When the tape is replayed the reproduced signal is phase compared to either an internal or externally supplied reference. The phase difference is then used to generate the Capstan drive frequency.
Option 01 Amplitude Modulated $17 \mathrm{kHz} \quad \$ 1280$
Option 02 Constant Amplitude and AM $17 \mathrm{kHz} \quad \$ 1650$

## Remote Control Unit

Includes all functions for tape recorder operations from another location. With $25^{\prime}$ cable. Rack mounting optional. HP Model 3907.11A (for $101 / 2^{\prime \prime}$ real systems) $\$ 400$
HP Model 3907-11A, Option 02 (for $15^{\prime \prime}$ reel systems)
$\$ 450$
Reproduce Track Selector, HP Model 11539A
$\$ 360$
Permits system-economy by using less than a full complement of Reproduce Amplifiers. Each front-panel switch connects any of the 14 recorded data-tracks to the input of a single Reproduce Amplifier. With seven switches available, only one Reproduce Mainframe, and from 1 to 7 Reproduce Amplifiers may be used with a 14 -channel system.
Pack Sensor HP Model 11553A
\$ 370
Senses the remaining tape-pack on both supply and takeup reels. Permits system to be stopped before tape runs off end of reel; used for recycling tape, or turning on a second tape recording before the first one runs out of tape. For $1 s^{\prime \prime}$ reel systems, only.

## Advantages

Inexpensive mixed codes column by column
Versatility of quick-change code discs
few moving parts
Quiet operation
Data storage and digital clock optional
This recorder is compatible with Hewlett-Packard solid state and integrated circuit instruments and a wide varicty of other equipment. It prints up to 18 columns of 4 line BCD data from one or two sources up to 20 lines $/ \mathrm{s}$.

The user can easily change code to $8421+8421-$, or $4221+$ by an inexpensive substitutable code disc, and can change print wheels to have a different code and/or character set in each column. Character suppression allows suppressing a character in each column.

Data srorage options reduce data loading time from 50 ms to 0.1 ms and decrease input voltage requirements.

## Speclficatlons

Accuracy: identical to input device used.
Printing rate: 20 lines per second, maximum (asynchronous).
Column capaeity: to 18 columns.
Print wheels: 16 positions, numerals 0 through $9,-,+, Z, V$, ת. *: other symbols available.

## Input requirements-without data storage

Data input: parallel entry, BCD ( 8421,4221 ), " 1 " state must differ from " 0 " state by $>4.5 \mathrm{~V}$ but $<75 \mathrm{~V}$.
input requirements-with data storage options
Data Input: parallel entry, BCD, " 1 " stare must differ from " 0 " state by $>1.3 \mathrm{~V}$ but $<35 \mathrm{~V}$. Input drive $\geq 100 \mu \mathrm{~A}$. Data must be on lines when primt command occurs and remain until release of hold.off ( $85 \mu \mathrm{~s}$ after print command).
Transter time: 50 ms without srorage, 0.1 ms with.
Line spaeing: adjustable, 3.5 to 4.5 lines/inch.
Inking: ink roller or pressure sensitive paper (use latter where 3030 B is idling more than printing, or for temperature extremes). Conversion: typically' takes five minutes.
Operating temperature: $-20^{\circ} \mathrm{C}$ 10 $+55^{\circ} \mathrm{C}$ with pressure sensitive paper, $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ with ink roller.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, s0 to 60 Hz , approx 100 W idle, 190 W at 20 lines $/ \mathrm{sec}$. 50 Hz model with 20 prints $/ \mathrm{sec}$ available.
Dimensions: cabiner: $163 / 4^{\prime \prime}$ wide, $81 / 2^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ( 426 x $226 \times 467 \mathrm{~mm}$ ). Rack mount hardware supplied.
Weight: ner, $40 \mathrm{lbs}(18 \mathrm{~kg}$ ); shipping, $53 \mathrm{lbs}(24 \mathrm{~kg})$.
Price: HP 5050B, 51975 . (Plus column boards, see Opt 20)
Options: 0018421 " 1 " state positive code disc, NC
$0028421^{~ " 1 " ~ s t a t e ~ n e g a t i v e ~ c o d e ~ d i s c, ~ N C ~}$
003 4221 " 1 " state positive code disc, NC
All three code discs are supplied with each 5050B at no charge. However, one of the above options most be specified so 5050B can be delivered with desired dise instailed.
01050 Hz operation, add $\$ 15$
015 Motor control, add \$75
020 Column boards (one required, in addition to basic instrument, for each two columns to be operated), add $\$ 125$ each
032 Input cable, one per data source, add $\$ 60$ each
035 Input cable, one per IC counter, add $\$ 75$ each.
036 Input cable, to 5323 A , add $\$ 75$ each
037 Input cable, to 5360 A , add $\$ 75$ each
050 Storage for 20 columns, add $\$ 400$
051 Storage for 10 columns, add $\$ 200$
061 Package for 5360 A , add $\$ 1490$


## Option 055 for 5050B recorder

Option 0ss Clock, for use with the HP 30508 Digital Recorder, provides a convenient method for recording time while also serving as a programmer for the measuring-recording sysrem. Integrated circuits and rransistors perform all timing and logic functions. Column boards required for 5050 B operation are built into the clock.

Easy-to-read display tubes indicate time to 23 hours, 59 minutes, 59 seconds. In the printout there is a seventh digit available for indicating tenths of a second. The BCD outpur code of the clock is selectable to be either $+8 \cdot 4-2 \cdot 1$ or $-8 \cdot 4 \cdot 2 \cdot 1$, but information is easily adaptable to any other code used on the recorder.

As a programmer, the clock is extremely versatile. Print intervals of 1 second, 10 seconds, 1 minute, 10 minutes, or 1 hour are chosen by a front panel switch. Rates as high as 20 prints per second, determined by an external signal, are acceptable.

The clock is available in kit form for model 5050B or may be installed at the factory in new s050B Recorders.

## Specifications, Option 055

Time base: selectable to be $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ or external. External requires 10 pps negative pulse.
Print interval:
Internal: selectable to be $1 \mathrm{~s}, 10 \mathrm{5}, 1 \mathrm{~min}$., 10 min , or 1 hour between prints.
External: rares up to 20 prints per second.
Time-of-measurement accuracy: time recorded may be 0.1 s less than correct time $\doteq$ line accuracy.
VIsual indication: 6 in-line digital display tubes indicate to 23 hours, 59 minutes, 59 seconds.
Printed output: seven digits indicate to 23 hours, $59 \mathrm{~min}, 59.9 \mathrm{~s}$.
BCD autput code: $+8-4-2-1$ or $-3 \cdot 4 \cdot 2-1$ selectable. Output adaptable to other recorder codes.
Print format: time printable in any recorder columns.
Clock set: 4 switches electronically set clock to desired initial time.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$. 50 Hz or 60 Hz .
Weight: net, $3 \mathrm{lbs}(1,4 \mathrm{~kg})$.
Price: HP Oprion 055 (factory installed), 5950 .
Price of kit for field installation available on request.


Hewlett-Packard Model 505SA Digital Recorder provides a high-performance economical method of making permanent records of digital data. The unir is supplied with complete electronics for 10 columns of input data and will print at rates up to 10 lines per second. It accepts TTL integrated circuir logic levels in either a +8421 or -8421 code, the code being switch selectable on the rear panel.

Quiet, reliable operation is inherent in the design, resulting from the use of very few moving parts. The printer mechanism, manufactured by Hewletr-Packard, is a modified version of a mechanism whose reliability and serviceability has been demonstrated in other Hewlett-Packard recorders for years.

The sossa prints in ink on regular paper or on pressure sensitive paper. For ink printing, the mechanism includes a continuously rotating ink rolier-inherently a more reliable system than a start-stop ribbon mechanism. Paper loading is easy from the front, and when the paper supply runs our, an alarm lamp lights and recording stops automatically. An output signal is provided for inhibiting the data source.
Each column has an individual print wheel which can be changed independently if a different character set is desired in any columa. Special wheels can be factory installed at nominal cost or may be field installed at a later date.
The recorder's cabinet is half rack width and only six inches high. It can be used either on a bench or side by side with a norher instrument in a rack.

## Specifications

Accuracy: identical to input device used.
Print cycle time: 100 ms .
Printing rate: 10 lines $/$ sec maximum. asynchronous.
Print wheals: 16 positions, numerals 0 through $9 .+,-, V, A, \Omega$,
*; special wheels arailable at minimal cost.
Column capacity: supplied complete for 10 -column aperation.
Electrical
Data inpul: paralle! entry, $\mathrm{BCD}=8.421$ (selected by zear panel switch).
Blanklng: Heriett-Packard counters with blanking will give insignificane zero suppression since blanked digit's output is (1111). May be defeared with rear panel switch.

Logic levels: high state $\geq+2.4 \mathrm{~V},+$ s $V$ maximum (open input line results in high state) ; low state $\leq+0.4 \mathrm{~V}(1.6 \mathrm{~mA}$ max., (ow), 0 V minimum.
Print command; line 1 - low to high transition causes print (nominal $1 \mathrm{k} \Omega$ input impedance) : line 2 -high to low transition causes print (nominal 400 n inpur impedance). Voltage levels are same as logic levels above, and a minimum pulse widh of 0.5 $\mu \mathrm{s}$ is required.
Inhibit voltage: $(\div)$ inhibir $=$ transition from $(\geq 0 \leq 0.4 \mathrm{~V})$ to ( $\geq 2.4 \mathrm{~V}, \leq 5.0 \mathrm{~V}$ ) epon receipt of print command. Remains at high state untii paper advance occurs, approximately 85 ms ( $<5 \mathrm{~mA}$ in loor state).
$(-)$ inhibit $=$ inverse of $(+)$ inhibit.
Line spacing: fixed, 4 to 5 lines per inch.
Inking: ink roller or pressure sensitive paper. Pressure sensitive paper is recommended for operation under excreme temperacures.
Accessories furnished: one pad regular paper, one pad pressure
sensitive paper, one ink roller, one paper deflector, one power cabie.
Operating temperature: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ with pressure sensitive paper, $\perp 10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ with ink roller.
Input connector: amphenol' 57.40500 -375, HP Part. No. 1251-0087, so-pin female. Mating inpur cable connector: anphenol type 57.30500.375, HP Parr No. 1251-0086, 50-pin male.

Front panel controls: power switch, power on indicator light, manual print pushbuton, manual paper advance pushburton, out. of-paper lighe, srandby/operate switch. (Paper loaded from front.)
Paper requirement: Hewlett-Packard folded tape. Approximately 15,000 lines per pad of regular paper, 18.000 lines per pad of pressure sensitive paper (pad fills sossa wice and must be divided).
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 60 or 50 Hz (two-speed motor pulley incorporated), approximately 23 W idle, 55 W at 10 lines $/ \mathrm{sec}$.
Dimensions: cabinet: $8^{\prime \prime}$ wide, $6.3 / 32^{\prime \prime}$ high, $16^{\prime \prime}$ deep ( 203 x $154 \times 406 \mathrm{~mm}$ ).
Weight: net, $18.5 \mathrm{lbs}(10 \mathrm{~kg}$ ) (approximately): shipping, 22 lbs ( 8.9 kg ) (approximately).
Price: \$1195.
Accessories avallable: rack adapter frame 5060-0797, $\$ 25$.
Option 001: delivered set up for 50 Hz operation, No charge.
Option 002: inpur cable, $563 \mathrm{~A}-16 \mathrm{C}$. For use with $3450 \mathrm{~A} *$, $3480 \mathrm{~A} / \mathrm{B}, 5326 \mathrm{~A} / \mathrm{B}, 5500 \mathrm{~A} *, 8443 \mathrm{~A}, \$ 60$.
Option 003: input cable, $10513^{\prime}$. For use with $5216 A^{*}, 5221^{*}$, $5321 \mathrm{~B}^{*}, 5325 \mathrm{~A} / \mathrm{B}, 5330 \mathrm{~A} / \mathrm{B}, 533 \mathrm{~A} / \mathrm{B}^{*}, 5332 \mathrm{~A} / \mathrm{B}^{*}, \$ 75$.
Option 004: input cable, 10524A. For use with 5333A, $\$ 75$.

* Slignt modiflcation may be necessary.

Description	Part Kumber
Ink Roller (8lack)	9260-0071
Standard Paper (Single Pad*)	9281-0385***
Standard Paper (Carton of 15 Pads*)	05050-8002***
Pressure Sensitive Paper (Single Pad ${ }^{*+}$ )	9281-0387***
Pressure Sensitive Paper (Carton of 15 Pads**)	05050-8003***
* One pad of standard paper is 250 feet long.   * One pad of gressure sensitive paper is 305 feet long.   ** Each pad fllls 5055 twice and must be divided.	

# COUPLER/CONTROLLER <br> Programmable, bidirectional device interface Model 2570A 

COUPLER/CONTROLLER

The HP 2570A Coupler/Controller forms the heart of in. expensive, programmable, and expandable systems, providing a bidirectional link that interfaces many Hewlett-Packard in. struments (as well as non-Hewletr-Packard instruments) and peripherals to communicate with each other. Because of the many and varied system configurations possible. complete ordering information for coupler/controller systems is concained in a separate form, HP 2019A Systems Ordering In. formation, available from Hewlett-Pachard field sales offices. The Coupler/Controller and its options should be ordered under the 2019A--(list option number here) classification, as shown in parentheses throughout the rext, the discussion that follows is essentially a description of the coupler/controller, associated plug-in cards, and some applications. More in depth literature covering the coupler/controller, as mentioned throughout the following text, is available from Hewlett. Packard.

## Operating principles

Operation of the 2570A is based on the concept of providing a common communication code-ASCII (American Standard Code for Information laterchange). The simple system illustrated show's how a device such as a DVM, inpues its data to the coupler/controller which. in turn routes the data to an outpur device such as a paper tape printer. The sequence of operation is shown in Figure 1. Note that the input data signal is converted from $B C D$ to $A S C I I$ on the $B C D$ input card; all data must be in ASCII when it reaches the 2570A backplane. Thus, a single 8 -line ASCII bus on the backplane handles all data transfer betreeen devices.


Figure 1. 2570A Single-Source, Single Output System
The highly diversified operating capabilities of the coupler/ controller are ail implemented under program control. All I/O operations can be programmed by either a self-contained pinboard programmer (up to is instructions) on the control card or by an external ASCII source, such as a releprinter keyboard or tape reader.

## Interface cards

Interface cards for many applications are available as kits specifically for the 2570 A. The interface cards generate the necessary interface control signals, provide storage if required, and provide the necessary control logic for I/O operations, e.g., proper timing conditions. The following is a brief description of interface cards available.


The HP 12797A (2019A Opt 100) BCD Input Card equips the 2570 A to receive the digital outpur from a variety of instruments, including voltmeters, and counters. The card translates up to 10 characters of 8421 BCD information from a digital source into ASCII and makes it available in serial form on the 2570A ASClI bus. Patch panel programming on the card permits format control of the input/outpur slor, and insertion of certain special characters. The HP 12797A BCD Input card interfaces the following Hewlet-Packard instruments to the 2570A: Counters: $5221 \mathrm{~A} / \mathrm{B}, 5245 \mathrm{~L}, 5321 \mathrm{~A} / \mathrm{B}$. $5323 \mathrm{~A} .5325 \mathrm{~A} / \mathrm{B}, 5326 \mathrm{~A} / \mathrm{B}, 5330 \mathrm{~A} / \mathrm{B}$, and $5327 \mathrm{~A} / \mathrm{B} / \mathrm{C}$; DVMs: 2.10IC, 2402A. 3450A, and 3480A/B: 3440A, 3460A, and 3462A. 2801A Quartz Thermometer.

The HP 12798 B (2019A Opt 119) BCD Output Card pro. vides a 10 -digit parallel data output register as a means to interface the 2570A with parallel entry digital devices. The card can also be used as a general-purpose 40 -bit outpur reg. ister. The HP 12798B BCD Outpur Card is comparible with the following Hewlet-Packard instruments: Digital Recorders: 562AR, 5050A/B, 5055A: DVMs: 3450A, 3480A/B; Digital Voltage Sources: 6130B-380. 6131B-J80. Counters: 5325B. 5326A/B; 6936A Multiprogrammer.

The HP 12799日 (2019A Opt 140) 16-Bit Relay Register provides 16 programmable contact closures for control of external devices such as power supplies, solenoids, electrically activated control valves, or instruments requiring control voltage outside of the normal logic ranges. The contact closures may be subdivided in any combination for controlling one or several devices. The voltages switched through the relay contacts can differ from each other and from the 2570 A ground by as much as 100 volts peak. Contacts can be connected in series, parallel, or series-parallel, with or without diode isolation. Floating contact closure permits switching of diverse voltages and avoids ground loops. Also programs DMVs: 2401C, 2402A, 3440A, 3460A, and 3462A.

The HP 12800A (2019A Opt 160) 8-Blt Duplex Register provides the 2570 A with the capability to interface directly with 2100 series computers, the 2753A High Speed Tape Punch, and the 2748A/s8A High Speed Punched Tape Reader, Commonly, the distance between the coupler/controller and other devices can be handled by the 12 -foot cables available
for this purposc. Interconnect cables are available to allow the punch and reader to be operated independently or simultaneously.

The HP 12801A (2019A Opt 180) Teleprinter Interface allows the HP 2752A Teleprinter to interface with the HP 2570 A . A system incorporating a 2570 A can be manually controlled by entering instructions from the teleprinter keyboard. Alternatively, the system may be controlled by paper tape programs read from the teleprinter tape reader.

The HP 12802A (2019A Opt 200) Interface for HP 9100 Series Calculators and the HP 12822A (2019A Opt 201) Interface for HP 9800 Series Calculators enable the HP 2570A to communicate directly with the calculators. Data can be input through the 2570 A to the calculator x -register and conversely, processed data can be output from the x-register through the 2570 A , to such devices as a teleprinter or tape punch. Additionally, the program storage capability of the calcuiators can be used to exercise system control. Through the use of a few simple keystrokes, the calculator can take readings from DVMs, counters, etc., control scanners, program power supplies, and in essence. do any of the things that can be done through the internal pinboard program. Further. more, the calculators bring computational power and decision making capability to the system for minimal cost.

The HP 12803A (2019A Ogt 220) Ten-Channel Reed Relay Scanner switches multiple analog input signals, in either numerical or randorn sequence, to a single measuting device such as a DVM or frequency counter. Reed relays switch up to 10 channels per plug.in card. With multiple scanners, up to sixty analog input channels can be switched to the DVM or counter with a single 2570 A -based, data acquisition system. A twodigit channel identification is available for recording along with the data. or it may be suppressed, if desired.
The HP 12807A (2019A Opt 300) Pinboard Program Card provides 45 additional program steps for the 2570 A . The steps are divided inro five separate nine-step program segments, each of which can be treated as a separate subprogram that can be addressed directly and executed. A null step (no diodes inserted) determines the end of that subprogram. Program chaining is possible for programs longer than nine steps. More than one program card can be used at a time. greatly expand. ing programming capability.

The HP 12809B (2019A Opt 320) Tima-Sharing Interface enables the 2570 A to establish two-way communication with a time-shared computer. Any device interfaced to the 2570A also becomes interfaced to the computer, thereby enabling instruments and peripheral devices to communicate with each other and the computer. Thus, a computer program can control devices in a measurement system. The time-sharing interface (and an appropriate acoustical coupler) allows data to be transferred on line to a time-shared computer for analysis withour the need for manual data logging and the subsequent re-keying of information into a computer terminal. Logging is performed unartended and automatically. All the mass data storage and powerful processing power of the most sophisticated computers are readily available withour the capital outlay for an in-house system. Other benefits include access to prearfitten statistical routines, capability of accumulating large historical files, and storing sophisticated programs at a low cost; these files are available on instant recall, making it
possible to get maximum usage from the computer.
The HP 12811A-001 (2019A Opt 341) Clach/Timer/Pacer Card adds very flexible measurement timing capabilities to the 2570A. The exact time of day can be recorded along with instrument data. Individual dara points or complete measurement scans can be programmed (paced) with switches to begin at specified time intervals, at 0.1 sec increments from 0.1 sec to 99.9 sec (or 0.1 ms to 99.9 ms ). Also, by means of the clock, intervals can be once every $0.1 \mathrm{sec}, 1 \mathrm{sec}, 10 \mathrm{sec}, 1$ $\mathrm{min}, 1 \mathrm{hr}$, or only once every day. Clock intervals can be multiplied (jumper placement) by 2 or 3 . Additionally, time delays may be inserted in the program in 0.1 sec increments from 0.1 sec to 99.9 sec (or 0.1 ms to 99.9 ms ). The clock operates from a 100 kHz crystal oscillator. An emergency power circuit keeps the clock running in event of power failure.

The HP 12812A (2019A Opt 360, 361, and 362) Incremental Magnetic Tape Interface Kits operate wirh most Kennedy Model 1600 and 1610 Series Recorders. (The interfaces are available as separate kits which include an interface card and cables, or complete with an incremental tape recorder.) Interfaces are available in either write-only or read/write versions. Write only interfaces allow data to be recorded in IBM-compatible format; data are reduced by reading the data from the tape on a separare tape drive input to a computer system. Read/rorite interfaces allow data to be recorded incrementally and also read out for transmission to a data analysis systerm. Although recording (writing) is incremental, dara are read continuously at high speed for maximum transfer effi. ciency. Recording density can be 200, 556, or 800 bpi , depending on the recorder.

The HP 12817A (2019A Opt 052) Parity Generator Interface generates even or odd parity for data that have no parity, as a means to enable a computer interfaced to a 2570 A to detect transmission errors. Since some computer systems can only accept data with parity, the parity generator then enables an instrumentation system interfaced to the 2570A to enter data into such computer systems. The parity generator is especially useful for introducing parity into punched tape during data acquisition, since such rapes cannot be edited later.

## Prices

HP 2570A (HP 2019A Opr 001); includes installation, power cable. and control card, \$187s.
HP 12797A (HP 2019A Opt 100) BCD Input Interface Card, $\$ 750$.
HP 12798B (HP 2019A Opt 120) BCD Output Interface Card, 8700.
HP 12799B (HP 2019A Opt 140) 16-Bit Relay Register Inter. face Card. $\$ 600$.
HP 12800A (HP 2019A Opt 160) 8-Bit Duplex Register Interface Card, $\$ 600$.
HP 12801A (HP 2019A Opt 180) Teleprinter Interface Kit, $\$ 450$.
HP 12802A (HP 2019A Opt 200) HP 9100 Series Calculator Interface, $\$ 1775$.
HP 12822A (HP 2019A Opt 201) HP 9800 Series Caiculator Interface, \$i500.
HP 12803A (HP 2019A Opt 220) Ten-Channel Reed Relay Scanoer, $\$ 600$.

HP 12807A (HP 2019A Opt 300) Pinboard Program Card, $\$ 750$.
HP 12809B (HP 2019A Opt 320) Time-Sharing Interface, $\$ 1500$.
HP 12811A (HP 2019A Opt 341) Clock/Timer/Pacer Card. $\$ 1560$.
HP 12812 (HP 2019A Opt 360) Incremental Magnetic Tape Interface, $\$ 1400$.
HP 12817A (HP 2019A Opt 052) Parity Generator Interface Card, $\$ 150$.

## Applications

The 2570A is capable of serving in many different system applications, some of which are listed below.

1. Stand-alone system. The 2570A interfaces BCD instruments to an output recorder.
2. Calculator-based automatic test systern. The HP Calcu. lator adds decision making capability to a test system. The 2570A interfaces BCD measurement instruments, stimulus to the device under test, and the calculator.
3. Computer-based system. One or more coupler/controllers are used to extend and remote the computer $1 / O$ system, thus allowing multiple test stations to be under control of a single computer.
4. Tlme-sharing system. Single or multiple coupler/controllers interface test systems to time-shacing systems, thus enabling access to an on-line computer withour investing in an in-house system.
An overall general description of the 2570A along with brief descriptions of compatible Hervletr-Packard instruments is deseribed in Application Note 130. Application Note 131 describes the 2570 A in computer kime-sharing systems, and Application Note 132 describes the 2570A in Hewlett-Packard calculator systems. These application nores are available from Hewlett-Packard without charge.

## Calculator-based systems

Three basic types of systems can be configured by the addi. tion of a Hewlett-Packard calculator to the coupler/controller.
These are:
(1) Punched tape data processing systems whece the calculator reads data from punched paper tape through a teleprinter. Calculations such as linear regressions, histograms, and various statistical routines fall easily within the calcula. tor's capability.
(2) Data acquisition systems which are substantially lower in price than a conventional computer system. All data acquisition and programming is accomplished by selecting the appropriate keys on the calculator.
(3) Automatic test systems with a stimulus-responsecalculation capability at an economical dollar figure.
The coupler/controller, in combination with a HervlettPackard calculator. form the controlling elements of an automatic rest system. This capability is exemplified in Figure 2 showing the coupler/controller, calculator, quartz thermometer, and programmable digiral voitage source. The system takes readings of the oven remperature, compares each reading against predetermined high and low limits, and sets the heater voltage of the oven to correct an out-of limits condition. In addition, the calculator performs an extrapolation of the last five remperature readings in order to forecast the next reading;
the forecast is compared against the high and low limits also. If the forecast is higher than the upper limit, the heater is programmed for a moderately low voltage to reduce the oven temperature; if the forecast is less than the lower limit, a moderately high heater voltage is set to raise the cemperature. After the temperature reading and forecast comparisons (and the necessary heater voltage correction, if any) have been made, the calculator program loops back and begins a new sequence of system operations.


Figure 2. Coupler/Controlier - HP Calculator Automatic Test System.

## Remote terminal operation

The coupler/controller is particularly well suited for use as a remote terminal in applications such as testing, monitoring, and controiling. Typically, an HP 9600 Series Computerized Data Acquisition Sysrem serves as the central station with the coupler/controller located at the test site. Data and control information between the central computer and the remote coupler/controller can be exchanged by means of a single dedicated cable (to a distance of 10,000 feet), or via common carrier telephone lines by employing data sets or modems at each terminus. Thus, channels or entire kerminals can be added or removed quickly and economically since communication is over a single cable or telephone circuit. The high cost and inaccuracies of multiple analog cables are avoided. Also, since each coupler/controllec can scan up to 60 analog data channels, hundreds of widely distributed channels can be monitored or controlled from a single central system.

The coupler/controller can be operated either as a computercontrolled remote terminal or as a remote. callable, storedprogram controller. The coupler/controller can accepr step-bystep instructions from the remote computer to input and ourput data to instruments and operator interfaces, or it can be programmed using its internal pinboard memory to perform a specific function upon call from the remote computer. Figure 3 illustrates the major elements in the remote terminal operarion.


Figure 3. Major Elements for Operating the H? 2570A as a Remote Yerminal.

## Time-sharing-based systems

The coupler/controller can access any time-sharing system capable of communicating over voice-grade telephone lines using ASCII. Information can be transmitred and received in either half-duplex or full-duplex and with most time-shared systems equipped with an ASCII port, including G.E. Mark II and Mark IV, TYMshare, HP 2000 Series Leasco Response, S.B.C. Call 360, and others. And, since the coupler/controller is language independent, it can be used with any timesharing language that can be transmitted on a teletyperriter including FORTRAN, BASIC. ALGOL, and PL/I. The significance of two-way communication is that the time-shared computer can exert on-line control of the peripheral devices interfaced with the coupler/controller.
Many practical time-sharing applications are possible, in cluding: instant analysis of hospital tests, weather monitoring. collection of environmental data. analyzing engine performance (temperatures, pressures, elecrrical systems), and many others. The following is an application where the coupler/ controller, in conjunction with a time-sharing computer system, operates in a production environment testing electronic modules.

The measurement problem was to monitor the voltage out-
purs of ten identical amplifier modules while they are inside an enviconmental test chamber. The specific test objectives were to determine whether or not the amplifiess require temperature compensation resistors, and if so, the values and defined locations for placing in the circuit. In addition, it was necessary to determine wherher or not a module is outside of the compensation range or has failed. Previously, this process required approximately six hours for a rechnician to manually control the temperature, record the data, and make the proper decisions.

A Hewletr-Packard coupler/controller time-sharing system, Figure 4, proved to be a highly costeffective solution to this measurement problem. Now, the tests are completed in approximately one hour. Thus, a production run of 80 amplifiers can be tested in one eight hour shift. The technician has merely $t 0$ move the modules in and out of the test chamber, start the test program, and read the releprinter printout to determine resistor locations and failed modules. The coupler/controiler rime-sharing system very well solved the problems of gathering large amounts of data at the various temperatures, and reducing the data to assure fast testing, hence shipment, of large production quantities. It should be noted that this system could have been operated in an off-line data acquisition mode (by operating a swirch in the junction box).


Figure 4. Coupler/Controller - Time-Stiaring System for Production Testing of Electronic Modules.

## FREQUENCY AND TIME MEASURING INSTRUMENTATION

Electronic counters have proven to be the most accurate, flexible, and conve. nient instruments available for making both frequency and time interval measurements. Since the introduction of the first high-speed counter (the 10 MHz HP Model 524A) more than 20 years ago, Hewlett-Packard has developed a broad range of counters to permit selecting the proper instrument for virtually any ap. plication.

## Conventional counters

Data on these pages cover the basic concepts of the conventional frequency counter including operation, accuracy, input considerations and extended frequency response. The basics of measuring time interval are then considered and finally a new concept in frequency mea. surement, as provided by the Computing Counter System, is discussed. This general introduction is concluded with a counter selection chars introducing the broad range of electronic counters available from Hewletr-Packard.

## Frequency measurements and the basic counter elements

The frequency of a continuous wave signal is the number of events or cycles that occur per unit time (one second). Most counters measure frequency by totalizing the number of cycles or events of the input signal for a precisely known period of time.

The basic elements of conventional counters (which excludes counters that use compuration as part of their measur. ing process-e.g. HP 5360A Computing Counter) are: (1) the decade counting assemblies (DCA's) with numerical readouts to display the count; (2) the main gate, which controls the time over which the input signal is totalized; (3)
the time base, which supplies a reference of time for the main gate; (1) decade divider assemblies (DDA's) which di. vide the time base output to the desired increment of time for which the main gate will be open and ( $s$ ) an input am-plifer-Schmitt tigger to shape the input signal for the DCA's. The counter also contains logic control which intercon. nects the proper circuits for the desired measurement, selects the appropriate measurement unirs for display and initiates the measurement cycle.

Figure (1) shows the conventional counter for frequency measurement. The number of pulses derived from the input that are toralized during the "gate open" interval is a measure of the average input frequency for that interval. The count obtained is displayed and retained until a new sarmple is ready to be shown. The Sample Rate control determines the time betrieen samples, resets the counter and initiates the next measurement cycle.

The time base selector switch selects the gating interval, positions the decimal point and selects the appropriate mea. surement units (eg. $\mathrm{Hz}, \mathrm{kHz}, \mathrm{MHz}$ ).

## Period measurements

Period is the inverse of frequency ( $\mathrm{P}=$ $1 / \mathrm{f}$ ). Therefore, period measurements are made with the input and time base con. nections reversed. The unknown input signal controls the main gate time, and the time base frequency is counted in the DCA's. The input shaping circuit selects the zero axis crossing of successive cycles of the unknown as trigger points for opening and closing the gate.

Low frequencies may be determined more accurately by measuring period rather than frequency directly. This is true because the longer period of a low frequency allows more counts to accumu.


Figure 1. Function switch sel to Frequency and gate time selected by time base swith.
late in a period measurement; therefore, resolution and accuracy are both im. proved. For example, a frequency mea. surement of 100 Hz on the 8 -digit $52 \cdot 18 \mathrm{~L}$ Counter with a 10 -second gate time will display as 0000.1000 kHz . A period measurement of 100 Hz on an HP 5248 L with 100 MHz as the counted frequency, would display as $010000.00 \mu \mathrm{~s}$. Thus, resolution is increased by a factor of $10^{3}$ and measurement time decreased by 100 .

## Muitlple period averaging

Multiple period averaging reduces error and improves resolution in period measurements.

The number of periods of the unknown to be averaged is selectable. The HP 5326B can average up to $10^{8}$ periods and several other HP counters can average up to $10^{6}$ periods. In the example above, the counter would display $10000.000 \mu$ s for a 10 period average. (The selector switch automatically shifts the decimal point in the display to shor the correct reading for a single period.)

## Totalizing

In the totalizing mode the main gate fip-flop is controlied remorely or by a manual start-stop switch. With the switch in Start (gate open), the decimal counter assemblies totalize input pulses until the main gate is closed. The counter display then represents the input pulses received during the interval between Start and Stop.

## Ratio measurements

The ratio of two frequencies is determined by using the one signal for the gate control while the other signal is counted. With proper transducers, ratio measurements may be applied to any phenomenon which may be represented by pulses or sine waves. Gear ratios and clutch slippage as well as frequency divider or multiplier operation, ace some of the measurements which can be made using this technique.

Accuracy is improved by the multiple period averaging technique by counting for $10^{*}$ cycles of the gate control signal.

## Rate measurements

With a preset counter, frequency mea. surements can be normalized automatically to rate measurements by appropriate selection of the gate time. The counter will then display a readout in the desired unit of measurement. For example: a gate time of 600 milliseconds causes the inpur from a 100 -pulse-per-revolution
tachometer to be displayed directly in revolutions per minute.

## Scaling

Several Hex'lett-Packard counters can scale (divide) an input by powers of 10 up to $10^{5}$. The scaled output is a vailable from the rear of the counter.

## Measurement accuracy

There are three main sources of error in conventional counters:
$\pm 1$ count ambiguity. This is inherent in all conventional counters because input signal and time base are not synchronized, thus causing a one count ambiguity in the events totalized.
For fow frequencies, where relatively few events can be totalized over practical gate times, this ambiguity contributes sig. nificant error. This is normally overcome by measuring period instead of frequency. The efror is still there but can be made insigniticant by selecring a high counted frequency and utilizing the period average mode.

Time base stability. Since frequency measurements are accomplished by comparing the unknown to the counter's internal oscillator or time base, any time base error translates directly into a mea. surement error. Error sources are:

Long term stability: The slow, but predictable, variation in average oscillator frequency with time due to the quartz crystal "aging". Aging is cumulative, so it is necessary to periodically calibrate the oscillator See Application Note 52, available upon request.

A typical long term stability specification might read as $<5 \times 10^{-10} /$ day. With no calibration for 20 days, error could be $1 \times 10^{-9}$. Thus, with a 1 second gate, the error in 100 MHz measured on an 8 -digit counter could be one count ( $1 \times 10^{-8} \times$ $1 \times 10^{5}=1 \mathrm{~Hz}$ ).

Short term stability. More properly called "fractional frequency deviation", is a measure of the amount of noise or instability that the oscillator exhibits. (For measuring short term stability, see Application Notes 52 and 116, available upon request.)

Oscillator noise has components at many frequencies, so short term stability varies with measurement time, generally getting smaller the longer the gate time. Thus, a specification without a starement of averaging of measurement time is meaningless. Moreover, averaging times of 10 minutes or one hour are useless since such extreme measurement times are rare.

In general. Hewlett-Packard counters are specified for $1 s$ averaging times. In addition, however, the oscillators are selected so that their short term stabilities do not affect accuracy no matter what gate time is used.

Line voltage and temperature. Are self-explanatory specifications. The rotal inaccuracy due to the time base is the sum of long term, short term, line voitage and temperature errors.

Trigger error. Trigger error arises from noise on the gate-control signal that causes the gate to open and close at incorrect times. Since significant trigger error can occur only when an external signa! controls the gate, this error occurs in period measurements.

For a $40 \mathrm{~dB} 5 / \mathrm{N}$ signal, the trigger ecror in a period measurement is:

$$
\frac{3 \times 10^{-8}}{n} \times \frac{e_{8}}{e_{1 \pi}}
$$

where $n=$ number of periods averaged $e_{s}=$ counter sensitivity

$$
\mathrm{e}_{\text {In }}=\text { input signal magnitude }
$$

This indicates that rrigger error is only a factor for noisy, low frequency signals where $n$ is small.

For frequency measurements the general accuracy statement is:
$\pm 1$ count $\pm$ time base stability ( 1 ) while for period measurements it is:
$\pm 1$ count ${ }^{(2)} \pm$ time base stability $\pm$ rigger error.


Figure 2. To be counted input signal must cross both hysteresis levels of the input Schmitt Trigger.

## input considerations

A counter's input circuir may be characterized by means of sensitivity, trigger level, ac/ac coupling, and input impedance.

Sensitivity means the minimum councable signal level. The amplifer-Schmitt trigger input circuit determines the sensitivity, since the signal applied to the Schmitt trigger must cross both its upper and lower hysteresis limits to produce an outpur. See Fig. (2).

The tro hysteresis levels are usually located symmetrically about ground to conform to the usual situation of measuring a CW signal with no dc content. DC content is removed in the counter's as coupling mode: If the input is a puise train, however, the trigger level contro! must be used to shift the hysteresis levels our of the preset position to a position either above or below ground. see Fig. (3).

The input impedance of most Hewlett. Packard counters is either son or $1 \mathrm{M} \Omega$. A $1 \mathrm{M} \Omega$ input is provided for most direct

[^23]

Figure 3. To enable a count on these wave. forms the trigger level control must be out of PRESET to shift the hysteresis positive (upper waveform) or negative (lower waveform).
reading counters, since for frequencies up to 250 MHz this is the more versatile. avoiding loading the source connected to the counter. Above 250 MHz , however, the inherent shunt capacity of a 1 Ma input is severely limiting: then, a matched son input impedance is offered. Since most high frequency and micro. wave devices operate in a 50 environment, the prescaler and microwave plug. ins and counters (see below) provide a $50 \Omega$ inpur impedance.

## Increasing the frequency range

The direct counting range of the conventional Hewlett-Packard counters described so far range from 10 MHz (5300A) to 150 MHz ( $5248 \mathrm{~L}, \mathrm{M}$ ). Ser. eral techniques can increase this range:

Prescaling is accomplished by placing a divider berneen the Schmitt trigger of Figure (1) and the main gate. If the division factor is $N$, the gate time is extended by the same factor to ensure a correst readour. Hewlett-Packard manufactures a number of prescalers: the 50 MHz 5302 A and 525 MHz 5303 B plug. ons to the 5300 A , the 350 MHz 5252 A and 200 MHz 5258 A prescaler plug.ins to the 5245 Series counters, and the 5327 line of counters where a 550 MHz prescaler is built into the mainframe.

Operating a prescaling counter is ident. ical to a direct reading counter. The user is rarely arrare that the signal is being prescaled: it just takes somewhat longer on obtain the same resolution as a direct counser.

Heterodyne conversion is the most ac. curate method of measuring high frequency or microwave signals. In a given measurement time it provides the same resolution of the consentional direct counting frequency counter.

Heterodyne converters simply down convert the unknorn frequency $f_{x}$ by mixing with an accurately known frequency $f_{a}$, such that the difference $f_{i}$, is within the counter's tange. See Fig. (1). The frequency $f_{n}$ is selected by first multiplying the time base to a convenient frequency $f_{1}$, (usually the maximum direct frequency of the counter), and then passing this signal through a harmonic generator. The appropriate harmonic $N f_{1}=f_{n}(N$ is an integer) is selected

figure 4. Basic operation of a heterodyne canverter.
by the luning cavity and passed to the mixer. The cavity is operated from a front panel control calibrated to read the frequency $f_{g}$ directly. The difference frequency $\left(f_{x}-f_{a}\right)=f_{a}$ is amplified and measured by the counter. To the counter reading the operator adds the front panel concrol serting $f_{4}$ to obtain the final ansacer $f_{\lambda}$. The tuning meter of Figure (4) indicates when the unknown frequency has been located.
While the heterodyne converter is broad band, is is not as broad band as the transfer oscillator (sec telow). The band limiting culprit is the mechanical cuning cavity. The range from 150 MHz 1018 GHz is covered by Hewlett-Packard with three such heterodyne convesters, the $150 \mathrm{MHz}-3 \mathrm{GHz} 525.4 \mathrm{C}$, the 3 GHz 12.4 GHz 5255 A and the $5 \mathrm{GHz}-18 \mathrm{GHz}$ 5256A. In addition, the 50.500 MHz 5253B gives 500 MHz operation with the 52.15L. All these converters are plugins to the high performance 52 解 Scries of counters.

Extremely broad band microwave fre. quency measurements can be nade rith the TRANSFER OSCILLATOR. Accu. racy, however, cannot equal the heterodyne converter's.

The transfer oscillator principle is based on the property of harmonic mixing, that is; if $\mathrm{f}_{\mathrm{x}}$ is the unknosin input to a mixer and $f_{\text {Lo }}$ is the local oscillator, the mixer will produce an output $f_{n}=$ $f_{x}-N f_{\text {s.o }}$ where $N$ is an integer. The mixer frequency response derermines transfer oscillator frequency range and the exeremely fast sampler in the HP 5257A Transfer Oscillator gives broad band measurements from 50 MHz to 18 GHz . The relative measurement accufacy is the same as that of the local oscillator which cannot match the beterodyne converser's crystal derived reference frequency.

The 5257 A block diagram is in Figure (5). To opetate, the user simply runes the local oscillacor for phase lock at zero beat (i.e. $\mathrm{f}_{\mathrm{x}}=\mathrm{N} \mathrm{I}_{\mathrm{r}, \mathrm{O}}$ ) as indicated by a front panel meter. The local oscillator frequency is then measured by the


Figure 5. Basic operation of a transfer osciliator.
counter. To obtain a direct reading of the microrave frequency $f_{x}$, the 5257 A is provided with thumbwheel swirches, which extend the gate time of the counter by $N$. If $f_{x}$ is completely unknown, so too is N ; however, a simple technique is described in the 5257 A Op. erating Manual for determining N.
By opening the phase lock loup (via front panel switch), the 5257A Transfer Oscillator can also measure fim deviation and the frequency of a pulsed RF signal as described fully in the 5257 A Operat. ing Manual.
The 5257A is a plug-in to the 5245 Series of plug. in counters and contributes considerably to the measurement power and versatility of this line of mainframes.

## 5340A Microwave Frequency Counter

 is an extension of the manual cransfer oscillator described. The 5340 A is a state of the art product in every way. It is basically an autonatic transfer oscillator that allows completely automatic frequency measurements from 10 Hz to 18 GHz via a single input. In addition, it has high sensikivity and a very short acquisition time. Full details on operation will be published in a 1973 issue of the Hewlett-Packard Journal.
## Time interval

In addition to the measurement de. scribed earlier, the conventional counter lends itself to measuring time intervals. Applications are many and growing and include lases and radar ranging, integrated circuit rise, fall and delay rime
and nuclear time of fight measurements. to name but a few.
Hewlett-Packard manufactures a number of counters offering a wide range of time interval capability. Single shot (a single pulse) time incerval resolution as good as $1 \mu$ s to 100 ps can be obtained.

## The basics of time interval measurements

Figure (6) illustrates the key elements of a time interval meter. The main gate is controlled by two independent inputs, the START input or channel and the STOP channel. When an external signal is applied to the stast inpur, the main gace is opened and the DCA's accumu. late clock pulses derived from the internal reference oscillator. When a stop signal occurs. the main gate closes and the accumulated count in the DCA's represents the time between the occurrence of statt and stop signals.


Figure 7. Measuring the rise time $t$ by adjusting the trigger levals to the $10 \%$ and $90 \%$ polnts of the input amplitude.
The frequency of the counted slock determines measurement resolution, (e.g. a 10 MHz clock provides 100 nsec resolution). Obviously, the input amplifer/ trigger and the main gate must operate at speeds consistent with the clock fre. quency. for otherwise the instrument's resolution would be meaningless. Present state of the art limits resolution to about 10 nsec; horever, several Hewlett. Pack. ard counters utilizing special techniques described below offer substantially better resolution than this.


Flgure 6. The basic elements of a time interval meter.

## Time internal-A two dimensional problem

The dimensionability of time interval may be described by the simple example in Fig. (7): measuring signal rise time. The time interval meter must generate a start signal at the $10 \%$ amplitude point of the input signal and generate a stop signal at the $90 \%$ point. Inherent in all time interval measurements therefore are two dimensions, one of amplitude, the other of time.

To take care of the amplitude prob. lem most time interval meters include adjustable trigger level controls for both channels. With the trigger level set at a certain voltage $V_{1}$, the channel produces an output pulse, which is applied to the main gate, when the input level reaches that voltage, $V_{1}$. In addition each channel includes slope controls so that criggering can be obtained on either the positive or negative slope of the input signal.

Thus, the inpur circuits of a time interval meter must of necessity be more sophisticated than that of a frequency input to take cace of the extra dimension added to the problem. The differences may be summarized as:
(i) two independent input channels. one for start, the orthe for stop; that may be commoned right at the input so that measurments such as the rise time of a single input signal can be measured.
(ii) trigger levels on each channel that can be adjusted over a wide amplitude range (dynamic ranges of $30: 1$ are typical).
(iii) slope controls for each channel so that triggering can be effected at any point on the input signal within the dynamic range of the input.

## Measuzing trigger level

In days gone by when resolutions of less than 1 asec were all that whas required, trigger level determination was satisfactorily accomplished by the oscilloscope intensification scheme. Signals derived from the start and stop channels were routed through the time interval meter to the $\mathbb{Z}$ axis modulation of an oscilloscope. With the input signal displayed on the oscilloscope, the points at which triggering occurred were evidenced by intensified dots. With today's resolu. tions of 10 nsec or better, the inherent delays of this method cause it to be uselcss.

The best way of derermining trigger level is to actually measure the voltage at which the trigger is set. The HP 5360A/5379A, which can measure single shot events to 100 picoseconds, provide two jacks on the front panel of the 5379A from which the voltage settings of the two trigger levels can be monitored. The HP $5326 \mathrm{~B} / 5327 \mathrm{~B}$ Universal Counters go even farther, providing an
internal DVM. The DVM also makes general purpose voltage measurements.

## Measurement accuracy

The accuracy statement for time interval usually reads as: $\pm 1$ count $\pm$ trigger erros $\pm$ time base stability,

The same comments apply for time base stability in time interval and frequency measurements. Trigger error is rately a factor since time interval measurements are usually made on relatively fast pulses. The $\pm 1$ count (which refers to the clock frequency) is again the dominant factor.

Not included in the usual accuracy statement, but nevertheless extremely important, is trigger level settability. The importance of this is that errors in poorly set trigger levels can swamp any and all of the factors described above.

## Increasing the resolution

Hewlett-Packard pioneered two ways of increasing the resolution of rime interval measurement over and above that derived from the basic clock:

1. Time interval averaging: This technique is based on the fact that if the $\pm 1$ count error is truly random it can be reduced by averaging a number of measurements. The words "truly random" are significant. For time incerval averag. ing to work the time interval must (i) be repetitive and (ii) have a repetition frequency which is asynchronous to the instrument's clock.

Under these conditions the resolution of the measurement is:

$$
\frac{ \pm 1 \text { count }}{\sqrt{N}}
$$

where $\mathrm{N}=$ no. of time intervals aver. aged.
With averaging, resolution of a time interval measurement is limited only by the noise inherent in the instruments. The HP 5326/27 provide a resolution of better than 50 picoseconds utilizing this rechnique.

This is not the whole story, however, since the averaging described to date suffers one severe limitation; namely, the minimum measurable time interval remains at the period of the clock. This limitation is removed in the HP $5326 / 27$


Flgure 8. Synchronizer operation with time interval averaging.

Series of counters, by unique circuits known as synchronizers.
The Synchronizers (available only in HP 5326/27 counters at this time) operate as in Figure (8). The top wave. shape shows a repetitive time interval which is asyachronous to the square wave clock. When these signals are ap. plied to the main gate, an outpur similar to the third waveform results. Note that much of this output results in transitions of shorter duration than the clock pulses. DCA's designed to count at the clock frequency dislike accepting pulses of shorter duration than the clock. The counts accumulated in the DCA's will therefore be those shown in the fourth trace. Since the time interval to be measured is slightly greater than the clock period, the fourth waveshape shows that the averaged answer will be in error, having been biased low because the DCA's require a full clock pulse to be counted.
This problem is alleviared by the synchronizers which are designed to detect leading edges of the clock pulses that occur while the gate is open. The waveshape applied to the DCA's, when synchronizers are used, is shown by the fifth waveform. The leading edges are detected and reconstructed, such that the pulses applied to the DCA's are of the same duration as the clock.

Synchronizers are a necessary part of time interval averaging; without them the averaged answer is biased to a value less than the true average. In addition, it may easily be seen that with synchronizers involved. time intervals of much less than the period of the clock can be


Figure 9. Time intervals measured by 5360A Computing Counter.
measured. The HP 5326/27 Counters urilize this rechnique to measure time intervals as small as 150 picoseconds when averaged, even though the clock period is 100 nsec.
2. Interpolation: In interpolation the inherent $\pm 1$ count ambiguity is measured
and thereby removed. See Figure (9). The time interval T can be written as

$$
\mathrm{T}=\mathrm{T}_{0}+\mathrm{T}_{1}-\mathrm{T}_{2}
$$

where $T_{0}$ is the time indicated by counting the basic clock frequency and $\mathrm{T}_{1}$, $\mathrm{T}_{2}$ are the inherent time ambiguities berneen the clock and the start and stop pulses respectively.

The start interpolator charges a capacitor for the time $\mathrm{T}_{1}$ and then discharges it for a duration 1000 times longer. During the discharge time the clock is again counted resulting in $\mathrm{N}_{\mathrm{L}}$ counts. The stop interpolator performs in exactly the same manner, resulting in $\mathrm{N}_{2}$ counts. Coincidentally. the time $T_{0}$ is measured in the conventional manner resulting in $\mathrm{N}_{0}$ counts. It is easily seen that the time T is represented by the simple formula

$$
T=1000 N_{6}+N_{1}-N_{2}
$$

The resolution of the measurement has been increased 1000 times by interpolation. The system behaves exactly as if the counted clock were 1000 times fascer There is no limitation on the inpur, and events which occur only once can readily be measured. Interpolation does require arithmetic capability in the instrument; however, this can be put to good use in many ways. One is that it allow's zero time interval (coincidence) to be mea. sured and even negative time interval. Thus, nor only magnitude but sign or which event occurred first can be determined.

The HP 5360A Computing Counter System utilizes exactly this scheme. The counted clock is 10 MHz but the instrument behaves exactly as if it were 10 GHz , providing 100 pico second resolution.

## Period counting

The measurement of the period of a signal rather than its frequency offers several distinct advantages, Until recently, however, the power of period counting could not be utilized because of one overriding disadvantage; the displayed anster is in terms of the period of the signal rather than its frequency. With the advent of the modern integrated circuit this disadvantage is removed, since it is now practical to compute and display the frequency from the period information contained after the measurement. The HP 5360A Computing Counter is a period measuring instrument, and with its full arithmetic capability all the advantages of period counting become a reality. These advantages are described below.

## Accuracy

The frequency content of a sinusoidal signal is contained in just one cycle. In the frequency counring mode, one cycle results in one count. Conversely, with period counting. the number of counts depends solely on how high the fre-
quency of the counted clock is in relation to the input frequency. Therefore, in any given measurement time, period counting has greater resolving power than frequency counting provided the frequency measured is less than the counted clock. The preceding section showed that the HP s360A has the resolving power equivalent to a 10 GHz clock. Interpolation provides an accuracy five times less than the resolution ( 2 GHz effective clock) yet this is easily sufficient to make the 5360A the most accurate frequency measuring device available. Moreover, as Figure (10) shows, this accuracy is inde-


Figure 10. Comparing the measurement accuracy of the HP 5360A Computing Counter to all conventional counters.
pendent of frequency, in conrrast to the conventional counter. A one second measurment of a I MHz signal, for example, provides an accuracy of 1 Hz with any conventional frequency counter, whereas the HP 5360A accuracy is 0.0005 Hz ! The HP 5323 A is a low frequency period counting instrument and its accuracy is also summarized on Figure (10).


Figure 11. Direct measurement of pulsed RF by external triggering.

## Triggered measurements

With period counting, the gate and input signal are synchronous, enabling triggered measurements on pulsed RF signals. See Figure (11). By triggering the HP 5360 A on when a burst is present. a direct measurement of the pulsed sig. nal can be made to counter accuracy.

This ability to trigger the beginning of a measurement at any point in real time implies a whole class of signals can now be measured. Using the 5245 Series heterodyne converters, the HP 5360A can measure pulsed RF signals from do to 18 GHz . The ability to measure at any point in the burse enables the frequency profile of pulse compression, frequency agile and Doppler radar systems to be measured. In addition to these radar oriented signals, frequency shift keyed,
frequency modulated and transient sig. nals can also be measured.

Most conventional counters do not provide this capability; the gate closure is a function of the time basc. By pre. setting the DDA's to 9 (e.g. HP 5326/ 27), howrever, the gate can be closed via external control to enable burst measure. ments to be made. However, the resolv. ing capability of such instruments limit their application in the areas mentioned above.

## The computing counter system

The measurement capability of the HP 5360 A described above requires of the instrument the arithmetic capability to add, subtract, multiply and divide. This arithmeric capability has been made available to the user via several programming accessories. This allows the user to program the system to solve equations, where measurements are the variables, in real time.

The arithmetic capability of the HP 5360 A System makes it a computerized instrumentation system, where the instrument performs the measurements and the resultant raw data is reduced to a final form by the computer. Precision measurement plus computation is the key feature of the HP 5360A System, precise, total solutions to complex problems the resultant benefit. General application areas for the total system include daca reduction, seatistical analysis and process control. For additional details refer to the counter selection guide.

The table below shows arithmetic operations accessible by external programs and is an indication of the computing power of this unique instrument. Even greater computing power is expected to be arailable in accessories now under development.


[^24]Counter Selection Guide

Classification	Description	Frequency	Functions*	Time Base	Price	Page
5300 Series Economic Portable	Plug-on versatility-select appropriate plug-on to meet your needs. Battery operation option for use where standard power outlets not available.	to 525 MHz	$\begin{aligned} & \text { F, P, MPA, r.I., } \\ & \text { T. R. } \end{aligned}$	$\begin{aligned} & 3 \times 10^{-1} / \mathrm{mo} \\ & \text { optional } \\ & 1 \times 10^{-7} / \mathrm{mo} \\ & (5303 B) \end{aligned}$	$\begin{aligned} & \text { from } \\ & \$ 540 \end{aligned}$	258
5326/27 Series Universal Counters	A family of six counters providing universal measurement versatility, includes sub nanosecond time interval measurements via averaging, a built-in integrating DVM and cw or burst frrequency measurements.	to 550 MHz	F, P, MPA, T.I.,   T.I. average,   T, R, V	optional up to $5 \times 10^{-10} / \text { day }$	$\begin{aligned} & \text { from } \\ & \$ 995 \end{aligned}$	264
5360 Computing Systems	Precision measurement plus computation. Most accurate frequency measuring device available. Time interval to 100 psec . Provides solutions that formerly required the use of a computerized instrumentation system.	320 MHz ; to 18 GHz with 5245 plug-ins	F, P, MPA, T.I. and ather functions derived from real time arithmetic capability	$5 \times 10^{-10}$ /day	$\begin{aligned} & \text { from } \\ & \$ 6500 \end{aligned}$	272
5245 Series High   Performance Plug-in	A family of 5 mainframes and 12 plug-ins provide unmatched versatility. Plug-ins provide $18 \mathrm{GHz}, 10 \mathrm{nsec}$ time interval, voltage and preset capability.	to 150 MHz mainframe, 18 GHz with plug-ins	$\begin{aligned} & \text { F, P, MPA, T.I., } \\ & T, R, V \end{aligned}$	optional up to $5 \times 10^{-10} / \text { day }$	$\begin{aligned} & \text { from } \\ & \$ 2050 \end{aligned}$	253
5340   Microwave Counter	Ultra broadband, high sensitivity microwave frequency counter. 1 Hz to 18 GHz via single input.	18 GHz	F	optional up to $5 \times 10^{-10} / \text { day }$	\$3300	270
Miscellaneous and Industrial	5210A 20 MHz Analog Frequency Meter and FM Discriminator 5323A Automatic High Resolution 20 MHz Frequency Counter 5332 B 2 MHz Present Controller/Counter 5330A/B Programmable Preset Time-Base and Preset Limit Counter				$\begin{aligned} & \$ 850 \\ & \$ 1650 \\ & \$ 1325 \\ & \$ 1275 \end{aligned}$	$\begin{aligned} & 276 \\ & 276 \\ & 275 \\ & 275 \end{aligned}$

- highest performance in general purpose counters
- wide selection of plug-ins provide unmatched versatility
- extremely high celiability proven from over forty million hours of field operation



## Hewlett-Packard 5245L plug-in counter <br> the industry standard for high performance counters

The Hewlett-Packard 5245L is representative of the highest performance attainable in a general purpose counter. This instrument, which is the heart of the 5245 series, has become the industry standard . . . for instruments of its type, there are more 5245 L counters in operation today than all the rest put together.

The 5245 series consists of a family of mainframes (described on P. 255) and a series of plug-ins (see Pages 256, 257). The plug-ins provide frequency measurement to 18 GHz , high sensitivity, time interval and preset capability. The wide choice of mainframes and plugrins means that virtually any measurement task performable by counters can be accomplished by appropriate selection within this family.

The following is a description of the 5245L mainframe including salient specifications. The other mainframes in the family are similar to the 5245 L and the differences are delineated on Page 255. Brief descriptions of the available plug-ins are given on Pages 256, 257. The reader is refersed to the Frequency and Time Measuring Instrumentation tutorial on Page 248 for additional information on plug-in operation, and the 5245 series data sheet for complete details and specifications on all mainframes and plug. ins.

## 5245L Malnframe

The 5245L mainframe has the capability to measure frequency, period, multiple period average, catio and multiple ratio. It can also be used to scale or divide a frequency in porvers of 10 and to toralize random or periodic events. The basic counter offers a counting rate of 50 MHz with a 8 digit resolution.

Time Base: The internal time base of the 5245L is of sufficient accuracy and stability to serve as a secondary stan-
dard. Even so, a higher quality time base is offered (M type version). Specifications for all 5245 series time bases are given on Page 255.

Basic Operation: For frequency measurements gate times from $1 \mu \mathrm{sec}$ to 10 seconds may be selected ria the front panel TIME BASE switch. The FUNCTION switch enables period and period average to $10^{5}$ to be performed. This capability makes possible accurate frequency determination at low and intermediate frequencies.

Basic sensitivity is 100 mV rms but for higher level signals the attenuator (SENSITIVITY) can be used. A variable trigger level (LEVEL) is also provided to enable counting of positive or negative going pulses. In counting a sinusoidal signal, the LEVEL switch is put in the PRESET position. The input signal may be ac or $\mathrm{d} c$ coupled, the former being used to remove the dc content of a signal, the latter for counting pulses. The SAMPLE RATE control varies the rate at which measurements are taken from 5 per second to infinite in the HOLD position.

A four line binary-coded-decimal (BCD) digital output is provided from the rear of the counter. This can be used to obtain permanent printed records of measurements via digital recorders such as the HP 562A, 5050B, and 5055A. For providing strip chart plots of continuously varying phenomena, the HP 580A, 581 A digital-analog convercers can be used.

For use in systems, an Option (H65) is provided that allows complete remote control of all front panel controls.

The versatility of the mainframes and plug-ins notwithstanding, a number of options are offered on the mainframes. The reader is referred to the 5245 series data sheet for full descriptions.

## Specifications 5245L

## Freguency measurements

Range: dc coupled, o to 50 MHz ; ac coupled, 25 Hz to 50 MHz .
Gate time: $1 \mu \mathrm{~s}$ to 10 seconds in decade steps.
Accuracy: $\pm 1$ count $\pm$ time base accuracy.
Readout: kHz or MHz with positioned decimal point; units annunciator in line with digital display.
Shelf-check: counts 10 MHz for the gate time chosen.

## Period average measurements

Range: Single Period $\qquad$ 0 to 1 MHz
Multiple Period $\qquad$ 0 to 300 kHz .

Periods averaged: 1 period to $10^{8}$ periods in decade steps.
Accuracy: $\pm 1$ count $\pm$ time base accuracy $\pm$ trigger error.
Readout: s , ms, or $\mu \mathrm{s}$, with positioned decimal point; units annunicator in line with digital display.
Self-check: checks operation from 1 period to $10^{5}$ periods.

## Ratio measurements

Displays: ( $f_{1} / f_{2}$ ) times period multiplier; multiplier: 1-105.
Range: $F_{1}: 0$ to $50 \mathrm{MHz}, f_{2}: 0$ to 1 MHz in single ratio, 0 to 300 kHz in multiple ratio; catios averaged 1 to $10^{5}$ in decade steps.
Sensitivity: 0.1 V rms, each input (max).
Accuracy: $\pm 1$ count of $f_{1}+$ trigger error of $F_{2} . f_{1}$ is ap. plied to the decimal counters (enters "Ext." jack on front panel); $\hat{f}_{2}$ is applied to decade dividers (enters Signal Input jack).
Readout: dimensionless; decimal point positioned for number of periods averaged.
Self-check: Period Average Shelf-check applies.

## Scaling

Frequency range: 0 to 50 MHz .
Factor: by decades up to $10^{\theta}$, switch slected on rear panel. Input: front panel, Signal Input jack.

Output: in place of time base output frequencies.

## General

Display: 8 digits in-line; 99,999,999 maximun display.
Display storage: holds reading between samples; rear panel switch overrides storage.

Sample rate: time following a gate closing during which the gate may not be reopened is variable from $<0.2 \mathrm{~s}$ to 5 s in Frequency mode, independent of gate time; display can be held indefinitely.

## Signal input

Sensitivity: 100 mV rms.
Coupling: ac or $\mathrm{d} c$, separate BNC connectors.
Impedance: $1 \mathrm{M} \Omega$ in parallel with approx. 25 pF , all ranges.
Attenuation: step attenuator (SENSITIVITY switch) provides nominal sensitivities of $0.1,1$, and 10 V rms.
Trigger level adjustment: front panel control has $\pm 0.3 \mathrm{~V}$ trigger level range on 0.1 V position, $\pm 3 \mathrm{~V}$ range on 1 V position, $\pm 30 \mathrm{~V}$ range on 10 V position. A PRESET position automatically centers trigger level at 0 V .

Overioad protection: diodes protect imput circuit for up to 120 V rms ( $<500 \mathrm{~Hz}$ ) on 0.1 V range, 240 V rms on 1 V range, 500 V rms on 10 V range. Input resistance for overload conditions (input amplitude $>$ ten times SEN. SITIVITY) is $100 \mathrm{k} \Omega$ on 0.1 V range, and is approximately $1 \mathrm{M} \Omega$ on other ranges.
Pulse measurements: front panel TRIGGER LEVEL adjustment allows counting positive or negative pulses.

External input (selected by front panel Time Base switch):
Maximum sensitivity: 100 mV rms.
Impedance: $1 \mathrm{M} \Omega$, approx. $20 \mathrm{p} F, \mathrm{dc}$ coupled.
Overload: diodes protect input circuit up to 120 V rms ( $<500 \mathrm{~Hz}$ ).
Digital output: 4-line BCD 4-2-2-1, " 1 " state positive; includes decimal point and measurement unit, "0" STATE LEVEL: - 8 V . "1" STATE LEVEL: +18 V .
Impedance: $100 \mathrm{k} \Omega$, each line.
BCD reference sevels; approximately $+9.5 \mathrm{~V}, 350$ n source; approximately $-1 \mathrm{~V}, 100 \Omega$ source.
Prink command: +13 V to 0 V step; dc coupled.
Hold-off requirement: +15 V min., +25 V max. from chassis group ( $1000 \Omega$ source).
Cable connector: Amphenol 50-pin 57.30500.375, HP Part No. 1251-0086, 1 required.
Operating temperature range: $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Power supply: 115 or 230 volts $\pm 10 \%, 50$ to $60 \mathrm{~Hz} ; 95$ watts.
Weight: net, $32 \mathrm{lbs}(14,4 \mathrm{~kg}$ ) with blank plug.jn panel; shipping, $40 \mathrm{lbs}(18,2 \mathrm{~kg})$
Connectors: BNC (except remote program and BCD out).
Accessorias furnished: 10503 A Cable, $4 \mathrm{ft}(120 \mathrm{~cm})$ long, male BNC connectors. Detachable porver cord $71 / 2 \mathrm{ft}$ $(200 \mathrm{~cm})$ long, NEMA plug. Circuit Board Extender, rack mount conversion parts.
Dimensions: $51 / 4^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ side, $163 / 8^{\prime \prime}$ deep ( $133 \times 425$ $\times 416 \mathrm{~mm}$ ).


Frequency range: dc to 50 MHz .
Malinframe measurement functions: frequency, period, period average, ratio, scaling.
Compatible plug-ins: all, see pages 256-257.
$L$ and $M$ versions: differ only in time base specification. See below. General specifications are on page 254.
Price: 5245L, \$2725; 5245M, \$3475.
Frequency range: dc to 50 MHz .
Mainframe measurement functions: frequency only.
Compatible plug-Ins: all except 5264A, see pages 256-257.
Display: 6 digits, optionally expandable to 8.
Price: $\$ 2050$.

Frequency range: dc to 150 MHz .
Mainframe measurement functions: frequency, period, period average, ratio, scaling.
Compatible plug-ins: all, see pages 256-257.
Price: $\$ 248 \mathrm{~L}, \$ 3100 ; 5248 \mathrm{M}, \$ 3850$.
L\& M versions differ only in time base specification, see below. Other than frequency range. specifications are essentially same as Model $5245 \mathrm{~L} / \mathrm{M}$.

Time Base Specifications, 5245 Series

## 5245L, 5248L

Crystal frequancy: 1 MHz

## Stability

Aging rate: $<3$ parrs in $10^{\circ}$ per 24 hours afier 72 hours.
Short term: $<2$ parts in $10^{10} \mathrm{rms}$ with measurement averaging time of one second under constant environmental and line volt. age conditions.
Temperature: $<2$ parts in $10^{10} \mathrm{Fer}{ }^{\circ} \mathrm{C}$ from $-20^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$.
Line voltage $< \pm 5$ parts in $10^{10}$ for $10 \%$ change in line voltage from 115 V or 230 V rms.
Adjustment: fine frequency adjustment (range approximately 4 x $10^{-8}$ ) and medium frequency adjustment (range approximately $1 \times 10^{-6}$ ) are available from the front panel through the plug-in hole. Coarse frequency adjustment (range approximately $1 \times 10^{-8}$ ) is available at the rear of the instrument.
Output frequencies
At rear panel: 0.1 Hz to 10 MHz in decade steps, selecred by rear panel switch. Output is: $s$ volts p-p rectangular wave with 1000 s source impedance.
At front panel; 0.1 Hz to 1 MHz in decade steps; available at "Ext." jack, selected by Time Base switch; stability same as internal time base; 1 V peak-to-peak.
External standard frequency: $1 \mathrm{MHz}, 1 \mathrm{~V}$ rms into 1000 . Can be substituted for internal time base via rear panel EXT. STD. FREQ. connector.

## 5246L

Frequency: 1 MHz .
Stabllity
Aging rata; $<2 \times 10^{-i} /$ month.
Temperature: $<2 \times 10^{-6}\left(+10^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$.
LIne voltage: $<1 \times 10^{-i} 115 \mathrm{~V}, 230 \mathrm{~V} \pm 10 \%$.
Output frequency: $1 \mathrm{MHz},>3 \mathrm{~V}$ p.p into 1 k ?
External input: 1 V rms into $500 \Omega$.
$5245 \mathrm{M}, 5248 \mathrm{M}$
Crystal frequency: 5 MHz .
Stabillty
Aging rate: $<5$ pares in $10^{70}$ per 24 hours alter warm-up.
Short term (rms fractional frequency deviatlon): better than 5 parts in $10^{x 1}$ for 1 second averaging time.
Temperature: $<5$ pars in $10^{11} /{ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}(<2.5$ parts in $10^{\circ}$ within the entire span of $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ ).
Line voltage: $< \pm 1$ part in $10^{10}$ for $10 \%$ change in line voltage from 115 V or 230 V ims.
Load stability: rypically $< \pm 2$ parts in $10^{11}$ for any of the following loads: open, short, $50 \Omega$ resistive, $50 \Omega$ inductive, $50 \Omega$ capacitive.
Warm-up: for "off" periods up to approximarely 24 hours: 1 hour typical to reach 5 parts in $10^{\circ}$ of the frequency that existed when turned off. The 5 MHz crystal oscillator operates whenever the power cord is connected.
Adjustment: fine frequency adjustment, range approx. $5 \times 10^{-8}$. 16-turn control accessible through plug-in accessory compartment in front panel. Coarse frequency adjustment, range approx. $1 \times$ $10^{-6}, 20$-turn control at rear panel.

## Output frequencies

At rear panel: 5 MHz sine wave. 1 V rms into $50 \Omega$. Available at all times whenever power line cord is energized, whether front panel power switch is ON or OFF.
At rear panoli: 0.1 Hz to 10 MHz in decade steps: $s$ witch selected on rear panel; $3 \mathrm{Y} \cdot \mathrm{p}$ reccangular wave with 1000 source impedance at 1 MHz and lower; 1 V rms sine wave with $1000 \Omega$ source impedance only at 10 MHz .
At front panel: 0.1 Hz to 1 MHz in decade steps; arailable at "Ext." jack selected by Time Base switch; stability same as internal time base; 1 V peak-to-peak.
External standard frequancy: s or $10 \mathrm{MHz}, 1 \mathrm{~V}$ rms, into $1000 \Omega$. Can be subscitured for interna! time base via rear panel EXT. STD. FREQ. connector.

PLUG-IN ACCESSORIES
Increase 5245 Series Counter versatility Models 5253B, 5254C, 5255A, 5256A, 5257A, 5265A


## 5267A TIME INTERVAL UNIT

Range: 100 nsec to $10^{5} \mathrm{sec}$ with $5248 \mathrm{~L} / \mathrm{M} ; 1 \mu \mathrm{sec}$ to $10^{\mathrm{s}} \mathrm{sec}$ with $5245 \mathrm{~L} / \mathrm{M} ; 1 \mu \mathrm{sec}$ to $10^{6} \mathrm{sec}$ with 5246 L .
Resolution: 10 nsec with $5248 \mathrm{~L} / \mathrm{M}$ only; $0.1 \mu \mathrm{sec}$ otherwise. Input sensitivity: 100 mV rms.
input repetition rate: 5 MHz , max.
Input impedance: $1 \mathrm{M} \Omega / 35 \mathrm{pF}$.
Markers; start, stop pulses available at rear of counter.
Price: $\$ 500$.

## 5262A TIME INTERVAL UNIT

Range: $1 \mu \mathrm{sec}$ to $10^{\mathrm{s}} \sec \left(\right.$ ( $010^{n} \sec$ with 5246 L ).
Resolution: 0.1 usec .
Input sensitivity: 100 mV RMS.
Input repetitlon rate: better than 2 MHz .
Input impedance: from $10 \mathrm{~K} / 10 \mathrm{pF}$ at x0.1 multiplier senting to $10 \mathrm{Mn} / 20 \mathrm{pF}$ at $\times 100$ setting
Markers: start, stop pulses available at rear of counter.
Price: $\$ 375$.

## 5261A VIDEO AMPLIFIER

Bandwidth: 10 Hz to 50 MHz .
Input sensftivity: 1 mV .
Input impedance: $1 \mathrm{M} \Omega / 15 \mathrm{pF}$.
Auxiliary output: 40 dB gain max into $50 \Omega .300 \mathrm{mV}$ rms max sutput undistorted into son. Source impedance son.
Price: $\$ 525$.

## 5258A SENSITIVE PRESCALER

Bandwidth: 1 MHz to 200 MHz .
Input sensitivity: 1 mV .10 mV .200 mV rms.
Input impedance: 50 .
Scaling factor: $\}$.
Video amp output: 30 dB gain max at 1 mV sensitivity setting. Price: $\$ 1025$.

## 5252A PRESCALER

Bandwidth: dc to 350 MHz .
Input sensitivity: 100 mV rms.
Input impedance: son.
Scaling factor: 2,4 and 8 .
Price: 5885 .

## 5264A PRESET UNIT

Performs following basic functions:
(i) $\mathrm{N} \times$ frequency $\left.\begin{array}{l}\text { N x period } \\ \text { N x ratio }\end{array}\right\}$ measurements are made by mainframe
(ii) Counts N cuents where input is applied to AUX INPUT of 5264 A
(iii) Divides a frequency input applied to AUX INPUT by N .
Divided output available ar $/ \mathrm{N}$ OUTPUT
Frequency range aux Input: 20 Hz sa 100 kHz .
N range: 1 to 99.999 in integral steps.
Price: 8850.


5267A


5262A


5261A


5258A



5252A


SNAP-TOGETHER COUNTER
Low cost portable counters to 525 MHz
Model 5300A Measuring System


## 5300A Measuring System

With the 5300 A Measuring System, Iow cost counters reach new performance and versatility levels.

## Features

10 MHz , 50 MHz , or 525 MHz frequency range
100 ns time interval resolution
Autoranging
Unique time interval holdoff
Expandable through interchangeable modules
High accuracy
Battery operation
Compact and rugged
High reliability MOS/LSI circuitry and LED display
Designed for quick easy servicing
BCD output
Large scale integration and solid state display technology have produced a uniquely versatile and capable counter at a surprisingly low cost. Quick and easy to use, this counter does what is important-solves your measurement problems while saring you money. Versatility comes from modular construc-tion-take the counter mainframe and select the snap-onmodule that you need now; expand the capability later with more modules if and when you need them. Hewlett-Packard is engaged in an ongoing program to develop new modules to expand the capability of the 5300 A into other functional areas. An optional battery pack provides portable cord-free operation, eliminating power problems and ground loops. This is versatility that truly avoids obsolescence and optimizes your instrument dollars.

## Unique benefits

The 5300A offers you a portable precision frequency counter which will measure frequencies to 525 MHz and time intervals with 100 ns resolution. The 5300 A also has autoranging. Autoranging enhances ease of operation by automatically selecting the correct gate time to fill the display. Any frequency within range of the $5301 \mathrm{~A}, 5302 \mathrm{~A}$, or 5304 A may be applied and the counter will select the correct gate time up to 1 sec for maximum resolution without exceeding the display range. On the 5302 A and 5304 A , autoranging is also provided for the Period Average function to select the number of periods to be averaged.

A unique feature of the 5304 A Timer/Counter module is the time interval holdoff. The time interval holdoff feature has been added so that a fixed delay may be added between the start of the measurement and the enabling of the stop channel. Thus electrical pulses which occur between the events that are to be measured can be ignored; e.g., a relay closure time may be measured using the time interval holdoff to prevent false triggering on the relay bounce. The delay itself can be digitally measured by the 5304 A (see 5304A specifications).
The 5300 A has been designed for easy servicing and minimum down time. The small number of components in the 5300 A allows problems to be easily traced to a funcrional block. Troubleshooting is also simplified by the modular construction. The 5300 A may be controlled through the connector which ties it to the modules, and a diagnostic roucine will isolate problems for easy servicing. A service support package is available for this purpose (see accessories).

Features like these make the net cost of owning a 5300 A Measurement System less than that of conventional counters.

## ELECTRONIC COUNTERS



Actual Size

## 5300A Measurement System Mainframe Specifications

Mainframe unit provides system with power, reference frequency, display, counting logic and timing control.
Time base

Crystal frequency: 10 MHz .
Stablilty:
Aging rate: $<3$ parts in $10^{7} / \mathrm{mo}$.
Tamperature: $< \pm 5$ parts in $10^{\circ}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$.
Typically: $< \pm 2$ parts in $10^{\circ}: 15^{\circ}$ to $40^{\circ} \mathrm{C}$.
Line voltage: $< \pm 1$ part in $10^{\circ}$ for $10 \%$ line variation.
Oscillator output: 10 MHz , approximately 1 V rms ar rear panel BNC, $100 \Omega$ source impedancce.
External input: 1 MHz to $10 \mathrm{MHz}, 1 \mathrm{~V}$ rms into $200 \Omega$.

## General

Display: 6digit solid state LED display (gallium arsenide phosphide light-emitting diodes) including decimal point and annunciator units. OVERFLOW: LED ligh indicates when display range is exceeded.
Display storage: holds reading between samples.
Sample rate: sample rate contral adjusts the delay from the end of one measurement to the stant of a new measurement. Variable from 50 ms to 5 seconds. HOLD position: display can be held indefinitely. HOLD input on rear panel connector also provides sample rate control or hold by contact closure to ground or TTL tupe low level.
Reset: front panel pushbutton switch resets all registers and initiates new measurement. Reset input by contact closure to ground or TTL type low level also available on rear panel connector.

Operating temperature: $0^{\circ}$ to $50^{\circ} \mathrm{C}$.
Power requirements: is or 230 volts $\pm 10 \%$. 50 10400 Hz , 25 VA maximum (depends on snap-on module). Mainframe power nominally 5 watts.
Battery operation: with 5310A rechargeable battery pack (see 5310 A specifications).
Digital output: digital serial, 4-bit $B C D$ parallel available at rear panel connector:
Code: 4 -line 1-2-4-8 BCD, "I" state low, TTL type logic levels.
Declmal point: decimal point code (Binary "1111") auto. matically inserted at correct digic position.
Print command: positive step, TTL output.
Inhbit: concact closure to ground or TTL low level, inhibits start of new measurement cycle.
Connector: 20-pin PC connector, Mating connector Viking $2 \mathrm{VH} 10 / 1 \mathrm{JN}$ or equivalent.
Paraliel data output: a ailable with printer interface, see 10533A. specifications.
Weight: net, $31 / 3 \mathrm{lbs}(1,5 \mathrm{~kg}$ ) ; shipping, $51 / 2 \mathrm{lbs}(2,5 \mathrm{~kg}$ ).
Accessories avaikable:
Digital recorder interface: see 10333A specifications.
Service support package: contains an interface card and 4 diagnosric cards for easy troubleshooting of the 5300A, Acces. sory 10548 A . Price: $\$ 90$.
Rack mount kit: a rack mount is available, part number: 10573A single, 10574A double. Price: $\$ 35$.
Leather carrying case: holds 5300A, snap-on module, and the 5310A batery pack. Accessory 18019A. Price: \$25.
Dimensions (with soap-on module): height, $31 / 2^{\prime \prime}(89 \mathrm{~mm}$ ), width, $61 / 4^{\prime \prime}(160 \mathrm{~mm})$, depth, $93 / 4^{\prime \prime}$ (248 mm).
Price: $\$ 395$.


5301A


5302A

## 5301A 10 MHz Frequency Counter Module Input channel

Range: 10 Hz to 10 MHz .
Sensitivity (min) : 25 mV rms sine wave 50 Hz to 1 MHz .50 mV rms sine wave 10 Hz to $10 \mathrm{MHz} ; 150 \mathrm{mV}$ p-p pulse at minimum pulse width, 50 ns . Sensitivity variable to 2.5 V rms.
impedance: $1 \mathrm{M} \Omega$ shunted by less than 30 pF .
Overload protection: 500 V (dc + peak ac). 250 V rms, de to 400 Hz .10 V rms at 10 MHz .
Trigger level: selectable positive, negative, or zero volts.
Frequency measurement
Range: 10 Hz so 10 MHz .
Gate times: manually selected 0.1 , 1 , or 10 seconds. ALTO position selects gate dime to 1 second for maximum resolution.
Accuracy: $\pm 1$ count $\pm$ time base accusacy.

## Open/close (totalizing)

Range: 10 NHz max.
External gate: gate signal by contact closure to ground or TTL low'.

## General

Check: counts internal 10 NHz reference frequency.
Operating temperature: $0^{\circ}$ to $50^{\circ} \mathrm{C}$.
Power requirements: including 5300 A mainframe, nominalls 8 watts
Weight: net, 2 lbs ( $0,9 \mathrm{~kg}$ ) ; shipping, $31 / 4 \mathrm{Ibs}(1,5 \mathrm{~kg}$ )
Dimensions: see 3300 A Mainframe.
Price: $\$ 14 \mathrm{~s}$.

## Specifications, 10533A Recorder Interface

The 10533A accessory provides an interface between the 5300A measurement system mainframe and a standard parallel-input recorder such as the HP 5055A. The interface module provides conversion from the 5300 A serial dara output to a standard parallel format.
Output format: 10 parallel digits; 6 deta, 1 decimal point, 1 over. flow, 1 exponent and 1 exponent sign.
Code: A-line 1-2-4-8 BCD; "1" state Low, TTL Jevels.
Decimal point: foating decimal point automatically inserted at correct digit posikion. Coded " 1111 ". ("*' on standard HP 3055A print wheels). Internal jumper wire removes decimal point from data format if desired.
Overflow: coded "1111" ("*") printed in first printer column when 5300A overflow light is on.
Exponent: $\pm 0, \pm 3, \pm 6$ corresponding with 5300 A measuremenc units.


10533A Recorder Interface

Print command: negative step, TTL levels.
Inhibit input: +2.0 V or higher prevents the 5300 A from recycling.
Power requirements: 100 mA at 5 volts, provided by 5300 A mainframe.
Price: $\$ 150$.

## 5302 A 50 MHz Universal Counter Module Input channols A and B

Range: channel $A: 10 \mathrm{~Hz}$ to 50 MHz ; channel $\mathrm{B}, 10 \mathrm{~Hz}$ to 10 MHz .
Sensitivity (min): 25 mV rms sine wave 50 Hz 101 MHz .50 mV rms sine wave 10 Hz to 10 MHz 100 mV rms sine wave at 50 MHz .150 mV p.p pulse at minimum pulse widch, 50 ns . Sensr. tivity variable to 2.5 V rms.
Impedance: 1 MN shunted by less than 30 pF .
Overload protection: 500 V (dc + peak ac). 250 V rms , de to $400 \mathrm{~Hz}, 10 \mathrm{~V}$ rms above 10 MHz
Trigger level: selectable positive, negaive, or zero volts.
Slope: automatically switched to trigger on positive slope for posidive pulse and negative slope for negative pulse. Positive slope for sinusoidal inputs.
Marker outputs; rear panel BNiC. TTL low level while gate is open.

## Frequency

Range: channel $\mathbf{N}: 10 \mathrm{~Hz}$ to 50 MHz , prescaled by 10 : channel B 10 Hz to 10 MHz .
Gate times: manually selected $0.1,1$, ar 10 seconds. AUTO position selects gate time to 1 second for maximum resolution.
Accuracy: $\pm 1$ count $\pm$ time base accuracy.

## Time interval

Range: 500 nsec to 1000 seconds.
Input: channels A and B.
Resolution: 100 ns to 1 ms in decade steps.
Accuracy: $\pm 1$ count $I$ time base accuracy $\pm$ trigger error.*

## Period

Range: 10 Hz :o 1 MHz .
Input: channel B.
Resolution: 100 ns to 1 ms in decade steps.
Accuracy: $\pm 1$ count $\pm$ time base accuracy $\pm$ rrigger error.**

## Period average

Range: 10 Hz to 1 MHz .
input: channel B.
Periods averagod: 1 to $10^{3}$ automatically selected.
Frequoncy counted: 10 MHz .
Accuracy: $\pm 1$ count $\pm$ time base accuracy $\pm$ «rigger error.**
Ratio
Display: $\mathrm{F}_{\mathrm{n}} / \mathrm{F}_{\mathrm{i}}$ times mulciplier ( N ) . $\mathrm{N}=10$ to $10^{-}$, selectable in decade steps.
Range, channel $A$ : 10 Hz to 1 MHz . Channel B: 10 Hz to 10 MHz .
Accuracy: $\pm 1$ count of $\mathrm{F}_{\mathrm{B}} \pm$ trigger error or $\mathrm{F}_{\mathrm{A}}$. ${ }^{*}$

## Open/ciose (totalizing)

Range: 10 MHz max.
Input: channel $B$ opening and closing of gate initiated by front panel pushbutton switch.

## General

Check: counts internal to MHz reference frequency
Operating temperatura: $0^{\circ} 1050^{\circ} \mathrm{C}$.
Power requlrements: including 5300A mainframe, nominally 10 watts.
Welght: net, $2 \mathrm{lbs}(0,9 \mathrm{~kg})$; shipping, $31 / 4 \mathrm{lbs}(1,5 \mathrm{~kg})$.
Dimensions: see 5300ג Mainframe.
Price: $\$ 275$.


5304A

## 5303B Frequency counter module Input channel A (CW or burst)

Range: DC co 525 MHz . prescaled by 8 .
Sansitivity: (fixed):
100 mV rms sine wave, dc to 500 MHz
125 mV cms sine wave. 500 MHz to 525 MHz
Signal must pass through zero.
Impedance: $50 \Omega$.
Overload protection: s V rms (input circuitry fuse prorected).

## Input Channel B (CW or burst)

Range: 50 Hz to 80 MHz , direct.
Sensitivity (automatic):
25 mV rms sine wave, 100 Hz to 50 MHz
50 mV rms sine wave, 50 Hz to 100 Hz and 50 MHz to 80 MHz Sensitiviry is adjusted automatically by AGC (automatic gain control). Effective up to input clipping level of $10 \mathrm{~V}_{\mathrm{p}} \mathrm{p}$.
Impedance: $1 \mathrm{M} \Omega$ shunted by less than 40 pF .
Overioad protection: $250 \mathrm{~V} \mathrm{mms}, 50 \mathrm{~Hz}$ to $10 \mathrm{KH}_{2}$ declining to 10 V ims above 10 MHz .

## Frequency measurement

Resolution: (selectable): $1,10.100,1000 \mathrm{~Hz}$.
Accuracy: $\pm 1$ digit $\pm$ time base accuracy.

## General

Check: counts internal 10 MHz reference frequency.
Ovarlow: Iight indicates display exceeded.
Operating temperature: $0^{\circ}$ to $50^{\circ} \mathrm{C}$.
Power requirements: including 5300 A mainimame, nominally 10 watts.
Weight: Net, 2 Ibs ( $0,9 \mathrm{~kg}$ ). Shipping, $31 / 4 \mathrm{lbs}(1,5 \mathrm{~kg})$.
Dimensions: see 5300A Mainframe.
Price: \$80G.0c.
Option 001: High stability time base.
Frequency: 10 MHz .
Stability: aging rate: <1.2 part in $10^{6} /$ year.
temperature: $< \pm 5$ parts in $10^{\circ}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$.
line voltage: $< \pm 5$ parts in $10^{8}$ for $10 \%$ line variation.
Oscillator output: 10 MHz , approximately 1 V rms at rear panel BNC, $200 \Omega$ source impedance.
Extornal input: : $1010 \mathrm{MHz}, 1 \mathrm{~V}$ rms into $500 \Omega$.
Price: $\$ 175.00$.

## Specifications, 5304A Timer/Counter Module Input Channels $\mathbf{A}$ and B

Range: dc coupled; 0 to 10 MHz . AC coupled; 100 Hz to 10 MHz . Sensitivity (min): 25 mV rms sine wave to 1 MHz . 50 mV rms sine wave to 10 MHz .150 mV p.p pulse at minimum pulse width.

[^25]40 nsec. Sensitivity can be decreased by 10 or 100 times using ATTENUATOR switch.
impedancs: $1 \mathrm{M} \Omega$ shunted by less than 30 pF .
Overload protection: 250 V rus on X10 and X100 attenvator settings. On Xl attenuator setting 120 V rms up to 1 kHz , decreasing to 10 V rms at 10 M Hz .
Trigger level: PRESET position centers triggering about 0 volts, or continuously variable over the range of -1 V to +1 V times attenuator setting.
Slope: independent selection of triggering on positive or negative slope.
Channel inputs: common or separate lines.
Gate output: rear panel BNC. TTL low level while gare is open.

## Time interval

Range: 500 ns to $10^{4} \mathrm{sec}$.
Input: channels $A$ and $B$ : can be common or separate.
Resolution: 100 ns to 10 ms in decade steps.
Accuracy: $\pm 1$ count $\pm$ time base accuracy $\pm$ trigger error,*
Time interval holdoff; front panel concentric knob which inserts variable delay of approximately $100 \mu \mathrm{~s}$ to 100 ms berveen START (channel A) and enabling of STOP (channel B); may be disabled. Electrical inpuls during delay time are ignored. Delay may be digitally measured in CHECK and TIME INTERVAL positions. Delay output: rear panel BNC. TTL low level during delay time.

## Poriod average

Range: 10 Hz to 1 MHz .
Input: channel A.
Pariod averagad: 1 to $10^{2}$ automatically selected.
Frequency counted: 10 MHz .
Accuracy: $\pm \mathrm{l}$ count $\pm$ time base accuracy $\pm$ trigger error.**
Frequency
Range: 0 to 10 MHz .
Input: channel A.
Gate times: manually selected 0.1 , 1 , or 10 seconds. AUTO posi. tion selects gate time to 1 second for maximum resolution.
Accuracy: $\pm \mathrm{I}$ count $\pm$ time base accuracy.

## Open/close (totalizing)

Range: 10 MHz max.
Input: channel A. Opening and closing of gate initiated by front panel pushbutton switch.

## General

Check: inserts internal 10 MHz reference frequency into channels A and B .
Operating temperature: $0^{\circ}$ to $50^{\circ} \mathrm{C}$.
Power requirements: including 5300 A mainframe, nominally 10 watts.
Dimensions: see 5300A mainframe.
Welght: net, $2 \mathrm{lbs}(0,9 \mathrm{~kg})$; shipping, $31 / 4 \mathrm{lbs}(1,5 \mathrm{~kg})$.
Price: $\$ 325$.


## Specifications, 5310A battery pack module

(Provides battery power from rechargeable nickel-cadmium cells)
Battery capacity: 48 watt-hours, nominal. Minimum 3, typically 5 hours of continuous operation at charging and operating temperature ( $20^{\circ}$ to $30^{\circ} \mathrm{C}$ ).
Recharging time: typically 18 hours.
Battery voltage: 12 V dc .
Low voltage indicator: light begins to glow at approximateiy $90 \%$ discharge.
Line failure protection: allows instrument to be operated in LINE position with automatic switch-over to battery pow. er if line voltage fails. Batteries receive trickle charge in LINE position.
Operating temperature: operating: $0^{\circ}$ to $50^{\circ} \mathrm{C}$. Charging: $0^{\circ}$ to $40^{\circ} \mathrm{C}$, mainframe not operating.


Power requirements: charging power via 5300 A mainframe, nominal 7.5 watts.
Weight: net, $5 \mathrm{lbs}(2,3 \mathrm{~kg})$; shipping, $61 / 4 \mathrm{lbs}(2,9 \mathrm{~kg})$.
Accessories furnished: shoulder carrying strap.
Dimensions: battery pack plugs berween 5300 A mainframe and snap-on module. Increases height of instrument by $1.5 \mathrm{in}(38.4 \mathrm{~mm})$.
Price: 5195.013 .

## 18019A Carrying Case

This leather carrying case prorects the s300A during transit. It hoids the mainframe and a functional module, with the baitery pack inserted between them. The side pocket conveniently stoces cables, leads, probes, or connec. tors to be used with the 5300A System.
Price: 18019A, 525.00.



Optional service support package
The unique HP 10547A Service Kit provides an efficient means to rapidly troubleshoot and repair the 5300 A . It's proven to be both a time and money saver. The kit contains

- an interface card and 4 diagnostic cards for casy troubleshooting of the 5300 A
- a spare power supply board
- other miscellaneous spare parts for the 5300 A , including replacements for all five major IC's

The four diagnostic cards, shown in use above, contain 16 tests that locate problems to component level. A complete diagnostic fow chart in the $5300 A$ manual provides the step by step troubleshooting procedure.

When the diagnosis of the 5300A is complete, repair of the instrument is simple. All components are easily accessible merely by removing a single screw and snapping out the main PC board.
Price: $10547 \mathrm{~A}, 5250.00$; $10548 \mathrm{~A}, 590.00$ (interface card and 4 diagnostic cards onily).


5300A components are accessible in about 15 seconds


## Measurement features

The Hewletr-Packard 5326/5327 family offers versatile, high precision counters to measure frequency, time intervals, or voltage. With six models to choose from, you can select just the capability to solve your orv measurement problems without paying for extras. Each model of the $5326 / 5327$ family provides the following features to make your measurements simpler, easier to set up, and more accurate:
Burst and CW frequency measurement-special gating circuits start a count only when your input signal is present. You can measure a frequency burst as easily as a CW signal.
Period avarage measurement-to give you period informa. tion directly; or to give you faster measurements at increased resolution and accuracy on low frequency signals.
rotalize, scale, ratio, multiple ratio-extra problem solving power for your special requirements.
Systems options-select remore programming and digital output to suit your application.
High sensitivity input channels (all models except 5326C) ac. cepc low-level signals down to 5 mV to 50 MHz . On the 532 series the 550 MHz counting circuirs provide sensitivity of 25 mV to 550 MHz .
Optional time basas-can give you even greater precision and accuracy.
Front Panel Trigger Lights on the counters show clearly when the counter is triggering properly on the input signal.
Blanking makes your results easier to read by suppressing unwanced leading zeros.
In addition, the 5327 series of 550 MHz counters gives unique fused input protection against damage from accidental overloads.

## Time interval measurements

To solve a wide range of time interval measurement problems the 5326/5327 family offers:
One shot time interval measurements from $0.1 \mu \mathrm{sec}$ to $10^{8}$ sec.
Time interval averaging with resolution better than 100 ps for intervals as short as 150 ps .

Hysteresis compensation to make serup easier, quicker.
For one shot measurements, resolution is selectable from $0.1 \mu \mathrm{sec}$ to 10 seconds. However, for intervals as shoct as 150 $p s$, time interval averaging yields a dramatic increase in accuracy, with resolution up to a thousand times betrer than for single shot measurements.

Unique high speed synchronizers provide the key to HewlettPackard's exclusive time interval averaging capability. The synchronizers ser up a very accurate statistical average for up to $10^{5}$ time intervals; resolution improves in proportion to the square rooc of the number of incervals averaged. To maintain accurate and reliable results, the synchronizers also lock out false measurements such as negative time intervals (stop occurs before start).

Time interval averaging may be used whenever the time interval is repetitive. whether at a uniformly periodic or a completely random rate, provided the input signal repection cate is not harmonic with the 10 MHz clock. This condition is easily met for many potential applications of time interval averaging. Such applications include measurements of logic timing and propogation delays where time intervals are well below the range of conventional one-shot counter techniques.

Hysteresis compensation, exclusive with Hewlett-Packard, means you only have to set trigger levels once for both positive going and negative going triggering. Most counters have fixed hysteresis bands for a given trigger level setting. So the actual trigger point changes from one edge of the hysteresis band to the other when you change the trigger slope. But with the entire 5326/5327 family, the actual trigger level stays constant when you change slope, because the hysteresis band offsets to compensate. You save a step in setting trigger levels and eliminate a common source of error.

## The internal DVM

Borh the 5326 B and the 5327 B include an internal DVM. The DVM gives the user two major benefits. The first benefit is more accurate and far more convenient setting of trigger
levels for time interval measurements. The second benefit is substantially increased single instrument capability, especially for systems applications.

With the interna! DVM, you can actually set trigger levels with digital accuracy. The unique functions READ A and READ $B$ monitor the internal trigger level settings for the $A$ and B chamnels. The values are shown directly on the display. This method has been found far superior to conventional marker rechniques using Z -axis modulation on a scope. The DVM makes it possible to accurately set up time interval measurements such as pulse width berseen the $50 \%$ levels.

Of course, the integrating DVM also can make accurate external voltage measurements. Thus a single instrument can do the job of two. For systems applications, this means there is only one instrument to program and a single set of outputs for all measurements.

## High stabillty time bases

The standard time base for the $5326 / 5327$ family uses a stable 10 MHz crystal oscillator. This room temperature crystal provides fast warm-up, with a long term aging rate of less than 3 parts in $10^{\circ}$ per month.
Two higher stability time bases are available as options. Borh optional time bases meet FCC specifications for checking base station rransmitters. Option 010, a temperature compensated crystal oscillator, provides significantly improved cenr. perarure stability, as well as an improved aging rate of 1 part in $10^{7}$ per month. For the many applications requiring even greater stability, Option 011 provides a proportional oven controlled crystal oscillator that gives exceptionally good tempera. ture stability and a long term aging rate of less than 5 parts in

1010 per day. The 5327 C with Option 011 is FCC type approved for broadcast services.
A summary of the time base option specifications appears on the botrom of the page.

## Systems compatiblity

Each member of the $5326 / 5327$ family can be effectively used as a fast, efficient systems instrument.
Option 003 provides 4 -line 1.2 .4 .8 BCD output with " 1 " stare positive. This output is suitable for sysrems use or for output devices such as the HP Model 5050B or 505sA Digital Recorders or the 3489A Data Punch.
Option 002 (all models) and Option 004 ( $5326 \mathrm{~A} / \mathrm{B}$ and $5327 \mathrm{~A} / \mathrm{B}$ only) provide remote programming capability via contact closure to ground or DTL drive. A rear panel connector provides access to all programmable circuits. With Op. tion 002 all front panel controls are single line programmable except the FAST/NORM MODE, SEPARATE-COMMON switch (the CHECK position is programmable on the $5326 A / B$ and $5327 \mathrm{~A} / \mathrm{B}$ only), inpur attenuators, and ac-dc input coupling switches. With Option 004 all front panel controls including all signal input conditioning are single líne programmable except the FAST/NORM MODE. Both Options 002 and 00d provide programmable trigger level controls through single line analog signals.
In addition, the HP 10542 A Remote Programming Inter. face provides two digital-to-analog converters to enable the 5326/5327 series with Option 004 to be completely pro. grammed from a standard 40-bit digital output register for the HP 2100 series computers.

Model	Description	Frequency Range	Perlod Average Totallze/Aallo Scaling	Time Interval Time Interval Averaging	DVM (DC Voltage)	Price
5328C	Multi-Function Counter	50 MHz				\$ 950
5326A	Universal Timer/Counter	50 MHz				1,250
53268	Universal Timer/Counter/DVM	50 MHz				1,595
5327 C	Multi-Function Counter	550 MHz				1,525
5327A	Universal Timer/Counter	550 MHz	צTETETE	ETETET		1,850
5327日	Universal Timer/Counter/DVM	550 MHz	\|cmant	[1T1T1	TETH14	2,195

$5326 / 5327$ specifications

Display: 7 digics (8 optional)
Blanking: suppresses display, of unwanted zeros left of the most significant digir.
Display storage: holds reading betreen samples. Rear panel switch overrides storage.
Sample rate: FAST and NORM ranges, and HOLD position.
Overflow: neon indicares when display range is exceeded.
Operating temperature: $0^{\circ}$ to $50^{\circ} \mathrm{C}$ (see DVM Temp. Range).
Gate output: TTL level pulses, fow while gase open, rear panel.
Power requirements: $115 / 230 \mathrm{~V} \pm 10 \%$, $50 / 60 \mathrm{~Hz}, 70$ watts (max).
Weight: max: net, $16 \mathrm{lbs}(7.4 \mathrm{~kg}$ ): shipping, 18 lbs 16 oz ( 8.7 kg ).
Dimensions: $3.15 / 32^{\prime \prime}$ high $\times 163 / 4^{\prime \prime}$ wide $\times 111 / 4^{\prime \prime}$ deep ( $88,2 \times$ $425 \times 286 \mathrm{~mm}$ )
Accessories furnished: $\pi 1 / 2$ fl power cord; rack mount $k j t$.
Accessories available
HP 10503A: sor BNC cable, 4 h ( 122 cm ). Price, $\$ 13$.
HP 10542A: remole programming interface enables interfacing between the $5326 / 5327$ series counters with Option 004 and a
40.-bit output register. Includes two (2) 7 bit digital-to-analog converters for level controls and decoding for time base and function selector. Price, $\$ 500$.
HP Cable 562A.16C: ( 6 ft .183 cm ) to connect $5326 / 5327$ series with Option 003 to HP SOSOB Digital Recneder. Price. $\$ 50$.
Option 001: 8 -digir display. Price, 375.
Option 002: remote programming. All front panel contrils are single line programmable except:
SEP-COM switch: CHECK is programmable ( $5326 \mathrm{~A} / \mathrm{B}$. (327A/B onlj) FAST/NORM mode. Input attenuators. $A C / D C$ inpur signal soupling.

## Price: $\$ 79$

Option O03: digital nutput (for numerals and polatity only). Price: $\$ 50$.
Option 004: remore programming including ail signal inpur con. ditions (includes attenuators and ac/dc switches). All frone panel controls are programmable except FAST/NORM mode. Price: $\$ 200$.

High stability time base options

Option	Agling Rate	Shart Terim Stablity	Temperature Stability	Prios
Standard	$<^{3} \times 10^{-1} / \mathrm{mo}$	$<5 \times 10^{-9} / 1 \mathrm{sec} \mathrm{rms}$ (typ)	$<=2.5 \times 10^{-6}, 0^{\circ} 10500^{\circ} \mathrm{C}$	included
Optton 010	$<1 \times 10^{-7 / m o}$	$<1 \times 10^{-9} / 1 \mathrm{sec}$ rms (typ)	$< \pm 5 \times 10^{-7} \cdot 0^{\circ}$ to $50^{\circ} \mathrm{C}$	\$150
Option 011	$<5 \times 10^{-10} / \mathrm{day}$	$<1 \times 10^{-11} / 1 \mathrm{sec} \mathrm{ims}$	$<3 \times 10^{-9}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$	350

## 550 MHz Universal Timer/Counter/DVM



5326B and 5327B Specifications

## Jnput Channels A and B

Range: dc-coupled: 0.50 MHz ; ac-coupled: $20 \mathrm{~Hz}-50 \mathrm{MHz}$.
Sènsitivity (min): 0.1 V rms sine wave; 0.3 V p-p pulse; 8 ns minimum pulse width. Sensitivity can be decreased by 10 or 100 times, using the $\Lambda$ TTENUATOR swich.
Impedance: $1 M \Omega$ shunted by less than 25 pF .
Dynamic input voltage range: 0.1 to 3 V rms ac times attenuator setring. $\pm 5 \mathrm{~V}$ dc rimes amenuator setting.

Trlgger lougl: PRESET to center triggering about 0 V or variable crer the range of -3 V to +3 V times attenuator serting. Trigger threshold band $<1.0 \mathrm{mV}$, referred to input at maximum fre. quency
Overload grotection: 250 V rms on all attenuator settings, excepr 25 V rms on X 1 above 50 kHz .

Slope: independent selection of positive or negative slope.
Channel inguts: common or separate lines.
Marker outputs: rear panel BNC's. DTL pulse, low for approx $2 \mu 5$ after trigger point for $A$ and $B$ channels.

Input Channel C and $\mathrm{C} \div 10$
Range: 5326B: Channel C: dc-coupled; 0.50 MHz .5327 B : Channel $C$ : ac-coupled; $1 \mathrm{kHz} .50 \mathrm{MHz} ; \mathrm{C} \div 10$ (prescale); 0.550 MHz .
Sensitivity: 5326B: Channel C: 5 mV ms. 5327B: Channel $C$ : $5 \mathrm{mV} \mathrm{rms} ; \mathrm{C} \div 10$ (prescale) ; 25 mV rms.

Impedance: $50 \Omega$ nominal.
Maximum input: 3.5 voles rms; 5.0 roles peak.
Trigger level: 0 volts.
Location: rear panel.
Start
(Totalizing and Scaling)

Range: 0.10 MHz .
Factor: $1-10^{*}$ selecrable in decade steps.
Output: rear panel TIME BASE BNC
Display: Channel A input divided by scaling factor

[^26]
## Frequency

Range: $5326 \mathrm{~B}: 0.50 \mathrm{MHz}, 5327 \mathrm{~B}: 0.50 \mathrm{MHz}$ (direct); $0-550 \mathrm{MHz}$ (prescaled).
Input: 5326B: Channel A or Channel C (switchable), Channel A provides triggered frequency measurement. 5327B: Channel $A$; Chanel $C$ for direct and $C \div 10$ for prescaled (switchable) Channel A provides triggered frequency measurement.
Gate tlmes: $0.1 \mu \mathrm{~s}$ to 10 s in decade steps.
Accuracy: direct: $\pm 1$ count $\pm$ sime base accuracy. Prescaled: $\pm 10$ counts* $\pm$ time base accuracy.
Display: $\mathrm{MHz}, \mathrm{kHz}$, or GHz with positioned decimal point.

## Time interval

Range: $0.1 \mu \mathrm{~s}$ to $10^{\mathrm{s}}$ seconds
Input: Channels $A$ and $B$; can be common or separare.
Froquency counted: 10 MHz to 0.1 Hz in decade sreps.
Accuracy: $\pm 1$ count $\pm$ time base accuracy $\pm$ trigger error.**
Display: $\mu \mathrm{s}$, ms, seconds or $10^{\prime} \mathrm{s}$ of seconds with positioned decimal point.

## Time interval average

Range: 0.15 ns to 10 s
Intervals averaged: $1-10^{8}$ selectable in decade steps.
Input: Channels $A$ and $B$; can be common or separate.
Frequoncy counted: 10 MHz
Accuracy: $\pm$ cime base accuracy $\pm 2 \mathrm{~ns} \pm$
$\frac{\text { (trigger error** } \pm 100 \mathrm{~ns} \text { ) }}{\sqrt{\text { intervals averaged }}}$
Display: ns, $\mu s$ with positioned decimal point.

## Perlod

Range: $0-10 \mathrm{MHz}$
Input: Channel A.
Frequency counted: 10 MHz to 0.1 Hz in decade steps.
Accuracy: $\pm 1$ count $\pm$ time base accuracy $\pm$ rigger error.***
Display; $\mu s, \mathrm{~m}$, seconds or 10 's of seconds with positioned decimal point.

- ** Trigger error is lass than $=0.3 \%$ of one period $\div$ periods averaged for sig. nals with 40 dEm or better signal-to-noise ratio and 100 mV rms amplitude.


## Period average

Range: 0.10 MHz .
Perlods averaged: $1-10^{s}$ selectable in decade steps.
Ingut: Channel A.
Frequancy counted: 10 M Hz .
Accuracy: $\pm 1$ count $\pm$ time base accuracy $\pm$ trigger error.*** (See footnote, page 224.)
Display: ns, $\mu s$ with positioned decimal point.

Ratio
Display: any input function/ $\mathrm{F}_{\text {cxe }}$ times Multiplier ( M ). $\mathrm{M}=110$ $10^{3}\left(10-10^{\circ}\right.$ when prescaling) selectable in decade sreps.
Range: any input function. See appropriate function section.
Fex: (Exrernal Oscillator Input) $100 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$.
Mode: any inpur function.
Accuracy: accuracy of selected input function $i+$ trigger error of Fext.

## Integrating Digital Voltmeter (5326B and 5327B only)

The unique combination of an integrating digital volmeter and an electronic timer/counter produces an instroment which can do much more than can be done with a separate counter and a separate DVM, The maintrame DVM in the 5326 B and 5327 B easily measures $\pm$ dc levels in three programmable ranges from $\pm 10 \mathrm{~V}$ to $\pm 1000$ V. Plus, the DVM can internally measure and set the sart and stop time interval trigger point levels. This leature, together with hysteresis compensation, gives the 5326 B and 5327 B the easiest and most accurate trigger level seting system available with none of the drawbacks of oscilloscope marker techniques. The DVM measure. ment (integration) time is selectable from 1 ms to 10 sec to permit a trade-off of resolution vs. measurement time.

Technique: voltage-to-írequency conversion.
Voltage ranges: manual selection.

RANGE   ( $V$ do)	RESOLUTION   (1 sec, integretion tima)	INPUT IMPEDANCE
10	$100 \mu \mathrm{~V}$	10 Ma
100	1 mV	10 MR
1000	10 mV	$10 \mathrm{M} \Omega$

input: single ended.
Polarity: automatic polarity detection.
Overrange: $25 \%$ overrange on 10 V and 100 V ranges with full accuracy.
Overload protection: 1100 V dc all ranges.
Accuracy: after 10 minutes warm-up (within 90 -day calibration period).

Range	Stablity	Linaarity	Zere Drift	Countar
	$(\%$ of Reading $)$	(\% of Range)	(\% of Range)	
10 V	$\pm 0.04 \%$	$\pm 0.01$	$\pm 0.01 \%$	$\pm 1$ count
100 V	$\pm 0.04 \%$	$\pm 0.01 \%$	$\pm 0.01 \%$	$\pm$ i count
1000 V	$\pm 0.08 \%$	$\pm 0.01 \%$	$\pm 0.01 \%$	$\pm 1$ count

Operating temperature: $10^{\circ} \mathrm{C}$ io $40^{\circ} \mathrm{C},<80 \% \mathrm{RH}$,

The heart of the integrating digital volmeter in the $5326 / 5327$ is the very stable voltage-to.frequency converter.

Using this converter, one obtains a very stable linear digital voltmeter with high resolution and excellent accurac:. This DVM can also measure high frequency ac voltages using the HP 11096 ac probe for voltages of 0.25 V to 30 V rms with $\pm 5 \%$ accuracy and with $4 \mathrm{M} \Omega / 2 \mathrm{pF}$ input impedance. The frequency range is 100 kHz to 500 MHz . The combination of an integrating digital voltmeter with a timer/counter greatly expands the capabilities of both insiruments. Thus the user of the 5326 B or the 5327 B Timer/Counter/ DVM has a digital measurement system of unequaled capability at a moderate cost.

## Measurement time

\(\left.$$
\begin{array}{cl}1 \mathrm{msec} & 2 \text { digits } \\
10 \mathrm{msec} \\
100 \mathrm{msec} \\
1 \mathrm{sec} \\
10 \mathrm{sec}\end{array}
$$ \quad \begin{array}{l}3 digits <br>
4 digits <br>
5 digits <br>

6 digits\end{array}\right\}\)|  |
| :--- |
| Decimal points |
| auromatically displayed |

Response time: $<100 \mu s$ for full accuracy with a step function point.
AC noise rejection: infinite for multiples of (measurement time) ${ }^{-1}$. See graph for Normal Mode Rejection.


50 MHz Universal Timer/Counter/DVM


5326B


5327A

## 5326A And 5327A Specifications

## Input Channels $A$ and $B$

Range: dc.coupled: 0.30 MHz . ac.coupled: 20 Hz .50 MHz .
Sensitivity (min): 0.1 V rms sine ruave. 0.3 V p.p pulse. 8 ns minimum pulse wideh.
Sensiuvity can be decreased by 10 or 100 times, using the AT. TENUATOR switch.
Impedance: $1 \mathrm{M} \Omega$ shunted by less than 25 pF .
Dynamic input voltage range: 0.1 to 3 V ms ac times altenuator selting. Is V de times amenuator seting.
Trigger level: PRESET to center triggering about 0 V or variable over the range of -3 V to +3 V times attenuator seting. Trigger threshold band $<1.0 \mathrm{mV}$. referred to inpur at maximum (requency.
Overload protection: 250 V ems on all attenuator setlings, except 25 V rms on Xl above 50 kHz .
Slope: independent selection of positive or negative slope.
Channed inputs: cormon or separate lines.
Marker outputs: rear paael BNCs. DTL pulse, low for approx $2 \mu s$ after trigges point for $A$ and $B$ channels.

## Input Channel C and $\mathrm{C} \div \mathbf{1 0}$

Range: 5326 A . Channel $\mathrm{C}: ~ d e$ coupled; 0.50 MHz 5327A: Chan. nel C : ac-coupled; $1 \mathrm{kHz} .50 \mathrm{MHz} ; \mathrm{C} \div 10$ (prescale) ; 0.550 MHz .
Sensitlvity: 3326A: Channel C: 5 mV rms. 5327 A: Channel C- 5 mV rms; $\mathrm{C} \div 10$ (precale) 25 mV ms.
Impedance: $50 \Omega$ nominal
Maximum input: 3.5 voles rms: 9.0 vol:s peak.
Trigger level: 0 voles.
Start
(Toralizing and Scaling)
Range: 0-10 MHz.
Factor: $1.10^{*}$ selecuble in decade steps.
Output: rear panel TIME BASE BNC.
Display: Channel A input divided by sealing factor.

## Frequency

Range: 5326A: $0.50 \mathrm{MHz}, 5327 \mathrm{~A}: 0.50 \mathrm{MHz}$ (direct) ; 0.550 MHz (prescaled).
Input: 5326A: Channel A or Channel C (switchable). Channel A provides triggered frequency measarement. 5327A: Channel $A$; Channel $C$ for direct and $C \div 10$ for prescaled (switchable)

Channel A provides triggered frequency measurement.
Gate times: $0.1 \mu \mathrm{~s}$ to 10 s in decade steps.
Accuracy: direct: $\pm 1$ count $\pm$ time base accuracy. Prescaled: $\pm 10$ counts* $\pm$ time base accuracy.
Display: $\mathrm{MHz}_{2}, \mathrm{kHz}_{1}$ or $\mathrm{GHz}_{2}$ with positioned decimal point.

## Time Interval

Range: $0.1 \mu$ s to $10^{8}$ seconds.
Input: channels $A$ and B ; can be common or separate.
Frequency counted: 10 MHz to 0.1 Hz in decade stcps.
Accuracy: $\pm 1$ count $\pm$ time base accuracy $\pm$ trigger error.**
Display: $\mu \mathrm{s}$, ms, zeconds of 10 's of seconds with positioned decimal point.

## Time Interval average

Range: 0.15 ns to 10 s .
Intervals averaged: $1 \cdot 10^{5}$ selectable in decade sreps.
Input: channels $A$ and $B$; can be comroon or separaie.
Frequency counted: $10 \mathrm{M} / \mathrm{Hz}$.
Accuracy: $\pm$ cime base accuracy $\pm 1 \mathrm{~ns} \pm$
(trigger error** $\pm 100 \mathrm{~ns}$ )
$\sqrt{\text { interrals averaged }}$
Display; ns, $\mu s$ with posicioned decimal point.

## Period and Period average

Range: 0.10 MHz
Input: Channel A.
Frequency counted: 10 MHz to 0.1 Hz in decade steps for period. 10 MHz for Period Average.
Perlods averaged; $1 \cdot 10^{*}$ selecrable in decade steps.
Accuracy: $\ddagger$ I count $\ddagger$ time base accuracy $\pm$ trigger error." **
Display: ns, $\mu \mathrm{s}$, ms. seconds or 10 's of seconds with positioned decimal point.

## Ratio

Display: any input function/ $\mathrm{Fex}_{\text {ex }}$ times Multiplier ( M ). $\mathrm{M}=110$ $10^{5}$ ( $10 \cdot 10^{5}$ when prescaling) selectable in decade steps.
Range: any input function. See appropriate function section.
Fexi: (External Oscillator Inpue) $100 \mathrm{~Hz}-10 \mathrm{MHz}$.
Mode: any input function.
Accuracy: accuracy of selected input function $\pm$ trigger error of Fext.


50 MHz Universal Timer/Counter


## 550 MHz Multi-Function Counter



53270

## 5326C And 5327C Specifications

## Input Chaлпеl A

Range: de-coupled: 0.50 MHz ; ac-coupled: 20 Hz .50 MHz .
Sensitivity (min): 0.1 V rms sine wave: 0.3 V p.p pulse; 8 ns minimum pulse width.
Sensitivity can be decreased by 10 or 100 times, using the ATTENUATOR switch.
Impedance: $1 \mathrm{M} \Omega$ shunted by less than 23 pF .
Dynamic input voltage range: 0.1 to 3 V ms ac times altenuator seting, $\pm 5 \mathrm{~V}$ do fimes anenuator selving.
Trigger level: PRESET to center uiggering about 0 V of variable over the range of -3 V to +3 V times artenuator setring. Trigger threshold band $<1.0 \mathrm{mV}$, referred to input at maximum frequencg.
Overload protection: 250 V rms on all artenuaror settings, except 25 V ms on X1 above 50 kHz .
Slope: independent selection of posicive or negative slope.

$$
\begin{aligned}
& \text { Input Channel B and B } \div 10 \\
& \qquad(5327 C \text { only })
\end{aligned}
$$

Range: Channel B: ac-coupled, 1 kHz -50 $\mathrm{MHz} ; \mathrm{B} \div 10: d \varepsilon$-coupled. 0.550 MHz .

Sensitivlty: Channel B: s mV ms: B $\div 10$ (prescaled): 25 mV smes.
Impedance: $50 \Omega$ nominal.
Maximum input: 3.5 voles rms, 6.0 volts peak.
Trigger level: 0 valts.

## Start

(Totalizing and Scaling)
Range: $5326 \mathrm{C}: 0-10 \mathrm{MHz}, 5327 \mathrm{C}: 0.10 \mathrm{MHz}$ (direct) ; 0.100 MHz (prescaled)
Factor: 5326C: $1-10^{9}$ in decade steps. 5327 C : Channel $A$ or Channel $B: 1.10^{\circ}$ in decade steps; $B \div 10: 10-10^{\circ}\left(1.10^{\circ}\right.$ on selector) in decade steps.

Output: rear panel TINLE BASE BNC
Display: Channel $A, B$, or $B \div 10$ input divided by scaling factor.

## Frequency

Range: $5326 \mathrm{C}: 0.50 \mathrm{MHz}, 5327 \mathrm{C}: 0.50 \mathrm{MHz}$ (direct) : 0.550 MHz (prescaled).
Input: 5326 C : Channel $A$. Channel A provides triggered frequencs measurement. 5327 C . Charnel A ; Channel B for direct and $\mathrm{B} \div 10$ for prescaled (switchable). Any channel provides triggered frequency measurement.
Gate times: $0.1 \mu \mathrm{~s}$ to 10 s in decade steps.
Accuracy: direct: $\pm 1$ count $\pm$ rime base accuracy. Prescaled. $\pm 10$ counts* $\pm$ time base accuracy.
Dlsplay: $\mathrm{MHz}, \mathrm{kHz}$ or GHz with positioned decimal poine.

## Period average

Range: $5326 \mathrm{C}: 0.10 \mathrm{M} \mathrm{Hz} .5327 \mathrm{C}: 0.50 \mathrm{MHz}$ (direct) ; 0.550 MHz (prescaled).
Periods averaged: 5326C. 1-10 in decade steps. 5327C. Channel A or Charnel $B: 1 \cdot 10^{\circ}$ in decade steps; $B \div 10: 10 \cdot 10^{\circ}$ (1-10) an selertor) in decade steps.
Frequency counted: 10 MHz .
Accuracy: direct: $\ddagger 1$ count $\doteq$ ime base accurac: $\equiv$ trigger error.** Prescaled: $\pm 10$ counts: $\pm$ cime base accuracy $\pm$ criger ercoc.***
Dlsplay: ns, $\mu s$ with positioned deamal point.

## Ratio

Display: any inpur function/ $F_{\text {ext }}$ times Multiplier ( $M$ ). $M=1$ to $10^{\circ}$ ( $10-10^{\circ}$ when prescaling) selecrable in decade steps.
Range: any input function. See appropriate function section. $F_{\mathrm{ex}}$ : (Extemal Ostillator Input) $100 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$.
Mode: any input function.
Accuracy: accuracy of selected input function $\pm$ trigger error of Fere.

## 50 MHz Multi-Function Counter



[^27]". Telgger erfor ls less than $=0.3 \%$ of one period $\div$ periods averaged for sla nals with 40 dBm or better signal-to-noise ratlo and 100 mv ims ampiliude.


A high pertormance microwave frequency counter that is: Simple to use
single input 10 Hz to 18 GHz
completely auromatic
auto amplitude discrimination
fast acquisition time
direct readout
More flexible
high sensirivity, -35 dBn
complere programmability
wide dynamic range. 42 dB
superior AM \& FM tolerance
More rellable
high damage level +30 dBm
high stability oscillator
no false locking

## Introduction

The 53.40 A Auromatic Microwave Counter provides a modern, easily used, more versatile instrument for the direct measurement of frequencies from 10 Hz through 18 GHz via a single input connecror. Utilizing new microwave samplers incorporated in advanced phase-lock loops, this new counter excels in vircually cvery microtave counter specification paramerer. It is therefore suited to a wider range of applications than ever before possible for a fully automatic microwave counter.

## Single input and high sensitivity

Since one input connector handles all signals from 10 Hz to 18 GHz , instrument use is greatiy simplified-particularly in automatic systerns of for high speed production icst. In the past, several input connectors have been utilized and had to be selecred, complicating use. The high sensitivity enlances measurement in the micronave field where signals are low level and many times have to be connected via directional couplers or lossy devices. The sensitivity is such that in some cases signals can be measured directiy with only the use of an antenna.

## Superior AM characteristics

The high sensitivity and wide dynamic range considerably improves measurement in the presence of audio modulation. As an example, measurement is easily achieved on a 0 dBm signal with gieater than $90 \%$ AM modulation.

## High impedance input

A second input is provided covering the direcr measurement range ( 10 Hz to 250 MHz ) of the instrument. This input is useful in the measurement of FF frequencies or signals from higher impedance circuits.

No false answers
The S340A always provides the proper measurement answer. Measurement and display are disabled until phase-lock or direct measurement are determined, automatically preventing incorrect measurement or displays.

## Automatic amplitude discrimination

Automatic amplitude discrimination allows the instrument to choose the largest signal in a spectrum ( 250 MHz to 18 GHz ) and measure only that signal's frequency. Thus, despite the 5340 's uniquely high sensitivity and wide bandwidth, the counter will not lock and measure lower level or harmonically. related signals present with the signal of interest.

## Superior FM characterlstics

This microwave counter is designed to measure carrier frequencies in the presence of wide frequency deviations caused by frequency modulation, phase modulation, or high residual noise. FM tolerance characteristics are a function of modula. tion rate and carrier frequency, and are described in the graph of Figure 1.

## Complete programmability

Simplicity, low profle, light weight, complete programmability, and digital ourput allow the 5340A Microwave Counter to become a complete and practical component for unattended computer and systems applications. Programming of all front panel controls and the octave range of the phase-lock loop is possible. The octave range programming allows selection of a single band for measurement, reducing acquisition to typically less than 25 ms . These features provide programming of the 5340 A and data acquisition via a single input/output slot of most computers. Complete programmability and digital ourpuc may be achieved by specifying Option 003. Another valuable option available for systems use provides both signal input connectors on the rear of the instrument (Option 002).


Figure 1. iM Characteristics

## Specifications <br> Signal input

## input 1

Range: 10 Hz to 18 GHz .
Symmetry: sinewave or squarewave input ( $40 \%$ duty factor, worst case).
Sensitluity: $-30 \mathrm{dBm}, 10 \mathrm{~Hz}-250 \mathrm{MHz}$ (direct count), -35 $\mathrm{dBm}, 250 \mathrm{MHz}-12.4 \mathrm{GHz}:-25 \mathrm{dBm}, 12.4 .18 \mathrm{GHz}$.
Dynamic range: $37 \mathrm{~dB}, 10 \mathrm{~Hz}-250 \mathrm{MHz}, 42 \mathrm{~dB}, 250 \mathrm{MHz}$ to $12 \mathrm{GHz}^{3} 32 \mathrm{~dB}, 12 \mathrm{GHz}$ त 18 GHz .
Impedance: $50 \Omega$.
VSWR: <2:1, $10 \mathrm{~Hz}-12.4 \mathrm{GHz}_{i}<3: 1,12.4 .18 \mathrm{GHz}$.
Connector: precision Type N .
Coupling: dc to load, ac to instrument.
Damage level: $+30 \mathrm{dBm} \pm 7 \mathrm{~V} d c$ (total porer not to exceed $1 \pi$ )
Acquisition time: $<150 \mathrm{~ms}$ mean typical.
lnput 2
Range: $10 \mathrm{~Hz}-250 \mathrm{MHz}$ direct count
Sensltlvity: 50 mV rms. 150 mV p-p pulses to $0.1 \%$ duty facior minimum pulse widin 2 nsec.
Impedance: $1 \mathrm{M} \Omega$ shunted by $<25 \mathrm{pF}$. Option 002 (rear panel input) $1 \mathrm{M} \Omega$ shunted by $<100 \mathrm{pF}$. $50 \Omega$ termination (provided for front panel input) required to meer all specifications with Option 002 installed
Connector: Type BNC Eemale.
Coupiling: ac.
Maximum input: 10 Hz to 100 Hz 200 V rms; 100 Hz to 100 kHz 20 V rms: 100 kHz to $250 \mathrm{~N} \cdot \mathrm{~Hz} 2 \mathrm{~V}$ rms.
Automatic amplitude discrlmination: the counter will automatically select the largest of all signals present ( $250 \mathrm{\lambda} \mathrm{CHz}$ to 18 GHz phase-lock range), providing that signal is 20 dB ( 10 dB rypical) larger than any other.
Maximum AM modulatlon: any modulation index as long as the minimum voltage of the signal is not less than the sensitivity specification. For example, with a -10 dBm input signal at $10 \mathrm{GHz}, 94.5 \%$ modulation index will cause the signal to drop to $-35 \mathrm{dBm}(4 \mathrm{mV})$ at its lowest amplitude and would be the limit of modulation possible.

## Time base

## Crystal frequency: 10 MHz

Stability:
Aging rate: $< \pm 3 \times 10^{-i}$ per month.
Short term: $<5 \times 10^{-10} \mathrm{rms}$ for 1 second averaging time.
Temperature: $< \pm 2 \times 10^{-6}$ over the range of $-20^{\circ}$ to $+65^{\circ} \mathrm{C}$.
Line variation: $< \pm 1 \times 10^{-7}$ for $10 \%$ line variation from $1: 0 \mathrm{~V}$ or 230 V line.
Output frequency: $10 \mathrm{MHz} \geq 2.4 \mathrm{~V}$ square wave (TTL compatible) available from rear panel $B N C$.
External time base: requires 10 MHz approximately i.s V p.p sine wave or squarewave into $1 \mathrm{~K} \Omega$ via rear panel BNC. Snitch selecrs either internal or external time base.

## Optional time base (Optlon 001)

Option 001 provides an oven controlled crystal oscillator time base with an aging rate near that of a time standard. This option results in better accuracy and longer periods berween calibration. A separate power supply keeps the crystal oven on and up to temperature when the instrument is turned off as long as it remains connected to the power line.
Frequency: 10 MHz .
Aging rate: $< \pm 5 \times 10^{-10} /$ day after 24 hour warm-up* and $<1.50 \times 10^{-9}$ / year.

## Short term stability:

$1 \times 10^{-11}$ for 15 asg. time.
$1 \times 10-11$ for 10 s arg. time.
$2 \times 10^{-11}$ for 100 sarg time.
Line variation: $< \pm 5 \times 10^{-10} 10 \%$ change.**
Temperature: $< \pm 1 \times 10^{-\$}$ frequency change over a $-55^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ temperature range. $< \pm 2.5 \times 10^{-9}$ over 0 to $40^{\circ} \mathrm{C}$ range.
Warmup: within $5 \times 10^{-\theta}$ of final*** value 15 minvees after iumon, at $25^{\circ} \mathrm{C}$.
Frequency adjustment range: $\pm 2 \times 10^{-6}(> \pm 40 \mathrm{~Hz}$ from 10 MHz ) with 18 turn control.
Frequency adjustment: $1 \times 10^{-0}(0.01 \mathrm{~Hz}) 18$-turn control.

- For oscillator off-time less than 24 hours.
* I minute required for unit to stabilize.
**- Final value is derined as trequency 24 hous afler turn-on.

Genera!
Accuracy: $\pm 1$ count $\dot{I}$ time base error.

## Resolation:

Front pancl switch selects $1 \mathrm{MHz}, 100 \mathrm{kHz}, 10 \mathrm{kHz}, 1 \mathrm{kHz}$, $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, or 1 Hz .
Display:
Eight in-line long life display tubes with positioned decimal point and appropriate measurement units of $\mathrm{kHz}, \mathrm{MHz}$ or GHz .
"DIR" lamp indicates measurement is direci.
"LOCK" lamp indicates phase-lock has been achieved and measurement rechnique is indirect.
"GATE" lamp indicates measurement is in progress.
"RMT"' lamp indicates instrument is controlled via external or remote device.
"OVFL" indicares most significant digits wi!l nor be displayed. Digits displayed when "OVFL" is lighted are accurate $\pm 1$ count $\pm$ time base accuracy. "OVFL" is necessary for some high frequency measurements where resolution of 100 Hz is required.
"\$" lamp indicates Option 001 crystal oven time base is in the process of warming up ( 10.15 min. approximately).
Self check: counts and displays 10 MHz for resolution chosen.
Sample rate: controls time between measurements. Continuously
adjustabie from approximately 200 milliseconds to 5 seconds
HOLD position holds display indefinitely. RESET button resets display to zero and activates a new measurement.
Operatling temperature: $0^{\circ}$ ro $50^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$, 50.60 Hz . APX 100 VA .
Welght:
Net: $25 \mathrm{lb}(11,3 \mathrm{~kg})$.
Shipping: 31 lb ( 14.1 kg ).
Dimensions: $16^{3} / 4^{\prime \prime} \times \times 131 / 4^{\prime \prime} \mathrm{D} \times 3.15 / 32^{\prime \prime} \mathrm{H}(425 \times 337 \times$


Accessories furnished: power cord $71 / 2 \mathrm{ft}(200 \mathrm{~cm})$. NEA.A plug. Rack Mounting Kit
Accessories available:
59310A Interface Kit for use with 5340 A Option 005 and Hewlett-Packard computers.
11144A. Option 20 Interface Kit for use with 5340A Option 003 and Model 9820A Calculator.
ASCll (Option 003) to parallel BCD converter K01.5340A.
Rear Panel Connectors (Option 002)
This option provides input connectors on the rear panel. Input specifications remain the same. Input 1 (Type $N$ ) is on the rear panel in place of installation on the front panel. Inpur 2 (BNC) is available on the front and rear panels. Input impedance is reduced to $50 \Omega$.

Remote Programming and Digital Output (Option 003)
Option 003 adds the capability of digital ourputting and remote programming via a 24 pin, series 57 microribbon connector on the rear panel marked DIGITAL INPUT/OUTPUT. The TTL and DTL compatible, bi-directional bus consists of eight (8) data lines plus 7 status and control lines. Both program and output information are seren-bic ASCII (USA Standard Code for Informa(ion Interchange) characters. They are passed over the data lines on a character-serial basis.
Connector: 24-pin female. Amphenol 57-10240. HP \#1251-3283.
Mating connector male, Amphenol 57-20240-2. HP H

Option 001: High Stability Time Base, $\$ 400.00$
Option 002: Rear Panel Connectors, $\$ 100.00$.
Option 003: Remote Programming-Digital Outplit, $\$ 350$.

COMPUTING COUNTER SYSTEM
Precision measurement, computation 5360 Series


The Computing Counter System . . . Precise, Total Solutions to Complex Problems

The Computing Counter is a general purpose precision digital instrument with built-in arithmetic capability.
As a measuring device the Computing Counter provides unequalled precision. For example, it can measure the time between two events to a resolution of 100 picoseconds, about the time it takes light to travel one inch.
The Computing Counter's unique measurement technique employs extensive use of digical computation. Thus the mainframe contains an arithmetic unit which is an inherent, indispensable part of the measurement cycle.


Basic slock Diagram of Comouting Counter. The precislon measurement iechnique employs diglial compulation as an inherent, Inalspensable part of the measurement cyele.

## Measurement

Measurement versacility is enhanced by a wide range of plug-ins in addition wo the input module. All measurements are made with speed and accuracy and in many respects, operation is easier than with the conventional instrument.

## Computation

The arithmetic capability of the machine has been made a vailable to the user via several programming devices.

This allow's the system to be programmed to solve equations Where measurements are the variables, in real time. This capability enormously increases the porver of the Computing Counter System.

Note that the programming devices are not needed to obtain the measurement capabilities of the iastrument. Inclusion of the appropriate programmer, however, enhances the capabilities of the Computing Counting system in providing precise, total solutions to complex problems at substantial cost saving and ease of operation.

The following two pages introduce the components of the Computing Counter System. Addirional details are included in the rutorial (PD. 247-251). A full description of the system is given in the Computing Counter System data sheer. In addition, some of the many applications to which this versatile system can be put ace described in the applications literature overpage. All literature is available on request.

## Precision Frequency Measurements

5360A computing Counter
5365A Input Module
5245 Series Plug-Ins


Features

- 320 MHz direct frequency range
- To 18 GHz with plug-ins
- Most accurate frequency measuring device arailable
- High speed . . . better than 300 measurements $/ \mathrm{sec}$
- External trigger capability enhances versatility
- Automatic display
- High stability time base
- Versatile measurement time controls
- High speed data gathering capability



## Precision time interval measurements 5379A Time Interval Plug-In

## Features

- 100 picosecond displayed resolution
- $\pm 500$ picosecond accuracy
- Zero seconds minimum measurable time interval
- Positive or negative time intervals
- High speed, better than 1000 measuremencs/sec
- Hysteresis compensation of trigger levels
- Versatile arming modes
- Absolute trigger level determination
- 5 picosecond resolution by averaging


## Measure

- Laser and radar ranging
- Delay line calibration
- Integrated circuit characterization (rise, fall, delay times)
- Compurer checkout
- Nuclear time of fight measurements
- Coincidence detection
- Instrument calibration

Price: $\$ 800$.
Measure

- Pulse compression radar
- CW and pulsed, Doppler radar
- Frequency shift keyed (FSK)
- Precision oscillators for fast calibration
- PCM and fsk bit detection
- FM and rransient írequencies
- Amplitude and pulse modulated signals
Price: \$6500.

- Automatic operation
- Simple programming
- Precision system measurement capability
- ROM program (easily reprogrammed)
- Digital I/O capability
- Programmable analog output
- Options maximize price/performance
- For systems, production, laboratory, maintenance, and test

The 5376A Systems Programmer is a programming devite for the 5360 A Computing Counter. The $5360 \mathrm{~A} / 5376 \mathrm{~A}$ com. bination provides solutions to problems that formerly required the use of a computerized instrumentation system.

This versatile combination finds wide use in several general application areas. . .
(i) data reduction, e.g.
cryscal inductance
rransducer linearization
equation solving
phase, accumulative phase, etc.

```
(ii) statistical analysis, e.g. mean
standard deviation
fracrional frequency deviation
peak-peak fm deviation
peak-peak time jitter
maximum access time
```

(iii) process control
provides stimulus
measures response
generates appropriate control
signals
Price: prices start at $\$ 1350$. There are eight options available.
See data sheet for derails.

## Computation 5375A Keyboard



A laboratory tool for simultaneous data reduction or statistical analysis with measurements.
Similar to the Systems Programmer. The Keyboard is a programming device for the Compuring Counter. The readwrite memory enables programs to be entered or modified quickly and easily via the appropriate keystrokes. This makes it ideally suited for the laboratory environment.

## Operations

Arithmetic: add, subtract, multiply, divide, square root, 10 X and $1 / 10$. In addition, shore algorithms are available to program for logarithm and exponential.
Measurement: MODULE A, MODULE B, PLUG-IN. Single keystrokes of any of these keys allow measurements to be made from the $A$ input of the 5365 A Inpur Module, the $B$ input or the plug.in respectively.
Price: $\$ 1450$.

## Applications literature

The Computing Counter System is a powerful tool that provides solutions to problems in many applications areas. In a continuing program, a substantial amount of applications literature is available, free of charge, on request.

## Application sheats

Single page descriptions of specific problerns and their solu. tion with the Computing Counter System. This program covers a wide range of applications from hydrophone tescing through crystal inductance measurements to Doppler range rate errors.

## Application notes

More detailed rreatment of general applications areas. Four are now available:

AN 116 Precision Frequency Measurements
AN 120 A New Technique for Pulsed RF Measurement
AN 120-2 Measuring Phase with the 5360A
AN 120.3 Non-Linear System Applications of the Computing
Counter System

## Programming manuals

Comprehensive manuals are available on programming the Computing Counter System from che 5375A Keyboard and the 5376A Systems Programmer. Titles are "Programming the 5375A Computing Counter Keyboard" and "5376A Systems Programmer User's Manual." This latter includes a comprehensive treatment of integrating the s360A-5376A into an operational system.

## Hewlett-Packard Journals

Four issues of this widely read publication deal with the Computing Counter System.

May 1969: 5360A/5365A Computing Counter and the 5379A Time Interval Plug-in.
March 1970: 5375A Keyboard.
December 1970: 5376A Systems Programmer.
November 19\%1: Frequency Stability Measurements.

## Accessories

10536A Adapter: adapts following 5245 series plug ins to the computing. Counter: $5253 \mathrm{~B}, 5254 \mathrm{C}, 5255 \mathrm{~A}, 5256 \mathrm{~A}, 5258 \mathrm{~A}$, $5252 \mathrm{~A}, 5261 \mathrm{~A} .5257 \mathrm{~A}$ also compatible excepr gate time extender does not work.
Price: $\$ 225$.

5050B Opt. 061 Digital Recorder: This reliable 18 column recorder provides a printed record of 5360 A measurements at rates up to 20 lines per second.
Price: \$3465.
K01-5360A Serial-Parallel Converter: converts serial bed outpur from 5360A into a parallel form compatible with the conventional HP 5050B and 5055A Digital Recorders.
Price: $\$ 995$.

ELECTRONIC COUNTERS


Hewlett-Packard Model 5330A features a preset (variable) time base for normalized measurements and Model 5330B combines this variable time capability with dual preset limits. Additionally, a presettable count offset is offered in either model as an option. These instruments were designed for physical measurements in laboratories, automatic control systems, and for digital measurement of all types in engineering and industry.

Models 5330A and 5330B measure in directly usable engineering units such as GPM, PSI, RPM in real time from rate or frequency type input signals. Preset digit switches are used to vary the length of counting time or to mulciply or divide the number of input cycles, depending on which one of four operating modes are employed: rate (frequency) ; time (period); ratio; or $\mathrm{F} / \mathrm{MN}$ (frequency division). While counting is in progress, a gate signal is issucd from a rear panel jack and may be used as a control or timing signal.

The 5330 B includes two separate 5 -digit limit switches (L1 and L2) for limit control and testing applications. Three high-speed output signals associated with the LI and L2 limits indicate when the measured value is below ( LO ), between (IN), or above (HI), these limits. The signals can be used to drive controllers or relays for speed control, for shutdown at predetermined totals, to actuate alarms at pre-shutdown totals, for precise timing of processes, etc.

Offset counting is possible via Option 001 which provides another 5 -digit switch, designated " $R$ ". This switch may be set to any number from 0 to 99,999 , which presets the counter such that counting of the input signal will start from this selected number and reset to this number each cycle. Both instruments are available with digital outpur and complete programmability. Further information and specifications are available in a detailed data sheet.

Price: $5330 \mathrm{~A}, \$ 1275 ; 5330 \mathrm{~B}, \$ 1695$; Option 001, $\$ 100$.

## Preseł controller/counter Model 5332B



This preset controller/counter counts electrical events and issues output signals when preset count values are reached and measures and jimit-derects input rates or frequencies. This instrument provides all the features required in digital control and measurement applications: local and remote con-
trol, three versatile operating modes, wide frequency and voltage counting range, very fast recycling, high input impedance and sensitivity, lighted overflow indicator, and BCD output for recording or further digital processing. Applica. tions include batching and precise control of weight, liquid level, length, rate, frequency, etc. The counter can also geneate precise time intervals (or delays) and pulse trains, and can measure time intervals precisely. Use of integrated circuits provides compactness and maximum versatility coupled with economy, low power consumption, and low heat dissipation.

The 5332B has a crystal time base to permit limit-detecting frequencies (or rates) of random or periodic events from 0 to over 2 million pps at precise gare times of 0.01 , $0.1,1.0$, and 10 seconds. Similarly frequencies up to 10 MHz can be measured. These instruments also measure and limit-detect single and multiple frequency ratios as well as time intervals from $10 \mu$ s to 1.0 second.

Remote control and parallel BCD output are standard. For further details and specifications a technical data sheet is available.
Price: 5332B, $\$ 1325$.

## ELECTRONIC COUNTERS

## FREQUENCY METER <br> Wideband, highly linear FM discriminator Model 5210A



The Model 5210A Frequency Meter/FiM Discriminator directly measures frequency or cepetition rate of signals from 3 Hz to 10 MHz , independent of input volrage naveform. A sensitivity concrol allows for measurement of noisy signals. The special $\log$ linear scale offers an accuracy of $1 \%$ of reading from $10 \%$ of full scale up. With calibrated offset (Option 001) the accuracy is up to $0.2 \%$ of full scale

The 5210A is also a nideband highly linear FM discrimina. tor with a 3 dB output bandwideh of better than 1 MHz for
precise measurements on FM and PM signals. With output filers (HP 10531A) írequency deviation, modulation index. frequency response, distortion, incidental FM, and FM noise can be determined as well as "Hutter" and "wor" to better shan 100 dB below carrier frequency.

For more application details see the data sheet, HenlettPackard Journal. March, 1967, and Hewlett-Packard Applica. tion Note $8^{7}$

## HP 10531A, Filter Kit

The HP 10531 A Accessory Filter Kit provides a series of three plug-in low pass filters which can be adjusted to cover frequencies from 100 Hz to 1 MHz . These filters reject carrier and carrier harmonics while passing modulation components. Thus ir is possible to measure demodulated signa! components up to $20 \%$ of the carrier frequency using the Hewlett-Packard nave analyzers or similar narron band voltmeters.

## Option 001, calibrated offset

The calibrated offset provides for display of any of the 10 major divisions on a separate full meter scale (the EXPAND scale). This allows frequency measurements to be made with higher accuracy than is possible using the meter in the NOR. MAL mode.
Price: HP 5210A, 5850; Option 001, add \$125; HP 10531A, $\$ 250$.


This direct reading electronic counter departs from traditional counter design to offer: much greater resolution and speed when measuring low frequencies ( $100^{j}$ times greater resolution at 100 Hz ); automatic operation; measurement over the entire frequency range using any gate time up to 4 s , including non-decade and unknown values; and direct measurement of pulsed signal carrier frequency. Since the counter automarically displays high resolution measurements from 0.125 Hz to 20 MHz aithout requiring gate time selection, ease of use and speed are increased boily in visual readout and automatic systems applications. For tachonetry applications, a rear panel X60 multiplier converrs data from pulses per second to revolutions per minute to give a high resolution industrial measurement. Remote programming and digiral outpur are also included.

The 5323A achieves its benefirs of speed, resolution, and automaticity by neasuring input signal period, then taking the reciprocal, which is frequency, using built-in computing circuirs.
A wide selection of measurement times are provided: short times for high speed applications and long times for greater accuracy: Since the 5323A is nor limited to either counting or gating in decade values only, additional speed may he achieved by using only the minimun measuring time necessary to obtain the accuracy required.
A full complement of the ather features normally found in Hewlett-Pachard's latest clectronic counters is also provided. Derailed information in the technical data sheet is araliable upon request, or see Hewletr-Packard Journal, May 1969.
Price: HP 5323A, 51650.

## SELECTION GUIDE TO FREQUENCY AND TIME STANDARDS

fREQUENCY \& TIME STANDARDS

Herletr-Packard offers Frequency Standards \& clocks which provide accurate frequency, time interval and timekeeping capabilities. Further. HewlettPackard standards provide means for comparing these quantities against nacional standards such as the National Bureau of Standards (NBS) and the U.S. Naval Observatory. Units of frequency or time cannot be kept in a vault for ready reference. They must be generated for each use, hence be regularly compared against recognized primary standards.

Frequency Standard \& clock systems manufactured by Hewlett-Packard are used for control and calibration at observatories, national centers for measurement standards, physical research labora. tories, missile and satellite tracking stations, radio navigation systems, manufacturing plants and radio monitoring and transmitting stations.

## Types of frequency standards

At the present time, three types of frequency standards are in common use. These are:

1. The cesium atomic beam controlled oscillator.
2. The rubidium gas cell controlled oscillator, and
3. The quartz crystal oscillator.

Hewlett-Packard is the only manufac. turer of all three types of frequency standards. Of these three standards, the first is a primary frequency standard and the last two are secondary frequency standards. The distinction between a primary standard and a secondary standard is that the primary standard does not require any other reference for calibration; whereas the secondary standard requires calibrations both during manufacturing and at certain intervals during use de. pending on the accuracy desited.

## Cesium beam frequency standard

Cesium beam standards are in use Whesever the goal is a very high accuracy primary frequency standard. In fact, the NBS fequency standard itself is of the cesium beam type. The cesium beam standard is an atomic resonance device which provides access to one of nature's invariant frequencies in accord with the principles of quantum mechanics. The cesium standard is a true primary standard and requires no other reference for calibration.

The HP Model 5061A is a portable cesium beam standard proved capable of realizing the cesium transition frequency
to the same levels of accuracy and long. term stability usually achieved by largescale laboratory models. Recent beam tube improvements have made the short rerm stability comparable to that of the Rubidium Frequency Standard. W/ith this improved performance cesium standards
month, the rate of change of frequency or aging rate is almost constant. Over a long period the accumulated drift could amount to a serious ector, and periodic frequency checks are necded to maintain an accurate quattz crystal frequency standard.

TABLE I
Comparison of Frequency Standards

Standerd	Prinolpal oonstruation feature	Prinolpal advantage
Cesium Atomic Beam Resonator ControlledOscillator	Atomic besm interaction with fields-minimum disturbances of resonating atoms due to collisions and extraneous influences	High intrinsic reproducibility and long-term stabillty Desig. nated as primary standard for definition of time interval.
Rubidium Gas Cell Resonator Controlled Oscillator	Gas buttered resonance cell with ootically pumped state selection	Compact and light weight. High degree of short-term stability
Quartz Crystal Oscillator	Piezoelectrically active quartz crystal with electronic slatiliza. tion	Very compact, light and rugged. Inexpensive

now have the capability of rapid mea. surement to high precision along with the excellent long term stability necessary for time keeping.

## Rubidium frequency standard

Rubidium frequency standards feature a high order of both short-term and long-term frequency stability. These are borh important in certain fields such as deep-space communications, satellite ranging, and doppler radar. Also, rubidium standards are noted for being of small size.

Rubidium standards are similar to cesium beam standards in that an atomic resonant element prevents drift of a standard frequency quartz oscillator through a frequency lock loop. Yet the rubidium type is a secondary standard. Since the atomic resonant frequency of a rubidium gas cell is dependent upon gas mixture and gas pressure in the cell, it must be calibrated and then it is subject to a small degree of drift. The drift is typically 100 times less than the best quartz crystal standard.

## Quartz crystal oscillators

Quartz oscillators are used in vistually every frequency control application. They are an integral part of atomic standards and are used extensively as independent frequency sources for the less demanding applications. The quartz oscillator designs have improved over the years to provide a selatively low cost, small size source of frequency.
However, an inherent characteristic of crystal oscillators is that their resonant frequency changes with time. After an initial aging period of a few days to a

## Stability

Stability is specifed in two ways, long. term and short-term, Long-term stability refers to slow changes in the average frequency with time due to secular changes in the resonator and is usually expressed as a ratio. $\triangle f / f$ for a given period of time. For quartz oscillators this is often termed "aging rate" and specified in "parts per day." Rubidium standards being more invariant are specified in "parts per month." On the other hand. Cesium Beam Standards are primary units having little or no change or drift. Therefore, these primazy standards are given a specified accuracy to within which the frequency is guaranteed.
Short-term stability refers to changes in frequency over a time sufficiently short so that change in frequency due to long term effects is negligible.

Short-term stability is usually specified as the rms average of a number of mea. surements each over a specified period of time and this averaging time should be given. The longer the averaging time used, the more any deviation is obscured since the average must approach the mean or nominal output frequency in the long run. Hewlett-Packard specifies the short-rerm stability of its standards in accordance with the definition developed by the National Bureau of Stan. dards and others.* Measurements conforming to this definition can be easily made with available rest equipment including the HP 5360A Computing Counter. Figure 1 is a comparison of the short rerm stability of various frequency standards.

- Statisiltes of Atomic standards D. Allen, Proceed. ings of IEEE, Feb. 1956, P. 221.


Figure 1. Short term stability of various standards.

## Spectral purity

Spectral purity is the degree to which a signal is coherent or, expressed in another way, a single frequency with a minimum of side band noise power. It is greatly desirable to have high spectra! purity in a standard signal. This is espe. cially important in applications where the standard frequency is multiplied to very high or microwave frequencies so that the frequency spectrum of the sig. nâl will be reasonably nafrow.
The signal and its frequency spectrum are analogous to a frequency modulated wave where the total power is constant. If the frequency multiplying device is broadband, the ratio of the total sideband power to the signal power increases as the squate of the multiplying factor. With fequency multiplication the signaj-to-noise ratio will be degraded 6 dB per octave and 20 dB per decade.

Hewlett-Packard oscillators are de. signed to give exceptional spectral purity, One method of indicating spectral purity is with a phase noise plot. Figure 2 shows the performance of the HP S061A, Opt. 04 Cesium Beam Aromic Erequency Standard. (See Hewlett-Packard Application Note 52, "Frequency and Time Stan. dards," pages 3.4 and 5.1 for details of noise measurement).

## Frequency standards and clocks

Frequency standards and clocks have no fundamental differences-they are based upon dual aspects of the same phenomenon. Time and frequency are intangible quantities which can be mea. sured only with respect to some physical quantity. The basic unit of time, the second, is defined as the duration of $9,192,631,770$ periods of transition within the cesium atom. Conversely an unknown frequency is derermined by counting the number of cycles over the period of a second.

The U.S. Naval Observatory (USNO) determines and keeps standard time for
the United States. The Master Clock at the Observatory, one of the world's most accurate clocks, is made up of an ensemble of more than a dozen Hewlett. Packard cesium beam frequency standards. The USNO directly controls the distribution of precise time and time in. terval (frequency) from Naval radio stations, LORAN-C (operated by U.S. Coast Guard), Omega and Satellite Navigation Systems. Hewlett-Packard portable cesium standards, "flying clocks," are used to periodically check the synchronization berween these stations and the Master Clock.
Hewlett-Packard cesium beam standards are widely used to drive precision clocks because of the extremely good long-term stability and reliability of this primary standard. Il a quartz oscillator or other secondary standard is used, it must be evaluated for rate of drift and be kept carefully corrected.

## Frequency comparison by VLF broadcast

One excellent way to keep a local sysrem's frequency-hence, time intervalreferenced against master time interval is by use of a LF or VIF standard broadcast such as those of the National Bureau of Standards and the Naval Observatory. A prime means for doing this with ease and convenience is the HP 117A Receiver which is designed to monitor the NBS 60 kHz broadcast from WIWVB. This unit is a complete system in itself. The strip chart produced by the 117 A records minute by minule the results of a precision phase comparison (resolution, $1 \mu \mathrm{~s}$ ) of the local signal against the received signal to show frequency offiset or error of the local standard.

## Time scale

The time interval of the atomic time scale is the International Second, defined in October 1967 by the Thirteenth General Conference of Weight and Measures. Since January 1972 the frequency offset between UTC and Atomic Time has been zero and the UTC time scale is kept in synchronism with the rotation of the earth to within $\pm 0.7$ second by step. time adjustments of exactly 1 second, when needed. The UTC signal is broadcast from the NBS station, WWVB ( 60 KHz ) and several other stations throughout the world. The HP 117A VLF receiver will provide direct comparison to this international time (frequency) ref. erence.

## Stanoby power supplies

Minimum down-time, important for any system, is vital to a time standard. Its worth depends directly on continuity of operation. Noninterrupted operation is also important to ultraprecise quartz oscillators.

Hewlett-Packard standby power supplies ensure continued operation despire line interruptions, and operate over a range of ac line voltage to supply regulated do to operate frequency standards and frequency dividers and clocks. The batteries in the supplies assume the full load immediately when ac power fails.


Figure 2. 5061A Opt. 004 Phase Noise.

## Hewlett-Packard time and frequency standard

The Hewlett-Packard House Standard consists of an ensemble of three HewlettPackard cesium standards including one HP 5061 A with an Option 004 high per. formance cube. The output is continually compared in phase with the U.S. Na . tional Bureau of Standards Frequency Standard (NBSFS) at Boulder, Colorado by reception of NBS standards station WWVB via an HP 117A Receiver. The srandard may also be compared to the U.S. Navy's VLF stations.

Time is maintained relative to the Naval Observatory and the National Bureau of Standards master clocks to an accuracy of better than $\pm 2.5$ microsec. onds. This accuracy is verified with Fly. ing Clock rrips from the Naval Observa. tory to both Hewletr-Packard Santa Clara Division and Herlett-Packard Geneva. Both locations have been designated U.S. Naval Observatory Time Ref erence Stations. Frequency is maintained in agreement with NBS/USNO coordinated time scale with an accuracy of parts in $10^{13}$.

## DISTRIBUTION AMPLIFIER Multiple high quality frequency std. outputs Model 5087A

 FREOUENCY \& TIME STANDARDS

## Features:

Versatile with 3 input and 12 output channels.
Low noise, high stability and isolation.
The Hewlet-Packard Model 5087A Distribution Amplifier provides the isolation and fexibility required for distribution of the output of high quality frequency standards. Low distortion and excellent isolation make it ideal for providing multiple outputs from atomic or crystal frequency standards. The 3 input channels will accept $10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$ or 100 kHz in any combination with the number of outputs for each channel selectable up to a total of 12 outputs. The output levels are individually adjustable from 0 to 3 V RMS. All input and output levels are monitored on a front panel meter.

The Distribution Amplifier features plug.in modular construction, short circuit isolation, exceptional phase stability. lown noise and crosstalk, and uninterrupted switchover to standby $D C$ in event of $A C$ power failure.
The shielding around each input and output plug-in ampli. fier assures minimum noise and crosstalk. The tuned output amplifiers provide clean signals and high channel-to-channel isolation.

The instrument is designed for maximum versatility and can be supplied to meet a wide variety of special requirements. The standard configuration of input and output amplifiers is shown in Figure 1.

Several other commonly used configurations are also available and special combinations of the various input and outpur modules can be supplied. Input and output amplifiers can be added or the configuration easily changed at any time.


Figure 1. 5087A Distrlbution Amplifior with Option 031, Standard Conflguration of inout and output amplifiers. Option 004 broadband input preamplifiers ólive four esch option 001, 002 and 003 output amplifiers.

## Specifications

Inputs (up to three, rear panel BNC):
Frequencies: 10 MHz , $\mathrm{MHz}, \mathrm{MHz}$ or 100 kHz . Level: 0.3 to 3.0 volts RMS, 50 ohms.
Outputs (Up to 12 rear panel BNC):
Frequencles: $10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$, of 100 kHz .
Level: 0.3 V into 50 ohms (screwdriver adjusment).
Harmonic distortion: $>40 \mathrm{~dB}$ below rated output.
Non-harmonic distortion: $>80 \mathrm{~dB}$ below rated ourput.
Isolation
Load (Open or short on any other channel)
Amplitude change: <0.1 percent
Phase change: $<0.1$ ns at 5 or 10 NHz
$<0.5$ ns at 1 MHz
$<5.0$ ns at 100 kHz
SSB phase nolse ( 5 MHz ): $>145 \mathrm{~dB}$ below signal in 1 Hz BW for frequencies $>1 \mathrm{kHz}$ from carrier.
Environmental
Temperature: (NIL-E-16400. Ciass i)
Operating: $0.50^{\circ} \mathrm{C}$; seorage: $-62 \mathrm{to}+75^{\circ} \mathrm{C}$
Stability:
Amplitude: $\pm 0.5 \mathrm{~dB}, 0$ to $50^{\circ} \mathrm{C}$.
Phase: $<0.1 \mathrm{~ns} /{ }^{\circ} \mathrm{C}$, 5 and 10 MHz .
EMC: MIL-STD-461A.
Vibration: MIL-STD. 167.
Humidity: $95 \%$ at $40^{\circ} \mathrm{C}$ Altitude: Up to $30,000 \mathrm{ft}$.
Shock: MIL.T.21200, Class 1 and MIL.E.S400 (30 G's).
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to $440 \mathrm{~Hz}, 20 \mathrm{VA}$, max, or 22 .
30 V DC, 500 milliamperes, max.
Dimensions: $3.15 / 32^{\prime \prime} \times 163 / 4^{\prime \prime} \times 111 / 4^{\prime \prime}(88 \times 425 \times 286 \mathrm{~mm})$.
Welght: Typical. Option 031-Net is lb ( 7 kg ).
Price:
5087A: Diseribution Amplifer Mainframe
5725
Normal configurations (inpur and outpur amplifiers):
Option 031: 5, 1 and 0.1 M Hz inputs and 4
outputs at each frequency
5835
Option 032: Single 5 MHz input and 12 outpues $\$ 775$
Option 033: Single 10 MHz input and 12 outpurs $\$ 795$
Option 034: Single 5 MHz inpur, 4 each oulputs
at 5,1 and 0.1 MHz
Special consigurations:
Input preampilflers (up ta 3 cotal):
Option 004: Input Preamplifier ( 0.1 to 10 MHz )
Option 005: s to : MHz input Divider
Option 006: 1 to 0.1 MLHz Input Divider
Option O11: $s$ to 10 MHz Input Doubler
565
Optlon 013: 10 to 5 MHz Input Divider S GS
Option 014: 10 to 1 MHz Input Divider $\$ 65$
Output amplifiers (up to 12 eoral):
Option 001: 5 MHz Output Amplifier $\$ 65$
Option 002: 1 Mchz Oupput Amplifier $\$ 65$
Option 003: 0.1 MHz Output Amplifer \$ 65
Option 012: 10 MHz Ouspue Amplifier S 65

## Frequency and time reference systems

The Hewlett-Packard Cesium and Rubidium Standards can be used as the key elements in a wide variety of frequency and timekeeping systems. The 117A VLF Comparator and special Hewlett-Packard phase comparison instruments may be used for monitoring performance and Hewlett-Packard counters and printers for calibration of other equipment. The 3087 A provides a means to distribute standard frequencies throughout a lab or plant. Special built-in fixed frequency synthesizers and a choice of tunable synthesizers with outputs to 1300 MHz can provide signals with atomic standard stability.
Contact your Hewlett-Packard Field Enginees to discuss details of a system tailored to meet your specific requirements.


## Advantages

Accuracy of $\pm 7$ parts in $10{ }^{12}$
Settability of $1 \times 10^{-13}$
Short term stability of $5 \times 10^{-12}$ ( 1 s avg.)
The Hexletr-Packard Model 5061A primary frequency standard with the new option 00+ cesium beam tube offers increased stability and accuracy in the instrument which has become the rorldride standard of frequency and time-keeping since its introduction in 196\%. Improvements in magnetic shielding, ruggedization and environmental performance will permit improved performance and expansion of navigation and communication systems thac have been made practical by the 5061A.
The design concept of the high performance beam tube includes dual beam optics with higher beam intensity to accomplish beter short term stability and greater imnunity to effects of shock and vibration. A 50 percent increase in resonance cavity length without change in the overall beam rube size contributes to better accuracy and secrability because of the narrower resonant line width or higher $Q$. This tube retains the unique cesium standard feature of virtually no long term instability or aging. This new beam tube is offered as Option $00+$ in new instruments and is also available in a reerofit kit for units already in use.

The intrinsic accuracy is improved to $7 \times 10^{-12}\left(5 \times 10^{-12}\right.$ excluding environmental effects) which provides an excellent reference standard withour need of calibration. If desired, such as in many timekeeping applications, two or more units may be set or calibrated to each other. The new settability specification of $1 \times 10^{-13}$ means two calibrated units (clocks) would accumulate less than 10 nanoseconds per day time error (excluding environmental effects). A provision for degaussing the tube without adversely affecting the instrument operation allows removal of any residual magnetic field in the tube. This is !mportant in achieving the ner settability performance. The 10638A Degausser accessory unit is available for use with instruments using the high performance tube.

The short term stability specification is improved by a factor of ten with the new tube. The $5 \times 10^{-12}$ (1 sec avg.) performance compares very favorably with that of rubidium type standards which are noted for their excellent short term stability. An important advantage from the better short term
stability is the capability to make measurements to a 1 sigma precision of $1 \times 10^{-12}$ in about one minute compared to the two hours required previously.

Within the 5061 A Primary Frequency Standard, the beam tube utilizes a quantum mechanical transition in the cesium 133 atom to stabilize a high quality quartz oscillator through a closed-loop, selfechecking control circuit yielding exceptional accuracy. The s06IA has provision for an optional digital divider and clock and for a barcery with $1 / 2$ hour standby power capaciry with automatic charging.

## Accuracy and intrinsic reproducibility

The data in figure 1 is based on over 250 independently aligned standard Model S061A's. It demonstrates that the cesium beam tube frequency perrurbations are so small that all units are aithin $\pm 5 \times 10^{-12}$ of each other and the National Bureau of Standards. The one sigma standard deviation is $1 \times 10^{-12}$ between the standards. This performance is intrinsic to the 5061 A primary frequency standard and is achieved without calibration.


## Rellability and warranty

Over is million operational hours have proven the performance and reliability of Hewlett-Packard cesium beam standards in various porldwide applications. The units have provided dependable microsecond accucacy in aircraft, ship, and fixed environments.
A three year warranty on the 5061 A and the standard cesium beam tube is provided as a result of proven field reliability over an extended period. The new high performance
rube (Option 004) is warranted for 14 months ( 10,000 hours). This warranty includes replacement of the cesium beam tube if it should fail within the warranty period. Typically, beam rube life has been in excess of 4 years and the high performance tube is expected to prove equally reliable.

## Applications

Hewlett-Packard Cesium Beam Standards are used in critical applications such as Apollo timing and missile tracking where their inherent reliability and accuracy play an important role. They are also used in worldwide navigation stations (Loran C and Omega), various national observatories and scientific laborarories around the world, calibration labs, and in the field as very accurate, portable frequency and time standards for instrument and clock calibration. Other areas of application include precision mapping, long baseline interferometry, investigation of radio transmission phenomena, and aircraft collision avoidance systems. As indicated above. success of the cesium beam standard in each of these applications is dependent on its high reliability and accuracy.

## E21.5061A flying clock

The E21-5061A consists of a 5061A Cesium Beam Standard with Option 001 clock and a K02-5060A Power Supply (page
287) joined together to make one portable unit. The power supply, which can be operated from 6 or $12 \mathrm{~V} D C, 24$ to 30 $V \mathrm{DC}$, or $115 / 230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz , will provide approximately 7 hours standby power (from sealed nickelcadium batteries) for the 5061A Cesium Beam Standard.

This wide range of operating power capabilities enables the E2I.5061A to operate on local power in virtually any country in the world. Operation is approved aboard commer. cial aircraft. The seven hours of standby capability make it possible to travel where there is no porer available and. of course, allow the E21.5061A to conveniently be transported between poxier sources and operated in almost any air or surface vehicle as a "flying Clock" (see Hewlett-Packard Journal, August 1966 and December 1967).

The improved shiclding of the Option 004 tube results in a significane increase in accuracy under the varying carth's mag. netic field conditions experienced by fying clocks. In addition the better short term stability permits more accurate and rapid comparison of standards.
Weight: $141 \mathrm{lbs}(64 \mathrm{~kg})$.
Dimensions: $163 / 4^{\prime \prime}$ oride, $15.15 / 16^{\prime \prime}$ high, $211 / 2^{\prime \prime}$ deep (includes handles) ( $425 \times 405 \times 546 \mathrm{~mm}$ ).
Price: E21-5061A (includes Options 001 and 004), \$23,780.

## Specifications

## 5061A Cesium Beam Standard, Option 004

Note: Where specifications of the 5061A with the standard tube differ from those with the Option 004 high performance tube. ther are enclosed in brackets [ ].
Accuracy: $7 \times 10^{-12},\left[1 \times 10^{-11}\right]$; msintained when subjected in temperatures from 0 to $50^{\circ} \mathrm{C}$. magneric fields up to 2 gauss or any combination therent.
Reproducibility: $\pm 3 \times 10^{-12} .\left[ \pm 5 \times 10^{-12}\right]$.
Settabitity (Frequency): $\pm 1 \times 10^{-13}$ using 10638 A degausser, $\left[ \pm 7 \times 10^{-18}\right]$.
Long term stablity, (for life of cesium rube): $\pm 3 \times 10^{-12}[ \pm 5$ $\left.\times 10^{-12}\right]$.
Short term stabilly


Warm-up time: 30 [45] minutes to fully operational from $25^{\circ} \mathrm{C}$ ambient temperature.
Outputs: $5 \mathrm{MHz}, 1 \mathrm{MHz} .100 \mathrm{kHz},>1 \mathrm{~V}$ rms into 50 ohms, front and rear BNC.
Haromonic distortion: $>40 \mathrm{~dB}$ belour rated output.
Non-harmonicatly related output: $>80$ dB below rated outpuz.
Signal-to-noise ratia: 1 and $5 \mathrm{MHz},>87 \mathrm{~dB}$ in 30 kHz noise bandx'jdth. 5 MHz output filer bve $\sim 100 \mathrm{~Hz}$.
Quartz Oscillator: The high quality internal oscillator may be used without turning on the cesium beam tube. See page 284 for specifications.
Warranty: Inserument, 3 years; Optional battery and clock, l year: Standard beam tube. 3 years; Option 004 tube, 1 i months ( 10,000 hours).

## Environmental

Temperature: operating, 0 to $50^{\circ} \mathrm{C}$. Stability, over full operating temperature range, $< \pm 5$ x $10^{-12}$ change from $25^{\circ} \mathrm{C}$ reference. Nonoperating, -40 to $+75^{\circ} \mathrm{C}\left(+50^{\circ} \mathrm{C}\right.$ with Opions 001 and 002).

Production units have passed trpe testing as folloris:
Humldity: 0 in $95 \%$ nperating.
Altitude: $<2 \times 10^{12}$ change up to 40.000 fe nperaing.
Magnetic: dc field, $\pm 1 \times 10^{-13}$ per sauss, $\left[< \pm 2 \times 10^{-12}\right.$ any nrientation in 2 gauss feld].
AC felds, $< \pm 2 \times 10^{-12}$ for 2 gauss peak for 50 . 60 or 100 Hz ( $\pm 10 \%$ ).
Shock: MIL.T.21200. Class 1 and MIL.E-5400 (30 G's).
Vibration: MIIL-T.21200 with isolators and MIL.STD-167.
EMC: MIL-STD-461A and MIL-I-6181D.

## General

Power: 115 or 230 V ac $\pm 10 \%$, 50 to 400 Hz , or 22 us 30 V dc . Approx. power: 39 watts dc, 75 watus ac. with Option 003.
Dimensions: $83 / 4^{\prime \prime} \times 163 / 4^{\prime \prime} \times 163 / 8^{\prime \prime}\{221 \times 125 \times 416 \mathrm{~mm}\}$.
Net welght: 67 lbs: Option 001, add 2 lbs: Option 002, add 5 libs. Option 004. add 3 lbs.
Price: HP Madel s061A only (dnes not include Option 004). \$16.700.

## Option 001 Time Standard

## Clock pulse

Rate: 1 pulse per second.
Width: $20 \mu \mathrm{smin}$.
Rise time: < 50 ns .
Fall time: $<2, \mu \mathrm{~s}$.
Amplitude: $-10 \mathrm{~V} \pm 10 \%$ peak.
Jitter: <s ns ims puise-tn-pulse.
All specs are with 50 ohm load.
Synchronization (rear BNC): automatic, $10 \mu s(=1 \mu s)$ deiayed from reference input pulse. Manual adj, in $< \pm 50$ ns.
Clock movement: 24 -hour with sweep second hand.
Price: Option 001, add $\$ 1.620$.
Option 002 Standby Power Supply
Capacity: (with Option 001): 30 minutes minimum (1 hosur typical) at $25^{\circ} \mathrm{C}$ at full charge.
Price: Option 002, add $\$ 645$.

## Option 003 (combines Option 001 and 002)

Price: Option 003, add $\$ 2,265$.

## Option 004 High Performance Cesium Beam Tube

Includes high performance tube and necessary circuit changes to give improved accuracy, reproducibility and stability performance shown above for Option 004. Options 001. 002 or 003 may be ordered with Option 004. (High performance rerohe kit available to replace the standard bean tube. Consusi Hewleat-Packard field sales offices for decails.)

The HP 10638A Degausser is available as an ascessory and is required with Oprion 004 to achieve the settability specifiation. Price: Option 004, add $\$ 2,160$.

RUBIDIUM FREQUENCY STANDARD
Compact, lightweight atomic standard
Models 5065A, E21-5065A


## Advantages:

Low price atomic standard.
Long term drift rate of $<1 \times 10^{-11} / \mathrm{mo}$.
Short term stability of $<5 \times 10^{-18}$ for 100 s a verage.
Calibrated fine frequency adjustment.
Battery standby power guards against power failure (optional).
Buit in clock and digital divider (optional).
Rubidium Vapor Frequency Reference warranted 3 years.

## Uses:

Precise frequency source for systems operating in the radio and TV spectrum.
Precision timekeeping.
House standards and calibration laboratories.
Doppler radar.
The HP Model 5065 A is an atomic-sype secondary frequency standard which uses a rubidium vapor resonance cell as the stabilizing element. As a result, it has long term stability of better than $1 \times 0^{-11}$ per month which exceeds that of high quality quartz oscillator frequency standards by 50 to 100 times. Furthermore, it has excellent short term stability. These features contribute to its desirability as a coherent signal source, as a master oscillator for radio and radar systems where special requirements for stability and/or narrow bandwidth must be mer, as a precision timekeeper where the better performance of a cesium beam primary standard is not required, and as a house frequency standard for improved accuracy with fewer NBS calibrations compared to that required with quartz standards.

Front panel controls and circuit check meter of the 5065A are protected by a panel door. The magneric field control provides fine frequency adjustment with which the frequency can
be set to a precision of better than $2 \times 10^{-12}$ without reference to a chart. The 5 MHz low noise quartz oscillator is phase locked to the atomic frequency and provides the standard 5 $\mathrm{MH}_{2}, 1 \mathrm{MH}$, and 100 kHz outputs. The circuit check meter with selector switch monitors key voltages and currents for routine maintenance readings, calibration procedures, and fault finding.

The 5065A is designed for assured operation-to give the user confidence that the standard output signals are correct and locked to the atomic frequency. Logic within the unit maintains power to a "continuous operation" light on the front panel. If operation is interrupted, even momentarily, for any reason the light goes out and stays our until manually reser. An integrator limit light wains when the frequency correcting servo loop is approaching the limit of its dynamic range.

A time standard option generates 1 pulse per second available at a front panel BNC connector and drives a clock move. ment indicating hours, minutes and seconds. The clock pulse is adjustable over a range of 1 second in $1 \mu \mathrm{~s}$ increments to permit precise synchronization with another clock using a counter or oscilloscope. A screwdriver control allows continuous fine adjustment over any $1 \mu \mathrm{~s}$ range. The clock can also be automatically set to a $10 \pm 1 \mu s$ delay with respect to an external clock pulse.

An optional built in standby battery assures continuous operation of the HP 5065A in the event of orief porver failures. The 5085A or K02-5060A Power Supplies will provide battery power for longer periods.

The HP Model 5065A is contained in a small sized package and is lightreeight in comparison to a cesium beam standard. Additionally, the rubidium resonance cell is much more frequency stable than quartz oscillators while subjected to shock and vibration. Its environmental specifications include temperature, shock, vibration, EMC, humidity, and magnetic field effects.

The most significant module in the HP 5065A in terms of performance is the Rubidium Vapor Frequency Reference (RVFR). This temperature controlled, magnetically shielded unit which includes the Rb87 lamp, Rbss filter cell, microwave cavity with $\mathrm{Rb}^{\text {ei }}$ gas cell and a photo sensitive detector can be expensive to replace. Ir has been designed for maximum possible reliability. Field experience, inciuding several million hours operation, have demonstrated this reliability and the module is now warranted for a period of three years. This increased warranty protects the owner in the event of a randorn failure.

## E21.5065A

## Portable Time Standard

E21-5065A Portable Time Standard is a complete system for precision timekeeping and for transporting time from one location to another. It consists of the 5065A Rubidium Standard with digital clock and divider (option 01 ) and the K02.5060A Power Supply with 6 or more hours standby capability. The K 02.5060 A is described in detail elsewhere in this catalog. The component units are held together by side bars, and the interconnecting cables are protected by a back cover.
Weight: $110 \mathrm{lb}(50 \mathrm{~kg})$.
Dimensions: $163 / 4^{\prime \prime}$ ( 425 mm ) wide. $12.3 / 8^{\prime \prime}$ ( 314 mm ) high, $211 / 2^{\prime \prime}$ ( 546 mm ) deep, includes handles.
Price: $\$ 12,345$.


HF 5065A shown with Option 03 consisting of clock and standby battery

Frequency stability:
Long term: $\pm 1 \times 10^{-11}$ per month (maximum limit of driff rare).
Short term ( 9 MHz output):

$\frac{\Delta f}{f}$ (Std. Der.)	Arg. Time
$5 \times 10^{-1 z}$	1 sec.
$1.6 \times 10^{-12}$	10 sec.
$5 \times 10^{-13}$	100 sec.

Callbration accuracy: set at factory to $=1 \times 10^{-11}$.
Settability: $\pm 2 \times 10^{-12}$.
Tunability:
Coarse frequency synthesizer adjustment:
Range: $10^{-8}$. Resolution: $<2 \times 10^{-3}$, thumbwheel adjustable.
Fine frequency magnetlc field adjustment: Range: $2 \times 10^{-6}$. Resolution: $2 \times 10^{-12}$.
Warm-up: within $1 \times 10^{-10}$ in one hour and $5 \times 10^{-52}$ in 4 hours atter 24 hours "ofi" time at $25^{\circ} \mathrm{C}$.
Outputs:
Frequencies: $5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$.
Voltage evels: $>1 \mathrm{~V}$ rms into 50 ohms.
Connectors: BNC front and rear.
Distortion ( $5 \mathrm{MHz}, 1 \mathrm{M}(\mathrm{Hz}, 100 \mathrm{kHz}$ ) below rared output: Harmonle: $>40 \mathrm{~dB}$. Nonharmonic: $>80 \mathrm{~dB}$.
Signalto-noise ratio: for 1 and $5 \mathrm{MHz},>87 \mathrm{~dB}$ at rated output in a 30 kHz noise bou. $\$ \mathrm{MHz}$ ourpur filter bre is approx. 100 Hz .
Environmental:
Temperature, operating: $0^{c}$ to $50^{\circ} \mathrm{C}$. Frequency change is $< \pm 4$ $\times 10^{-11}$ from frequency reference at $25^{\circ} \mathrm{C}$
Temperature, nonoperating: $-40^{\circ}$ to $+75^{\circ}$. (With Options to $50^{\circ} \mathrm{C}$.)
Production units have passed tests as follows:
Humidity: 0 to $95 \%$ relatice humidity.
Vibration: MIL-STD-167 a0d MIL-E-S400, Curve 1, with isola. tors.
Shock: MIL-T-21200, and MIL-E-S400 ( 30 G 's).
Electromagnetic compatibility (EMC): MIL.1.6181D and MIL-STD. 461 , Class A.
Artitude: frequency change is $\left\langle 5 \times 10^{-11}\right.$ from 0 to $40,000 \mathrm{fr}$. Frequency stability due to:

Magnetic fleids: $\left\langle S \times 10^{-13}\right.$ for 1 gauss dc change or 1 gauss peak ac, $60 \pm 10 \% \mathrm{~Hz}$ and $400 \pm 10 \% \mathrm{~Hz}$.
Line voltage: $<4 \times 10^{-32}$ over specificed inpue range.
Power: 115 or 230 V ic $\pm 10 \%$, 50 to 400 Hz ; or 23.3030 V dc . Approx, power required:

Withour options:

24 V dc	115 Vac
35 W	49 W
7.5 W	10 W
0 W	6 W
7.5 W	16 W

Option 002 (Add)
Option 003 (Add)
3.5 W

16 W
Accessories furnished: power cord, $6 \mathrm{ft}(180 \mathrm{~cm})$ detachable. Rack Mounting Kit, HP 5060-0775. Accessory Kit. HP 05065.

5065A
6066, includes Micon connector adapter male-male, mating connector HP 1251.0126 for EXT de input. 3 citcuit board exrenders. cest cable, and a special coit-uning screwdriver.
Dimensions: $16^{3 / 4^{\prime \prime}}$ ( 425 mm ) wide, $5.7 / 32^{\prime \prime}$ ( 132.6 mm ) high, $163 / 8^{\prime \prime}$ ( 416 mm ) deep.
Weight: ner, $34 \mathrm{lbs}(15,4 \mathrm{~kg}$ ): shipping, $52 \mathrm{lbs}(23,5 \mathrm{~kg}$ ). Option 001 add $2 \mathrm{lbs}(, 9 \mathrm{~kg})$; Option 002 add $3.5 \mathrm{lbs}(1,6 \mathrm{~kg})$.
Accessories available: EXT dc cable: connects 5065A to 5085A Standby Supply, HP 103A-16A, \$21.s0.
Price: $\$ 7.500$.
Warranty: 1 year except; years for RVFR.

## Option 001 time standard

Clock pulse:
Rate: 1 pulse per second.
Amplitude: +10 V peak $\pm 10 \%$.
Width: $20 \mu \mathrm{smin}$.
Rise time: $<50 \mathrm{~ns}$.
Fall time: $<1 \mu \mathrm{~s}$.
Jitter: < 3 ns rms.
All specs are with $50 \Omega$ load.
Output: fronr-panel BNC.
Synchronization: automatic to $10 \pm 1 \mu \mathrm{~s}$, delajed from reference
input pulse (rear BNC). Manual adj. of $\pm 50 \mathrm{~ns}$. Reference pulse must be $>+;$ V with a rise time $<50$ ns and width $>0.5 \mu \mathrm{~s}$.
Clock movement: 24 -hour with sw'eep second hand.
Price: Option 001, add $\$ 1,620$.

## Option 002 standby power supply

Capacity: 10 -minute minium at $29^{\circ} \mathrm{C}$ after full charge (incl. Option 01).
Charge control: front panel, Fast Charge-Float-Reset switch.
Indicator: a front-panel light flashes when as power is interrupted and battery is being used. A continucus light indicates a fast charge condition.
Price: Option 002, add $\$ 320$.

## Option 003

(Combines Options 001 and 002)
Price: Option 003 , add $\$ 1,940$.

## Performance of quartz oscillator only

(Rubidium Conrrol Loop Open)
Aging rate: $\pm 5 \times 10^{-29}$ per 24 hours.
Frequency adjustments:
Fine adjustment; $5 \times 10^{-3}$ range, with dial readings of parts in $10^{10}$.
Coarse adjustment: I part in $10^{\circ}$. screwdriver adjustment at front panel.
Stability;
As a function of ambient temperature: frequency change is less than $2.5 \times 10^{\circ \circ}$ total from $0^{\circ}$ to $+50^{\circ} \mathrm{C}$.
As a function of load: $=2 \times 10^{-11}$ from open circuit 10 shorr, son R, $\mathbf{l}$, or C load change.
As a function of supply voltage: $亠 5 \times 10^{-11}$ for 23 to 30 V dc from 26 V dc reference, or for $115 / 230 \mathrm{~V}$ ac $\pm 10 \%$.


## Advantages:

High spectral purity Well-buffered ourpurs
Aging $<5 \times 10^{-10}$ per day
Uses:
In-house frequency and time standards
Microwave spectroscopy
Advanced navigation, communication systems
Models 105A and B Quartz Oscillators provide state-of-theart pefformance in precision frequency and time systems because of their excellent long and short term stability characteristics, spectrally pure outputs, unexcelled reliability, and ability to operate under a wide range of environmental conditions. They fill a need for a small and economical yer highly stable precision quartz oscillator for frequency and time standards. Both models can be operated from the ac tine: the 105B has a builh-in 8 -hour standby batery for unintertupted operation should line power fail. Both have 5 MHz , 1 MHz , and 100 kHz buffered sinusoidal outputs with excellent short term stability ( 5 parts in $10^{12}$ rms for 1 s averaging time) and aging rate ( $<5$ parts in $10^{\text {nh }}$ per day).
The $105 \mathrm{~A} / \mathrm{B}$ features rapid warm-up. Typically, the oscillator will be within 1 part in $10^{\circ}$ of the previous frequency in 20 minutes after an "off" period of 24 hours. The basis of these oscillators is an extremely stable 5 MHz , 5 th overtone quartz crystal developed by Hewlett-Packard. New technologies in the crystal mounting and packaging have resulted in a cleaner crystal which in turn has a lower aging rate. The crystal, oscillator and AGC circuit are all enclosed in a proportional oven which reduces the temperature effects on these conponents and circuits.
The $2.7^{\prime \prime} \times 2.7^{\prime \prime} \times 5.4^{\prime \prime}$ package containing the oven enclosed crystal oscillator with AGC circuir and buffer amplifier are available separately as a component oscillator, the K 07 $\operatorname{COS} \mathrm{A}$, for use in equipment where a high quality 5 MHz source is required. Details are available from Hewlett-Packard sales offices.
Particular care was taken to provide a spectrally pure 5 MHz output which, when multiplied high into the microwave region, provides signals with spectra only a few cycles wide Spectra less than 1 Hz wide can be obtained in X.band (8.2 to 12.4 GHz ). The stability and purity of the $s \mathrm{MHz}$ output make it suitable for doppler measurements, microwave spectroscopy, and similar applications where the reference frequency must be multiplied by a large factor.

## Specifications

Outputs: $5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz} ; 1 \mathrm{~V}$ ims into $50 \Omega$ front and rear connectors.
Clock output: 1 MHz or $100 \mathrm{kHz} ; 0.5 \mathrm{~V}$ ims into $1 \mathrm{~K} \Omega$, rear con. nector. Norroally supplied wired for 1 MHz outpu.
Fraquency stability:
Aging rate: $<5 \times 10^{-10}$ per 24 hours.
Short-term stability: for 5 MHz outpui only.

$\tau^{2}($ set $)$	$\sigma_{\left.\Delta I / / 1^{(2, ~}\right)}$	$\sigma_{\Delta t}(2, \tau) \mathrm{sec}$
$10^{-2}$	$1.5 \times 10^{-10}$	$1.5 \times 10^{-12}$
$10^{-1}$	$1.5 \times 10^{-11}$	$1.5 \times 10^{-12}$
$10^{\circ}$	$5 \times 10^{-12}$	$5 \times 10^{-12}$

Temperature: $<2.5 \times 10^{-6}$ cotal change $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Load: 士2 $\times 10^{-11}$ open to short circuit, s0§ R, L or C load change.
Supply voltage: $\pm=5 \times 10^{-19}$ for 22.30 V de from 26 V de refer. ence and for $115 / 230 \mathrm{~V} \pm 10 \%$.
Warm up (at $25^{\circ} \mathrm{C}$ ): $\omega$ within $1 \times 10^{-7}$ of previous frequency in 15 min., $1 \times 10^{-8}$ in $20 \mathrm{~min} ., 1 \times 10^{-8}$ in 30 min .
Distortion ( $5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$ ) below rated output:
Harmonic: $>10 \mathrm{~dB}$.
Nonharmonic: $>80 \mathrm{~dB}$.
Signal-to-nolse ratio: for 1 and $5 \mathrm{MHz},>90 \mathrm{~dB}$ in a 30 kHz noise bw ( 5 MHz output filter bw is approximately 100 Hz ).
Frequency adjustments:
Flne: $5 \times 10^{-3}$ range rwith digital dial reading parts in $10^{10}$.
Coarse: $1 \times 10^{-9}$ front panel serewdriver control.
Phase locking: external $\div 5 \mathrm{~V}$ to -5 V allows $>2 \times 10^{-6}$ frequency control for locking to external source.
Environmental:
Temperature, operating: $0^{\circ} \mathrm{C}$ to $\div 50^{\circ} \mathrm{C}$.
Temperature, storage: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}\left(+50^{\circ}\right.$ for 105 B$)$.
Altitude: $50,000 \mathrm{fl}$
Shock: MIL.-T-21200 ( 30 G's)
Vibration: MIIL-STD-167 and MIL-T-21200.
Electromagnetic compatibility (EMC): MIL-T-6IS1D.
Standby supply capacity: Model 105 B only. 8 hours at $25^{\circ} \mathrm{C}$ ambient temperatures.
Power requirements: $115 / 230 \mathrm{~V}=10 \%$, 50.400 Hz at 17 W ( 70 (W' warn-up) for 105A. For 105B add 1 W for float charge and 12 W for fast charge. $22 . j 0 \mathrm{~V}$ de at 6.4 W ( 10.3 W warm-up).
 286 mm ).
Weight: 105 A -ner, $16 \mathrm{Jbs}(8 \mathrm{~kg}$ ); shipping, $23 \mathrm{lbs} 10,5 \mathrm{~kg}$ ). $105 \mathrm{~B}-\mathrm{n} \in \mathrm{I}, 24 \mathrm{lbs}$ ( 11 kg ), shipping, 31 lbs ( 14 kg ).
Price: Model $105 \mathrm{~A}, \$ 1775$; Model $105 \mathrm{~B}, \$ 21.4 \mathrm{~s}$.


Advantages: excellent spectral purity, rugged, high reliability, compact, low power, fast warm-up.
Uses: test instruments-counters, synthesizers, navigation and communication equipment.
The 10543A and 10544A Quartz Crystal Oscillators were developed by Hewlett-Packard to meet the needs for compact, high stability oscillators for use in test equipment and systems. Their excellent short term stability and high spectral purity are especially desicable in applications where multiplication and synthesis are used to generate microwave fre. quencies. Rugged construction and high quality components assure high reliability and optimurn performance. With the extremely low aging rate of these oscillators a significant cost savings can be realized by the end user because of the reduced frequency of calibration needed to stay within FCC accuracy requirements.

Crystals for both oscillators are supported in a new rugged mounting in a cold-welded, high bake out enclosure. The housing around the crystal enclosure is massive with high thermal conductivity which contributes both to rapid warmup and excellent temperature stability. The oscillator, AGC amplifier and proportional oven control circuits are all inside a thermally insulated oven. Rigid plastic foam with extremely low thermal conductivity is used to provide thermal insulation and firm mechanical support for the oven enclosure.

These two oscillators differ in the oven control circuits, thermal insulation, input voltage requirement and output impedance. The 10543A uses a thermistor bridge oven control with a control transistor mounted so that power dissipated in the transistor is used to supply part of the oven heat. Added thermal insulation plus a built in roltage regrlator and buffer amplifier for 50 ohm output contribute to the larger size of this oscillator.

The 10543 A is housed in a sealed enclosure with a gasketed screw to seal the coarse tuning adjustment. An internal voltage regulator supplies the oscillator and tempera. ture control circuits so that a single 16 to 30 volt source will operate the unit. The output buffer amplifier is short circuit protected and delivers one volt into a 50 ohm load. With the excellent stability of the 10543 A over the temperature
range of $-55^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ the oscillator is well suited to use in portable navigation and communication systems which require a state-of-the-art quality oscillator.

Low priced and more compact the $10544 A$ uses an efficient thermistor control of the heater current duty cycle to maintain the oven temperature. The oven heater may be operated over the range of 15 to 30 V while the oscillator and oven controller require a regulated 10.6 to 11.7 V source. A simple externat IC regulator may be used if the necessary voltage is not available. The 10544 A is ideally suited for use in electronic counters, synthesizers, precision signal sources, and fixed station communication systems which require low aging, high stability oscillators.

Both oscillators have 18 -turn coarse tuning control. The electronic frequency control permits fine frequency adjustment or phase locking of the oscillators.

Specifications

Model	10543A	10544A
Frequency ${ }^{(1)}$	5 MHz	10 MHz
Output-Vollace, rms	$1 \mathrm{~V} \pm 10 \%$	1 V 上20\%
Impedance, ohms	50	1000
Frequency stability, aging rate ${ }^{\text {(s) }}$		
	$<5 \times 10^{-10} / \mathrm{day}$	$<5 \times 10^{-10} / \mathrm{day}$
	<1.5×10-5/year	< $1.5 \times 10^{-7} / \mathrm{y}$ ear
Short term, Avg. time $\begin{array}{r}10^{-1} \mathrm{~s} \\ 10^{-2} \mathrm{~s}\end{array}$	$2 \times 10^{-3}$	
	$5 \times 10^{-11}$	
1 s	$1 \times 10^{-11}$	$1 \times 10^{-91}$
10 s	$1 \times 10^{-11}$	$1 \times 10^{-71}$
100 s	1x10-1)	$2 \times 10^{-10}$
Temperature, 0 to $71^{\circ} \mathrm{C}$	$<2 \times 10^{-3}$	$<3 \times 10^{-0}$
$-55^{\circ} \mathrm{C}$ in $+71{ }^{\circ} \mathrm{C}$	$<5 \times 10^{-9}$	$<1 \times 10^{-8}$
Load	$\begin{gathered} <2 \times 10^{-10} \\ \pm 58 \end{gathered}$	$\begin{gathered} <5 \times 10^{-10} \\ \pm 2500 \end{gathered}$
Warm-up, ${ }^{\text {(s) }} 25^{\circ} \mathrm{C}$ ar 20 V ds		
	$<2 \times 10^{-9} \text { in }$	$<5 \times 10^{-9} \text { in }$
Supply voltage, 16.30 Vdc	$\begin{gathered} <2 \times 10^{-10} \\ \pm 10 \% \end{gathered}$	$\begin{gathered} <1 \times 10-11 \% \\ \pm 10 \% \end{gathered}$
10.6-11.7 Vde regulared		$<5 \times 10^{-10}$, $1 \%$
Distortion below rated output:		
Harmonic	$>30 \mathrm{~dB}$	$>25 \mathrm{HB}$
Nonharmonic	$>100 \mathrm{~dB}$	$>80 \mathrm{~dB}$
SSE phase noise ratio ( 1 Hz BW )		
Offset from carrier-10 Hz	120 dB	115 dB
100 Hz	135	120
1 kHz	149	125
10 kHz		130
Frequency adjustment:		
Coarse (is-turn concrol)	$>5 \times 10^{-i}$	$>4 \times 10^{-6}$
Fine (EFC)	$>1 \times 10^{-i}$	>1×10-7
Comnector	9 pin miniature	$\begin{aligned} & 15 \text { pin PC } \\ & \text { Board } \end{aligned}$
Input power, $25^{\circ} \mathrm{C}$	3.5W (o) 20 V	2.75 watts
Case size	$3.5 \times 3.3 \times 3.74$	$2.8 \times 2 \times 2.41$
Weight;	20 oz	1) oz.
Price: (quancity discounis avail.)	\$850	S450

Notes: (1) Special order: $10543 \mathrm{~A}, 10 \mathrm{MHz}, 1054$ AA, 5 MHz .
(2) For utt-times of less than 24 hours, $5 \times 10^{-1 n} /$ day is achieved within 24 hrs after turn-im.
(3) e.g.: Within 30 min, atter turn-on. 10543A freq, will be $<2 \times 10^{-10}$ away from "final" value, "Final" value is freq reached 24 hrs after murn-on.

# VLF COMPARATOR <br> Compares frequency against NBS standard Model 117A 



## Advantages;

Parts in $10^{1 x}$ accuracy possible over 24 -hour period
Provides traceability to national standards
Plots minute-to-minute phase record
Provides all equipment needed for frequency comparjson
Uses:
Offset and drift determinations for crystal oscillators
Quick and easy checks of counter time-base accuracy
Monitors atomic standards against national standard
The HP 117 A VLF Comparator measures the frequency offiset of a local standard frequency source against a standard radio frequency to an accuracy that can reach 2 pacts in $10^{11}$ in a 24 -hour period or parts in $10^{12}$ over longer periods. The 117 A receiver thus provides a link between house frequency standards and oational standards. The 60 kHz broadcast by WWVB links the Boulder, Colorado laboratories of the National Bureau of Standards (NBS) with the entire continental Unired States and adjacent areas in Canada and Mexico.

The H88-1I7A is modified to receive the 60 kHz broadcast from MSF in Rugby, United Kingdom, providing a link to the standards maintained by the National Physical Laboratory. The H44-117A is designed to receive the 75 kHz broadcasts of HBG in Prangins, Switzerland.

The strip chart record of the HP 117A provides a precision phase comparison to show frequency offset of the local standard permitting its calibration to parts in $10^{10}$ in a few hours or long term monitoring to measure oscillator drift rate. A transparent template overlayed on the recording enables the operator to read at a glance the frequency offset of his local standard. A front panel meter shows relative level of the received signal, proper adjustment of the phase-locked oscillator and phase difference. Full-scale chart width and meter reading can be set for either a $50 \mu \mathrm{~s}$ or $162 / 3 \mu \mathrm{~s}$ phase difference.

Rear panel outputs provide for connection to external meters or recorders. An exterral recorder with a chart speed of several inches a minute can be used to record the amplitude modulated time code giving time of day and UTI time corrections broadcast by WWVB.

The VLF Comparator is a complete receiver system for comparison of a standard broadcast signal with a local standard. It includes a servo-controlled oscillator which functions as a narrow band tracking filter (and assures a continuous output signal despite noise and interference), a linear phase comparator with chact recorder and a loop antenna with a built-in preamplifier which may be located up to 300 meters from the Comparator. The connecting cable also carries power to the preamplifier.

## Specifications

Received standard frequency: 60 kHz , NBS Station WWVB.
Sensitivity: $1 \mu \mathrm{~s}$ rms into $50 \Omega$. Min, field strength, $60 \mu \mathrm{~V} /$ meter.
Local standard Ingut: $100 \mathrm{kHz}, 1 \mathrm{~V}$ rms into 1 K ! (divider to accept 1 MHz available as option).
100 kHz Phase-locked output: 5 V rectangular positive pulses into $\mathrm{K} \Omega$ phase-locked to received signal.
Recorder outputs: Phase comparison, 0.1 mA de into $1400 \Omega$. Relative signal strength, 0.100 mV de from $2 \mathrm{~K} \Omega$.
Overall phase stability: $\pm 1, \mu \mathrm{~s}, 0.50^{\circ} \mathrm{C}$.
Chart speed: $1 \mathrm{in} / \mathrm{hr}$ ( 6 or $12 \mathrm{in} / \mathrm{hr}$ available al extra cost).
Temperature: Operating 0 to $50^{\circ} \mathrm{C}$. Storage -50 to $75^{\circ} \mathrm{C}$.
Dimensions: $3.15 / 32^{\prime \prime} \times 163 / 4^{\prime \prime} \times 111 / 4^{\prime \prime}(425 \times 88 \times 286 \mathrm{~mm})$.
Weight: 117A: $20 \mathrm{Jbs}(9.1 \mathrm{~kg})$; Antenna: $12.5 \mathrm{lbs}(5.7 \mathrm{~kg})$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$, 40 watls.
Accessories (included):
10509A Loop Antenna: Electrical height $1.6 \mathrm{~cm}, 43 \mathrm{in} .(109$ cm ) in dia, mounts on 1 in. pipethread. Operating temperature: $-60^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$. (Available separately for use only with HP 117A, s45s incl. 10512A cable).
10512A Coaxial Lead.In Cable: son BNC connectors, 100 feet $(30,5 \mathrm{~m})$ long. Available separately at $\$ 40$ or in lengths to 300 m on special order.
Recorder Chart Paper: One roll slyipped with 117 A . Box of six 30 -ft. roils, HP $\frac{1}{\dagger} 9281-0081, \$ 8.40$.
Prices: (Including 10509A Antenna/Pre-amp and 10512 A Lead in Cable): Model 117A, $\$ 1775$.
Option H44-117A: 117 A modifed to receive HBG , 75 kHz , $115 / 230 \mathrm{~V}, 50 \mathrm{~Hz}, \$ 2275$.
Option H88-117A: 117A modifed to receive MSF. 60 kHz . $115 / 230 \mathrm{~V}, 50 \mathrm{~Hz}, \$ 2215$.


The HP Models 5085A and K02.5060A Standby Power Supplies furnish do power to keep frequency or time standard systems operating during extended interruptions of ac line power. For applications where it is essential to maineain concinuous operation and a void loss of precise time, the use of a standby power supply is an absolute necessity. These unies are designed for use with the Hewlett-Packard Cesium Beam Skandards, Rubidium Vapor Standards, Quartz Oscillators and other equipment whicl will operate from 26 V dc . No switching is used in tcansferring power from line to battery operation and back again thus assuring uninterrupted operation.

## HP K02-5060A

The K02-5060A is a very versatile unit which was designed speciñcally as a portable power supply for the 5061 A and 5065A "Flying Clocks" where it is necesary to operace from a wide range of power sources along with the standby capability to maintain continuous operation where no external power is

Specifications, K02-5060A
Input and output voltages:
Input
6 or 12 V dc
$0.230 \mathrm{~V}, 60 \mathrm{~Hz}$ nominal
115 or $220 \mathrm{Vac}, 50.400 \mathrm{~Hz}$ 24.30 V dc 0.230 Vac 24.30 V dc

Standby batcery, $26 \pm 4 \mathrm{~V}$ de available at all times.
$A C$ and both de inputs may be connecred simultaneously.
Output current: 0.5 A ac, $2 \mathrm{~A} d c$.
Standby capaclty: 12 ampere-hours at $25^{\circ} \mathrm{C}, 7$ hours standby when used in E21.5061A, 6 hours in E21-5065A.
Recharging: 1.6 hours recharging time required for each ampere hour of discharge.
Alarm indicator: external power failure.
Panel meters: voltmerer, ammeter indicating volcage and current of 4 internal batzesies and load
Battery: four paralleled rechargeable battery packs each coneaining 20 sealed nickel-cadmium cells. Packs may be removed indiridually without interfering with power supply oparation
Temperature: operating, 0 to $50^{\circ} \mathrm{C}$.

$$
\text { storage, }-40 \text { to } 60^{\circ} \mathrm{C}
$$

Dimensions: $163 / 4^{\prime \prime}$ wide, $6.31 / 32^{\prime \prime}$ high. $16 \frac{1}{4}$ " deep ( $425 \times 177 \mathrm{x}$ 416 mm ).
Weight: net, 67 lbs .
Accessories furnished: ac and dc input and output cables.
Price: $\$ 2850$.
a vailable. A special inverter permits opecation from a 6 or 12 V de car battecy in addition to the $115 / 230 \mathrm{~V}$ ac and 24.30 V dc capability. The 12 ampere-hour standby batteries are the sealed, nickei-cadmum type and thus spill-proof. Mounting hardware is available to attach the K02-5060A to either the 5061A or s065A Standards to make a portable seandard, the E21.5061A or E21.506sA.

## HP 5085A

The HP s085A is intended for installations where 115 or 230 V ac is available. Vented nickel-cadmium batteries with an 18 ampere-houc guaranteed capacity (derated from 25) are used. They provide about 10 hours of standby power for the 5061 A Cesium Standard or 5065A Rubidium Standard (at average ambient temperature of $25^{\circ} \mathrm{C}$ ).

Front panel lighrs indicare mode of operation, report fuse failure, and ac interrupt. A foat-charge switch permics capid recharge after an ac pover failure.

## Specifications, 5085A

Output voltage: $24 \pm 2 \mathrm{~V}$ de 1t rated current.
Output current: 2 amperes ( 2.5 A for 30 min .)
Standby capacity: (at $25^{\circ} \mathrm{C}$ ) 18 amp -hrs. after 48 hours charge.
Alarm indicators: panel lamps indicate: (1) FUSE FAILURE, (2) AC POWER, (3) AC INTERRUPT, (4) CHARGE.

Remote alarm provisions: SPDT relay contacrs provided at rear terminals for operating remote alarm from separate power system.
Panel meters: baltery voltage and charge/discharge current.
Power requirements: 115 or $230 \pm 10 \%$ V ac; 50 to 400 Hz ( 2.0 A max. at 115 V line).
Battery (supplied): vented nickel-cadmium 25 ampere-hour capacity derated to 18 ampere-hours. Periodic maintenance required.
Addilional (external) battery provision: rear connector.
Temperature: operating, 0 to $50^{\circ} \mathrm{C}$.
stomge, 40 to $75^{\circ} \mathrm{C}$.
Dimensions: $16 \frac{1}{4}$ " wide, $6.31 / 32$ " high, $163 /$ " $^{\prime \prime}$ deep ( $425 \times 177 \times$ 416 mm ).
Walght: net, $75 \mathrm{lbs}(34,1 \mathrm{~kg}$ ); shipping. $101 \mathrm{lbs}(45,9 \mathrm{~kg}$ ) includ. ing battery. Option 001 (no batteries) is $50 \mathrm{lbs}(22,8 \mathrm{~kg})$ less.
Accessories turnished:
AC Power Line Power Cable, 6 ft long, DC Outpur Connector. Instrument Extension Slides (for std. 24" deep rack).
Price: Model 5085A (complete with batteries). \$183s.
Options: Model 5085A Option 001, without batteries, $\$ 1195$.

## PULSE and SQUARE WAVE GENERATORS

Palse and square wave generators are most often used with an oscilloscope as the measuring device. Waveform shapes as seen by the oscilloscope, either at the output or at pertinent points within a system under test provide both qualita. tive and quantitative evaluations of sys. rem or device performance.

## Square waves or pulses

The fundamental difference between pulse and square wave generators concerns the signal duty cycle. Square wave generators have equal "on" and "of" periods, this equality being retained as the repetition rate is varied. The dura. tion of a pulse generator "on" period, on the other hand, is independent of pulse repetition rate. The dury cycle of a pulse generator can be made quite low so that these instruments are generally able to supply more porver during the "on" period than square wave generators. The HP Model 214A, for instance, supplies up to 200 watts in its ourput pulse.

Short pulses reduce porer dissipation in the component or system under rest. For example. measurements of transistor gain are made with pulses short enough to prevent junction heating and the consequent effect of heat on transistor gain.

Square wrave generators are used where the low.frequency characteristics of a system are important, such as in the test. ing of audio systems. Square waves also are preferable to short pulses if the transient response of a system requires some time to sertle down.

## Pulse generators

In the selection of a pulse generator. the quality of the ourput pulse is of primary importance. High-qualiry test pulses insure that degradation of the dis. played pulse may be attributed to the test circuit alone.


Figure 1. Carefully controlled pulse shapes insure accurate measurements.

The pertinent characteristics of a test pulse, shown in Figure 2, are controlled and specifed accurately in Hewlett-Pack. ard pulse generators. Rise and fall times should be significantly faster than the circuits or systems to be tested. Variable rise time and fall time, available in HP 1900 pulse system, HP Models 8002A, 8007A. 8012 A, and 8005 A, are useful for testing over a wide range of operating conditions.

Any overshoot, ringing, and sag in the test pulse should be known, so as not to be confused with similar phenomena caused by the test circuit.

The range of pulse widrh control should be broad enough to fully explore the range of operation of a circuit. Naz. row pulse widths are useful in derermin. ing the minimum trigget energy required by some circuits.

Maximum pulse amplitude is of prime concern if appreciable input power is required by the rested circuit, such as a magnetic core memory. At the same time, the attenuation range should be broad enough to prevent overdriving the test circuits, as well as to simulate actual circuit operating conditions.

The range of pulse repetition rates is of concern it the tested circuits can operate only within a certain range of puise rates, or if a variation in the race is needed.

## Triggering

The trigger requirements for synchronizing a pulse generator should be evaluated in light of the teiggers available in anticipated measurement set-ups. Most Hewlett-Packard pulse generators have versatile trigger circuits similar to oscilloscopes. These circuits synchronize on most waveforms of more than 1 Vam . plitude.

Hewlett-Packard pulse generators also supply fast rise output triggers for operation of external equipment. The output triggers may be timed to occur either before or after the main output pulse.

## Source impedance

Generator source impedance is an important consideration in fast pulse systemts. This is because a generator which has a source impedance matched to the connecting cable will absorb reflections resulting from impedance mismatches in the external system. Without this match, reflections would be re.reflecred by the generator, resulting in spurious pulses or perturbations on the main pulse.

DC coupling of the ourput circuit is necessary when retention of de bias levels in the test circuit is desired in spite of variations in pulse width, pulse amplitude, or repetition rate.

## Applications of pulse and square wave generators

Pulse generators with fast risetimes are widely used in the developmenc of digital circuits. Teamed with a fast oscilioscope, these generators enable evaluation of transistor and diode switching times. Very fast rise time pulse genera. tors used with fast oscilloscopes also can measure the stray inducrances and ca. pacitance of components.

Variable rise and fall time pulses are invaluable for testing devices whose out. put clanges with rise and fall times, such as magnetic memories. Variable transition time pulses are useful in check. ing logic circuits where the inpur signal characteristics must be carefully specified.

Pulse generators are used as modula. tors for klystrons and other rf sources to obtain high peak power while maintain. ing low average power.

Pulse generators also are used for impulse testing. A very short pulse is rich in harmonic frequency componeats, so that impulse testing amounts to simul. taneous frequency response resting of components or systems.


Figure 2. Test pulse descriplion In terms of primary characteristics.

Test of linear systems with pulse or square wave generators and oscilloscopes are dynamic tests which quickly analyze system performance.

Hewletr-Packard designs puise genera. tors with fast rise times (fixed or variable), matched source impedance, flexible
pulse width and amplitude conitol, and versatile triggering capabilities required by a wide range of measurements. Par. ticular attention has been paid to the quality of the output pulse, with all aspects of pulse shape carefully controlled and specified in detail.

## Plug-in pulse generator

The 1900 system provides the optimum in performance at minimum cost by allowing you to select a pulse generator that will control only the pulse param. eters sequired for a particular application. The completely specified high. quality test pulses provide accurate, dependable tests of circuits and components. Another fearure is built-in shield. ing that reduces electro-magnetic radia. tion and conduction.

Flexibility and comparibility are achieved by having all puise generator module circuits contained in a plug.in. Mainframes only contain the power supplies and, if desired, optional programming wiring. Plugin design also provides the equivalent of two or more pulse generators, in laboratory applications, by simply changing plug-ins in a mainframe. In system applications, plug-ins can be selected to fit the exact test requirements and in the event of a malfunction, system downtime is reduced by changing plug. ins instead of the complete pulse generator. This Aexibility is illustrated by the block diagram in figure 3 .

## Optional programming

All major functions in the 1900 system are designed for remote analog or digital


Flgure 3. 1900 System Block Diagram.
programming, Analog programming provides semi-automatic resting of compo. nents or equipment that require several different repeatable pulse waveforms. Digital programming is provided by the 6940 S multiprogrammer which allows control of a large number of pulse parameters with a single, 16 bir parallel computer word. This provides complete control of pulse parameters in a fully automatic test system at minimum cost.

## Dedicated pulse generators

The versatile 8000 series pulse genera. tors provide a wide selection of pulse parameter control and repetition rates to meet your resting requirements at the lowest possible cost. These pulse generators offer fixed or variable transition times, maximum rep rates of $10,50,100$, and 200 MHz , fixed and variable delays, and many orher features.

For digiral applications, the 8006 A word generator provides two 16 -bit words or a single 32 -bit word. With this versatility in output formats, digital
equipment can be fully exercised during design or checkout.
The range of repetition rates in the variable rise-and-fall-time models enable testing of circuits and components under actual operating conditions rather than conditions limited by the pulse generator. Also. rise and fall times can be adjusted to simulate a function generator, providing triangular, sawtooth, and trapezoida! shapes as well as pulses and square waves.

Fixed transition time pulsers are also available for checking fast switching specds. Long pulse durations (some to 3 seconds) in these pulse generators make them ideal for checking analog devices such as wideband amplifiers, filters, and other linear devices.

For complex waveforms, the 8010A dual-channel pulse generator provides two separate pulse trains with independent control of all pulse parameters except rep rate. The two channels may also be combined without loss of amplitude to form puises of almost any shape.

Models $8007 \mathrm{~B}(100 \mathrm{MHz})$ and 8008 A ( 200 MHz ) will fill a design engineer's requirements in developing and testing high-speed digital circuits for computers, communications, telemetry, and many ather applications. To further increase the usefulness of these pulse generators. they can be operated as a pulse shaper for RZ or NRZ formats which will make them compatible with technology for years to come.

Pulse Generator Selection Chart

TYPE	squane wave		pulse oenerators												dioital	
model Na .	218	2214	2144	30024	8009A	S004A	8805A	80970	80004	assaa	solea	9819A	1900*	1900	9808A	TH00*
Max. Red Rate (MHz)	10/1	10	1	10	10	10	10	100	200	10	50	50	25	125	10	50
Galed Outiout			-	-	-	-	$\bullet$	-	-	-	-	-	-	-		
Exi Trigger			-	-	-	-	-	-	-	-	-	$\bullet$	-	-	$\bullet$	-
Deiay	Fixed		$v_{\text {ar }}$	Fixed	Fixed	var	var	var	var	ver	var	Var	Var	var		Var
Outpulvinto 50n	-5/-30	+5	$\pm 100$	$\pm 5$	5	$\pm 5$	5	$\pm 5$	$\pm 8$	$\pm 5$	$\pm 5$	5	$\pm 50$	=5	5	
Simulianeous Output	-5				$\div-$		+, -		norm.	-		t.-				
Rise Time (is)	5,70	15	15	10-23	5	1.5	$\begin{gathered} 10 \\ 1025 \end{gathered}$	$\begin{array}{r} 2.0 \mathrm{to} \\ 250{ }_{\mu} 8 \end{array}$	$<12$	$\underset{15}{1010}$	$\begin{aligned} & 5100 \\ & 0.55 \end{aligned}$	3.5	$\begin{aligned} & 710 \\ & 1 \mathrm{~ms} \end{aligned}$	$\begin{gathered} <210 \\ 250 \\ { }_{\mu} \mathrm{S} \end{gathered}$	10	
Doubte Pu, 58			-			-	-	-	-	-	Opt	Opt	-	-		
Offsal(Vinto $50 n$ )						$\pm 2$	$\pm 2$	=4	由2	- 2	$=2.5$	$\begin{aligned} & -5,+i \\ & +5, \end{aligned}$	$\pm 3$	$\pm 5$		
Digital Formatting																$\begin{aligned} & \text { Is. bil } \\ & \text { word } \\ & \text { wocien } \end{aligned}$
RZ/NFZ formals (exter-   na limput, word. PRES.   or bit error detection)								-	-		$\bullet$	-	-	-	-	$\bullet$
Price	5490	\$250	\$1075	\$150	\$500	5965	\$1150	S1750	32700	\$2000	\$875	\$625	$*$	*	\$1355	*

*Plug-in pulse,digital syslem, ou phi, riselime, price, and many other parameters vary wilh plug.ins. Roler lo 1900 System seleclion chart lor more details.

WORD GENERATOR
Two channel binary waveform generator Model 8006A


The 8006A generates serial digital words of vaciable length at clock rates up to 10 MHz . An easy selection of two 16 bit words is available. A single action puts the two 16 bit words in series to provide a 32 bit word at each output. Selectable operating modes include positive return-to-zero (RZ) format, positive and negative non-return-to-zero (NRZ) format, manual or automatic word cycling, complementary output signals, and remote programming of the data content. The remote programming feature allows conversion of parallel words to serial mords. Two outputs provide trigger pulses coincident with the frist and the last bit.

Additionally, a pselido-random binary sequence variable from 7 to 65535 bits can be obtained from channel A output, with the inverted sequence available at channel $B$.

## Specifications

Word generation: one 4 to 32 bit word (only even number of bits) or two 2 to 16 bit words.
Word content: independently set for both words by iront panel switches or remore programming (parallel data inpul).
Complement of each word selectable by front panel switches, WORD A - WORD A, WORD B - WORD B.
Word cycling: continuous or by cycle command (external trigger or manual).
Bit rate: internal, 10 Hz to 10 MHz , four ranges, continuous adjustment within ranges. Manual or external clock 0 to 10 MHz .
Reset: manual reset of word outpurs to bit 1 in AUTO CYCLE mode and to word pause in SINGLE CYCLE mode.
Word format: $+\mathrm{RZ} /+N R Z /-N R Z$ selectable for each word output. Positive outpuis have surrent sink sapability to drive inte. grated circuits (TTL/DTL).


Synch outputs: trigger pulses corresponding to the first bit (leading edge) and last bit (trailing edge).
Pseudo-random sequence generation PRN: provides a linear shift register sequence at channel $\boldsymbol{\Lambda}$ output and the invered sequence at channel B output. Maximum bit rate is 9 MHz .
Sequence length: variable from 7 to 65535 birs.
Trigger pulso: selectable for each bit in sequence.
interfaca:
Clock input:
Repetition rate: 0 to 10 MHz , Amplitude: $\geq \pm 2 \mathrm{~V}, \leq \pm 10 \mathrm{~V}$. Width: $>15$ ns at $\pm 1 \mathrm{~V}$. Input impedance: $>500 \Omega$.

## Cycle command input:

Minimum period: word length plus 100 ns. Amplitude $>+2 \mathrm{~V} .<\div 10 \mathrm{~V}$.
Width: $>15 \mathrm{~ns}$ at +1 V . Input impedance: $>500$ ?.
External data inputs: no storage capability for programmed data.
Low state: contact closure, saturated DTL or voltage source (TTL) $>0 \mathrm{~V},<+0.8 \mathrm{~V}$.
High state: open, off DTL or roltage source (TTL) $>+2.4$ V, $<+s \mathrm{~V}$.
Synch outputs:
Amplitude: $>+2 \mathrm{~V}$ across $50 \Omega$.
Width: approx, 40 ns . Output impedance: $50 \Omega$
Word outputs:
Positive NRZ, RZ: high: -2.5 V across $50 \Omega$, source impedance s0n. Low: $\geq-0.3 \mathrm{~V}, \leq+0.3 \mathrm{~V}$, source impedance approx. $0 \Omega$. Current sink capability 80 mA maximum.
R2 pulse widthi approx. 45 ns .
Negative NRZ: high: 0 V. lowr: -5 V across 50 , source impedance $50 \Omega$.
Transition times: $<10$ :5.

## General

Operating temperature: $0^{\circ} 1050^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V},+10 \%,-15 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 59 \mathrm{VA}$.
Weight: net $131 / 4$ Ibs ( 6 kg ).
Dimensions: $163 / 4^{\prime \prime}$ wide, $3.15 / 32^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep (425.5 x $88.2 \times 337 \mathrm{~mm}$ ).
Price: Model 8006A, \$1355
Option 001: rear panel clock output. Amplirude 2 V across $50 \Omega$. Source impedance approx. 502. Pulse width approx, 30 ns. Price: add $\$ 30$.
Computer Interface kit; Model 12556B and cable 08006-61650.

## PULSE GENERATORS <br> Maximum repetition rate 10 MHz Models 8002A, 8003A

## PULSE GENERATORS



The Hewlett-Packard 8002A generates pulses with variable transition times. All pulse parameters are variable over extremely wide ranges. Indeed, the 8002 A is a function generator capable of delivering triangular, sawtooth and trapezoidal shapes as svell as pulses and square wares.
Either positive or negative output signals can be selected, the source impedance is a constant 50 . Output amplitude is continuously adjustable from 0.02 to 5 rolts and can be doubled by switching off the internal $50 \Omega$ load. The output is protected against damage from a short circuit.
The generator can be triggered externaliy with sine waves or pulses of either polarity. A trigger output signal is also available.
The 8003 A is a highly fexible dual output general.pur. pose pulse generator, with fixed transition times of $<5 \mathrm{~ns}$; its characteristics are similar to those of the 8002A.
Remote programming of reperition rate, pulse width, and amplitude is offered as an option for the 8003 A , making it suitable for use in automatic and semi-dutomatic test systems.

## Specifications

Source impedance: $8002 \mathrm{~A}: 50 \Omega \pm 10 \%$. $8003 \mathrm{~A}:$ san $\pm 3 \%$ shunted by tgp. 20 pF .
Pulse characteristics (50n source and load impedance): Transition times:

8002A: 10 ns to $2 \mathrm{~s}, 6$ ranges, ranges are common for both transition times, two verniers allow independent control of leading and trailing edge.

## 8003A: <5 ns.

Preshoot, overshoot, ringing; $<5 \%$ of pulse amplitude.
Linearity: 8002 A : for ransition times $>20 \mathrm{~ns}$, maximum amplitude deviation from a straight fine between the 10 and $90 \%$ points is less than $4 \%$ of pulse amplioude.

Amplitude: 5 V max. ( 10 V across an open circuit). Oupput circuit protected, cannot be damaged by sharting. Seren.srep attenuator reduces output voltage to 0.05 V (positive and negative output independent on 8003 A ).
Polarity: 8002A: - or - selectabie. $8003 \mathrm{~A}:-$ and - simulane. ously within 5 ns .
Pulse width: $30 \pi$ ns s s in 5 ranges.
Maximum duty cycle: $>90 \%$ from $0.3 \mathrm{~Hz}-1 \mathrm{MHz}>50 \%$ from I $\mathrm{MHz}_{\mathrm{H}} \cdot 10 \mathrm{MHz}$.
Delay: $8002 \mathrm{~A}: 180$ ns or 35 ns fixed delay' between rrigger and pulse. 8003A: 150 ns or 10 ns delay benveen Trigger Outpue and both Pulse Ouiputs.
Repetition rate and trigger:
Free running: 0.3 Hz to $10 \mathrm{MHz}, 5$ ranges.
Manual: pushbutcon for single pulse.
Trigger input: sine waves 2 Vp -p or pulses of either polarity. $>1 \mathrm{~V}$ up to 10 MHz .
Input impedance: approximately 1 k ? dc coupled.
External trigger delay: approximately 35 ns between leading edge of external input pulse and the leading edse of erigger output pulse.
Trigger output pulse (suizable for triggering another Model 8002 A or 8003 A$):>+2 \mathrm{~V}$ across 50 s , width $15 \mathrm{~ns} \pm 5 \mathrm{~ns}$.
Synchronous gating: gating signal iurns generaror "on": last pulse is completed cuen if gate ends during the pulse.
Gate input: -2 V to -20 V enabling.
Input impedance: approximately 1 kn . dc coupled.

## General

Power: 115 or $230 \mathrm{~V} \div 10 \%,-15 \%$. $50 \mathrm{~Hz} .400 \mathrm{~Hz}, 40 \mathrm{VA}$ (8002A), 30 VA (8003A).
Dimensions: 6.17/32" high, 7.25/32" wide, $11^{\prime \prime}$ deep ( $166 \times 190$ $\times 279 \mathrm{~mm}$ ).
Weight: net, 9 lbs ( 4 kg ) ; shipping. $11 \mathrm{lbs}(5 \mathrm{~kg})$.
Price: Model 8002A: $\$ 760$. Model 8003A: $\$ 500$.
Option 001 ( 8003 A only): remote programming. Ranges: rep. rake, width by contact closure to ground. All verniers: by value of ex. ternal resistor. Add $\$ 70$.

## PULSE GENERATOR

Extremely fast transition times Model 8004A


8004A Pulse Generator
The 8004A generates pulses with extremely fast transition times. Pulse width is variable over a wide range. The variable pulse delay can be reduced to zero. A double pulse mode provides convenient test signals for logic and memory circuits. DC offset permits the pulse baseline level to be set up to $\pm 2 \mathrm{~V}$ off ground independent of the setting of the pulse amplitude controls.

## Specifications

Pulse characteristics (50ת source and load impedance): Transition times: < 1.5 ns.

Preshoot, overshoot, ringing: < $5 \%$ of pulse amplitude.
Amplitude: 5 V max. seren-step attentutor reduces ourpur to 0.05 V : continuous adjustment between steps reduces outpur to $<0.02$ V. Oupput shortsírcuit proof.
Polarity: + or - selectable.
Source impedance: son shunced by typ. 10 pF .
DC offset: $\pm 2 \mathrm{~V}$ across $50 \Omega$ load; independent of acteuator and vernier settings; can be switched off.
Pulse width: 0 to 1 ms in six ranges, Vernier provides continuous adjustment within ranges.
Maximum duty cycle: $>50 \%$ from 100 Hz to $1 \mathrm{MHz} ;>25 \%$ from 1 to 10 MHz .
Width jitter: $<0.1 \%$ on any width setting, plus 50 ps .
Pulse delay (with respect to trigger output): 0101 ms in s ranges: continuous adjustment within ranges.
Delay litter: $<0.1 \%$ on any delay setting.
Repetition rate and trigger: same as 8005 A except:
Free running: repetition sate: 100 Hz to 10 MHz , fice ranges. Vernier provides continuous adjustment.
External thiggering: delay: approx. 125 ns between trigger input and trigger ourput. May be reduced to approx. 35 ns (slide switch on board).
Trigger output width: $15 \mathrm{~ns} \pm 10 \mathrm{~ns}$
Gating: same as 8005 A except no $\mathrm{A} / \mathrm{B}$ gate.

## General

Power: 115 or $230 \mathrm{~V}, 10 \%,-15 \%, 5010400 \mathrm{~Hz}, 35 \mathrm{VA}$.
Weight: net $7 \mathrm{lb}(3,5 \mathrm{~kg})$; shipping $9 \mathrm{lb}(4,5 \mathrm{~kg})$.
Dimenslons: $73 / 4$ " wide, $61 / 2^{\prime \prime}$ high, 11 " deep ( $197 \times 165 \times 279$ ).
Price: Model 8004A, \$96s.

8010A Pulse Generator


# PULSE GENERATORS <br> Two channels for complex waveforms <br> Models 8010A 

$h 0$

## PULSE GENERATORS

## 8010A pulse generator

The Model 8010A Pulse Gencrator offers all the advanlages of the 8005 A plus additional features. The 8010 A comprises two completely separate channels with only the repetition rate common to both. Pulse delay, width, transition times, amplitude, and DC.offset controls are indepen-
dent for each channel. Most front panel controls are calibrated.

The polarity of each output can be selected individually. Complex wave shapes, of the order shown in Figure 1 are generated by Channels $A$ and $B$ together with the 8010A's combining capabilities. Both channels can also be operated in a square wave mode.


Figure 1. A selection of waveforms showing single and combined outputs.

## Specifications

Pulse characteristics (with $50 \Omega$ load impedance) :
Yransition tlmes: sep. outputs: $<10$ as to 1 s , eight ranges; ranges are common for leading and trailing edge. Independent verniers provide separate control of leading and trailing edge within each range up to a max. ratio of 1:10.
Common outputs: $<12$ ns to 1 s .
Accuracy: $\pm 10 \%$ of setting $\pm 2 \%$ of full scale $\pm 4 \mathrm{~ns}$.
Linearlty: for transition time $>30$ ns maximum amplitude deviation from a straight line between the $10 \%$ and $90 \%$ points is less than $4 \%$ of pulse amplitudes.
Overshoot and ringlng: <5\% of pulsc amplitude.
Pulse width ( $A$ and $B$ ): $<20$ ns to 1 s eight ranges, continuous adjustment within ranges.
Accuracy: $\pm 10 \%$ of setting $\pm 2 \%$ of full scale $\pm 4 \mathrm{~ns}$.
Maximum duty cycle: $>90 \%$ for repetition rates from 1 Hz to $1 \mathrm{MHz} .>50 \%$ from 1 to 10 MHz .
Width |liter: $<0.1 \%$ on any width setting.
Maximum output: 5 V sep. Combined outputs: 10 V channel B (channel A no output).
Attenuator: seven-step attenuator reduces output to 0.05 V , continuous adjustment between steps reduces minimum output to 0.02 V .
Pulse polarty: A and B independently selectable.
Source impedance: $50 \Omega \pm 10 \%$ shunted by typ. 20 pF .
DC-oftset: $\ddagger 2 \mathrm{~V}$ across 50 load, Independent of attenuator and vernier setting; can be switched off.
Pulse delay: ( $A$ and $B$ ) 50 ns to 1 s delay with respect to trigger output. Eight ranges; continuous adjustment within ranges.
Accurscy: $\pm 15 \%$ of setting.
Delay litter: $<0.1 \%$ on any delay setring.

Repetition sate and trigger:
Free running: : $\mathrm{Hz}-10 \mathrm{MHz}$, seven ranges, continuous adjustment within ranges.
Accuracy: $\pm 10 \%$ of setting $\pm 2 \%$ of full scale.
Period j|ter: $<0.1 \%$.
Square wave: 1 Hz - 10 MHz . Output symmetrical to ground.
Double pulse: channel A and B independently selectable.

## External triggering:

Rep. rate: 0 to 10 MHz . (For square wave output frequency divided by a factor of 2 ).
Trigger input: sine waves 1 V p-p. Pulses $0.5 \mathrm{~V},>20 \mathrm{~ns}$. Input Impodance: $1.0 \mathrm{k} \Omega$
Delay: approximately 30 ns between trigger input and trigger output.
Manual: pushbutton for single pulse.
Sep. triggaring for both channels: $+2 \mathrm{~V},>50 \mathrm{~ns}$. Input impedance $50 \Omega$ (inputs on rear panel).
Trigger output:
Amplitude: $>+2 \mathrm{~V}$ across $50 \Omega, 15 \mathrm{~ns} \pm 10$ ns.
Impedance: $50 \Omega$.
Synchronous gating: gating signal turns rate generator "on".
Asynchronous gating: gating signal turns the output pulse
'on'. Trigger output always available.
Gate inputs: -2 V to -10 V enabling.

## General

Power: 115 or $230 \mathrm{~V}+10 \%,-15 \% 50$ to 400 Hz 200 VA . Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ( 425 x $184 \times 466 \mathrm{~mm}$ ).
Price: $\$ 2000$.

PULSE GENERATORS
Two channels for complex waveforms Model 8005A


8005A

## 8005A pulse generator

With adjustable rise and fall times, variable width and delay features, simultaneous positive and negative outputs that can be combined into a single complex signal, the Model 8005 A gives complete control of the output waveform. Both output amplitudes are separately adjustable and $\mathrm{d} c$-offset controls allow independent setting of the baseline. Versatile gating possibilities further enhance the utility of the 8005 A. Signals of great complexity can be generated using the $\mathrm{A} / \mathrm{B}$ delay mode, as illustrated in Figure 1.

## Specifications

Pulse characteristics (50n source and load impedance):
Transition times: separate outputs: $<10$ ns to 2 s. six ranges (common for both transition times). independent verniers for leading and trailing edge.
Common outputs: <12 ns $t 02 \mathrm{~s}$
Linearity: for transition times $>30 \mathrm{~ns}$, maximum amplitude deviation from a straighi line between 10 and $90 \%$ points is $\leq \frac{1}{4} \%$ of pulse amplitude.
Preshook, overshoot, ringing: < $5 \%$ of pulse amplitude.
Pulse width: 30 ns to 3 s in five ranges; continu(rus adjustinent within ranges.


Figure 1. Separate and combined non-simultaneous outputs.

Maximum duty cycle: $>90 \%$ for repelition rates from 0.3 Hz to $1 \mathrm{MHz} ;>50 \%$ from 1 to 10 MHz .
Width jitter: $<0.1 \%$ on any width setting.
Amplitude: 5 V maximum ( 10 V accoss an open circuit) : sevenstep attenuator reduces outpue to 0.05 V : continumus adjustment: minimum output 0.02 V .
Dutput mode: Sep: + and - pulses available simulaneously or delayed with respect to each other. Delav is variable.
Source impedance: $50 \Omega \pm 10 \%$ shunted by 20 pF .
DC-offset: $\pm 2 \mathrm{~V}$ across $50 \Omega$ Ioad; can be switched off.
Pulse delay: 100 ns to 3 s rith respeci to irigger outpuł; fue ranges: continuous adjusiment within ranges. Delay jitter: $<0.1 \%$ on $2 n$ setting-
Repetition rate and trigger:
Free running: 0.3 Hz to 10 MHz , fie ranges; continuous ad. justment within ranges. Period jitter: < $0.1 \%$.
Double pulse: increases max, mit to 20 MLHz .
External triggering: 0 to 10 MHz .
Sensitivity: sine waves 2 V p-p; pulses 1 V peak, $>10$ ns: maximum input $\pm 10 \mathrm{~V}$. Delay: approx. 35 ns between rrig. ger input and crigger cutput. Input impedance: approx. 1 kn. dc-coupled.
Manual: pushbutton for single pulse.
Trigger output: amplitude $>+2 \mathrm{~V}$ across $50 \Omega$, is ns $\pm 5 \mathrm{~ns}$ wide.
Gating:
Synchronous gating: gating signal turns generator "on". Last pulse is completed even if gate ends during pulse.
Asynchronous gating: gating signal turns output pulse "on'. Trigger outpur always available; last pulse ends with gate.
Gate $A / B$ : independent gating signal for each ourput.
Gate input: -2 V to -20 V enabling.
(nput impedance: approx. 1 k . dc.coupled.

## General

Powar: 115 or $230 \mathrm{~V},+10 \%,-15 \%, 50$ to $400 \mathrm{~Hz}, 84 \mathrm{VA}$.
Weight: net $16 \mathrm{lb}(7 \mathrm{~kg})$; shipping $20 \mathrm{lb}(9 \mathrm{~kg})$.
Dimensions: $163 / 4 "$ wide, $51 / 2^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep ( $425 \times 140 \times$ 336 mm ).
Price: $\$ 1150$.

## PULSE GENERATORS Repetition rate up to 50 MHz , high flexibility Models 8012A, 8013A



8012A


8013A

The 8012A and the 8013A are extremely fexible pulse generators with repetition rate, delay, width, amplitude and DC offset variable over very wide ranges.

The 8012A has one output and offers independently variable transition times, ranging from 5 ns to 0.5 s .

The 8013A has two outputs, providing simultaneous pulses of opposite polarity. Transition times are fixed at 3.5 ns.

Both instruments feature external triggering, synchronous gating, square wave mode and pulse shaping capability for RZ and NRZ signals.

## Specifications

Pulse characteristics (50n source and load impedance):
Transition times: 8012A: s ns -0.5 s in four ranges. Ranges common for both transition times, verniers provide separate control of leading and trailing edge within each range up to maximum ratios of $100: 1$ or $1: 100.8013 \mathrm{~A}$ : 3.5 ns fixed.
Linearlty: ( 8012 A ) for iransition times $>30 \mathrm{~ns}$ maximum deviation from a straight line between the $10 \%$ and $90 \%$ points is $5 \%$ of pulse amplitude.
Preshoot, overshoot, ringing: $< \pm 5 \%$ of pulse amplitude.
Pulse width: $<10$ ns 1015 in four ranges. Vernier provides continuous adjustment within ranges.
Width Jltter: $<0.1 \%+50 \mathrm{ps}$ on any widrh seuing.
Maximum duty cycle: $>75 \%$ from i Hz to 10 MHz , decreasing $10>50 \%$ at 50 MHz .
Maximum output: 5 V across $50 \Omega$, ( 10 V across open circuit). Output circuit protected, cannot be damaged by shorting. s013A: internal $50 \Omega$ load may be disconnected, providing 10 V across sor.
Attenuator: four-step attenuator reduces output voltage to 0.5 V . Vernier provides continuous adjustment between steps. Mínimum output 0.2 V .
Polarity: 8012 A : positive or negative selecrable. 8013 A : tro out. purs, pasitive and negative.
Source Impedance: 8012 A : $50 \Omega \pm 10 \%$ shunted by typ. 20 pF . $8013 \mathrm{~A}: 50 \Omega \pm 3 \%$ shunced by gp. 20 pF .
DC offset: (across $50 \Omega$ load) $8012 \mathrm{~A}: \pm 2.5 \mathrm{~V} .8013 \mathrm{~A}$ : positive ourput: $+1 \mathrm{~V} 10-5 \mathrm{~V}$, negative output: -1 V to +5 V . Independent of amplitude control sertings. may be swicched off.
Pulse delay: <3s ns to 1 s (with respect to rrigger output), four ranges; continuous adjustment within ranges.
Delay jitter: $<0.1 \%+50 \mathrm{ps}$ on any delay seting.
Repetition rate and trlgger: 1 Hz to 50 MHz in four ranges, continuous adjustment within ranges.
Period jitter: $<0.1 \%+50 \mathrm{ps}$ on any rate setcing.
Square wave: $0.5 \mathrm{~Hz}_{2}$ to 25 MHz in four ranges. Duty cyele $50 \%$ $\pm 5 \%$ up to : MHz, rolerance increases to $\pm 15 \%$ at 25 MHz .
Trigger output: $>+1 \mathrm{~V}$ across $50 \Omega, 16$ ns $\pm 10$ ns wide. Suit. able for triggering another 8012A.

External triggering: 0 to so MHz . For square wave output, frequencs divided by factor 2.
Trigger input: sine waves 1.5 Vp -p (about zero), pulses 0.8 V , either polarity, $>7$ ns. Maximum input $\pm 7 \mathrm{~V}$.
Impedance: $50 \Omega \pm 10 \%$, dc coupled.
Delay: 25 ns $\pm 8$ ns between leading edge of trigger input and erigger output signals.
Manual: pushbution for single pulse.

## Gating:

Synchronous gating: gating signal tums gencrator "on". Last pulse is completed even if the gate ends during pulse.
Gate input: dc-coupled; voltage at open connector approx. +1.8 V. Shoning current $\leq 12 \mathrm{~mA}$. Input impedance approx. $160 \Omega$.

Gate Input signal: voltage $>+1.5 \mathrm{~V}$ or resistor $>300510$ ground enables rep. rate generator, Voltage $<+0.8 \mathrm{~V}$ or resis. tor $<150 \Omega$ disables rep. rate generator. Gate inpur TTL compatible.
Maximum input signal: $\pm 5 . \mathrm{V}$.
External width and RZ:
External width: output pulse width determined by noidth of drive input signal. Amplitude, transition times seleclable.
RZ mode: externa! drive input switched to delay generator. Period determined by period of drive input signal. Delay, ampii. tude width, transition times selectable.
Rep, rate generator: provides trigger output independent of external width input signal.
Input signali $>+1 \mathrm{~V}_{n}>7$ ns wide. Maximum $\pm 5 \mathrm{~V}$. Impedance $50 \Omega$. de coupled.

## General

Operating temperature range: $0^{\circ} \mathrm{C}$ to $53^{\circ} \mathrm{C}$.
Power: I1s V or $230 \mathrm{~V},+10 \%,-15 \%$, 48 10 $440 \mathrm{~Hz}, 70 \mathrm{VA}$ max.
Weight: net, $9 \mathrm{lbs}(4 \mathrm{~kg}$ ) : shipping $14.6 \mathrm{lbs}(6.5 \mathrm{~kg}$ )
Dlmensions: 7.9" wide, $5.6^{\prime \prime}$ high, $13^{\prime \prime}$ deep (200 x $142 \times 330$ mn).
Price: 8012A, $3875.8013 \mathrm{~A}, \$ 625$.
Accessories; 15179A Adapter Frame; rackmount for two units.

## PULSE GENERATOR <br> Repetition rate up to 100 MHz Model 8007B



The 8007 B is a versatile pulse generator with very fast variable transition times of 2 ns min．
The output can be set to positive or negative polacity， complement or symmerrical to ground，square waves can be simulated by adjusting pulse width and transition tine．Vari－ able dc －offset of $\pm 4 \mathrm{~V}$ is also available．
In＂External Width＂mode drive input and output pulse have equal width．Transition times and amplitude of the output pulse can be set by the front panel controls．This
mode is useful for shaping NRZ signals，as the ridth infor－ mation is passed on to the output pulse unchanged．
The＂Width Trigger＂mode is suitable for shaping RZ signals．Delay，width，transition times and amplitude are de－ termined by the front panel controls．
External triggering and synchronous gating are provided． The trigger level is adjustable for all externally controlled modes with the slope polarity selectable．This is very useful to avoid mulfunction caused by noise and ringing on the ex－ ternal trigger signal．

## Specifications

Pulse characteristics（50』 source and load imgedance）：
Transition times：＜2 ns to $250 \mu \mathrm{~s}$ ，three ranges（common for both transition times）．Independent rerniers for adjusting lead． ing and rrailing edge within each range up co maximura ratios of $1: 50$ or $50: 1$ ．
Linearity：Maximum amplitude deviation from a straight line be－ tween $10 \%$ and $90 \%$ points $\leq 5 \%$ of pulse amplitude．
Prashoot，ovarshoot，ringing：$< \pm 5 \%$ of pulse amplitude．
Pulse width：$<5$ as to 50 ms in five ranges．Vernier provides continuous adjustment within ranges．
Width jitter：$<0.1 \%$ on any width setting．
Maximum duty cycle：normal＞s0\％：complementary approx． $100 \%$ ．
Amplitude： 5 V max．（ 10 V across an open circuii）；four－step attenuator reduces output voltage to 0.5 V ．Vernier provides continuous adjustment between steps and reduces output to 0.2 V ．Pulse can be switched off for offset adjustment．

Pulse output：＋or－polarity selectable；normal，complement， or symmerrical to ground．
Source impedance： $50 \Omega \pm 4 \Omega$ shunted by typ， 10 pF ．
DC－otfset：士千 V across $50 \Omega$ load．Independent of amplitude setting，can be switched off．
Pulse delay：$<30$ ns to 50 ms with respect to trigger output． Five ranges，with continuous adjustment within ranges．
Delay litter：＜ $0.1 \%$ on any delay setting．
Repetition rate and trigger： 10 Hz to 100 MHz in five ranges． Continuous adjustment within ranges．
Period jitter：$<0.1 \%$ ．

Double pulse：available only up to pulse rate setting of 50 MHz ． representing an ouput pulse rate of 100 MHz ．
Trigger output：$>+^{+1} \mathrm{~V}$ across $50 \mathrm{n}, 4 \mathrm{~ns} \pm 2 \mathrm{~ns}$ wide．
External triggering： 0 to 100 MHz ．
Delay：approximately 15 ns between drigger input and trigger output．
Manual：front panel pushbution for single puise．
External width and Width trigger：
External width：output pulse width determined br width of drive input．
Width trigger：external drive inpur switched to the width gen－ erator．Pulse width determined by front panel width setuing．
Rate generator：provides trigger pulses independent of drive input．
Synchronous gating：gating signal tums generator＂on＂．Last pulse is completed even if gate ends during puise．
External input：impedance：sas．de－coupled．Max．input：$\pm 5 \mathrm{~V}$ ． Level：adjustable from +1 V ： $0-1 \mathrm{~V}$ ．Polarity：$+o \mathrm{o}-$ ．
Sensitivity：sine waves：V PP；pulses $\pm 0.5 \mathrm{~V}$ ．

## General

Operating tomparature range： $0^{\circ} \mathrm{C}$ no $+55^{\circ} \mathrm{C}$ ．
Powar requirements：í1s or $230 \mathrm{~V}+10 \%,-15 \%, 48$ to 440 Hz ， 100 VA（maximum）．
Weight：net $17.6 \mathrm{lb}(8 \mathrm{~kg})$ ，shipping $19.8 \mathrm{lb}(9 \mathrm{~kg})$ ．
Dimansions： $163 / 4^{\prime \prime}$ wide， $51 / 2^{\prime \prime}$ high， $133 / 8^{\prime \prime}$ deep（ $425 \times 140 \times 344$ mm ）．
Price：$\$ 1750$.

# PULSE GENERATOR <br> Repetition rate up to 200 MHz , two outputs 



The Model 8008A is an extremely fast pulse generator with pulse transition times $<1.2$ ns and repetition rate variable from $10 \mathrm{~Hz}-200 \mathrm{MHz}$. Optional risetime converters enable adjustment of transition times up to 2.50 ns.

The two outpurs deliver simultaneously complementary sig. nals with selectable polarity. To absorb external reflections, both outputs have constant $50 \Omega$ source impedances. A feature of the 8008 A is that ECL compatible outputs (high -0.9 V , low -1.7 V ) can be selected without tedious adjustment of
amplitude and offset controls. This feature and the maximum output amplitude of 4 V with up to $\pm 2 \mathrm{~V}$ dc offser ensures compatibility with the majotity of logic integrated circuits.

The 8008A can be operated as a pulse shaper for RZ and NRZ format input signals. Similarly, external gating and triggering are possible. The trigger level for any external input signal can be adjusted berween +1 V and -1 V on either a positive or negative slope.

## Specifications

Pulse characteristics ( $50 \Omega$ source and load impedance)
Fixed transition times: $10 \% \cdot 90 \% ; \leq 1.2 \mathrm{~ns} ; 20 \% \cdot 80 \%$; $\leq 0.9 \mathrm{~ns}$.
Overshoot and ringing: $\leq \pm S \%$ of pulse amplitude (may in crease to $\leq 10 \%$ with amplitude vemier (cw).
Preshoot: $\leq S \%$ of pulse amplitude.
Pulse width: < 2.5 ns to 50 ms in six ranges. Vernier provides continuous adjustment within ranges.
WIdth Jitter: $<0.1 \%+50$ ps on any width setting.
Maximum duty cycle: $>50 \%$ (in NORM mode)
Pulse delay: 2.5 ns ( +30 ns fixed) to 50 ms (with respecr to trigger ou(put) in six ranges. Vernier provides continuous ad. justment within ranges.
Delay jitter: $<0.1 \%+50 \mathrm{ps}$ on any delay setting.
Maximum variable delay: $\geq 50 \%$ of pulse period
Pulse output: normal and complenent available simultaneously. Outpu: polarity seleckable.
ECL compatible output: fixed pulse levels from both outputs. -0.9 V to -1.7 V . Both levels intermally adjustable.
Maximum amplitude: normal and complementary; 4 V into 502 ( 8 V across open circuit)
Source impedance: $50 \Omega \pm 5 \%$ shunted typically 10 pF
Output protection: cannor be damaged by application of external voltage $\leq \pm 8 \mathrm{~V}\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ or short circuit, independent of control settings.
Atteniator: two separate four-step attenuators reduce the outputs 100.5 V . Vemier provides continuous adjustment between steps to $<250 \mathrm{mV}$. Vernier is common to both output channels.
DC offset: $\pm 2 \mathrm{~V}$ across $50 \Omega$. Independent of amplitude attenuator and vernier settings. Can be switched off.
Repetition rate and trigger
Repetition rate; 10 Hz to 200 M Hz in six ranges. Vernier provides continuous adjustoment within ranges.
Double pulse: 100 MHz max. (simulates 200 MHz ).
Period jitter: $<0.1 \%+50$ ps on any period setting.

Trigger output: amplitude; 1 V or 200 mV (switchable) into $50 \Omega$ load.
Width: typicali); 3 ns at 200 MHz increasing to 1.5 ms at 10 Hz .
Externally controlled oparation
External input
Input impedance: 500 (typically).
Couplíng: dc coupled.
Maximum input: $\pm 5 \mathrm{~V}$.
Trigger level: continuously adjustable +1 V to -1 V .
External triggering
Repetition rate: 0 to 200 MHz
Delay: approximately 15 ns berween trigger input and trigger output.
Manual: front panel pushbutton for single pulse.
Width trigger: external drive input switched to delay geners. tor. Pulse width determined by width setting. Trigger output available from rate generator independent of input sigaal.
External width: output pulse width determined by width of drive input. Trigger output available from rate generator independent of inpu: signal.
Synchronous gating: gating signal turns generator "on." First pulse is delayed (by fixed and variable delay) with respect to leading edge of gate, last pulse is of normal wideh even if gate ends during the pulse. Repetition rate, width. amplitude and polarity determined by control setuings.

## General

Operating temperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V} .+10 \%,-15 \%, 48-440 \mathrm{~Hz}, 100 \mathrm{VA}$ max.
Weight: net, $17.6 \mathrm{lbs}(8 \mathrm{~kg}$ ) : shipping. $19.8 \mathrm{lbs}(9 \mathrm{~kg})$
Dimensions: $163 / /^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep ( 425 mm x $140 \mathrm{~mm} \times 336 \mathrm{~mm}$ ).
Ordering information
Price: 8008 A , Pulse Generitor, $\$ 2700$.
Price: 8008A Option 001, 8008A + Risetime Converter, $\$ 2900$


1901 Mainframe

## Introduction, 1900 Series

The 1900 secies provides you with a precision pulse source for every requirement-now and in the future. The plug-in concept allows you to select only the functions you require while enabling furure adaptation or expansion at minimum cost.

The series comprises two mainframes and a range of sixteen plug-in modules. The 1900A and 1901A mainframes contain the power supplies and compartments for the plug.in modules. Model 1900A is the base for high power puise systems while Model 1901 A provides the base for medium power systems. Complex systems can be formed by using several mainframes and the desired plug-ins. The internal wiring of a mainframe permits the choice of external or internal interconnection of plug-ins. Another feature is built-in shielding to minimize RFI.

Of the sixteen plug-in modules, two are devoted to rate generation, six to timing and information (e.g. delay, word generation, PRBS generation) and eight to interfacing and output. This comprehensive range enables a vast number of configurations to be constructed varying from the simple pulse shaper to the most complex of test systems. For example, if you already have a trigger soucce and only need pulse shaping capability, a mainframe equipped with output plug-ins may be all that is necessary for your application. On the other hand, one rate generator may be used to drive several modules through a fan-out amplier, the resulting system providing several pulse sources each with independently variable characteristics.

## Rate generators

There are two rate modules in the 1900 series, one covering the range 25 Hz to 25 MHz and the other covering the range 10 Hz to 125 MHz .

Both feature external triggering and synchronous gating capability.

## Delay generators

There are three delay generators in the 1900 series. In the 0 to 25 MHz range, the 1908 A provides advance and delay of 15 ns to 10 ms . In the 0 to 125 MHz range, the 1909 A provides continuously variable delay up to 1 ms and the 1910A provides incrementally variable delay up to 100 ns . Also, 1908A and 1909A offer double pulse and 1909A offers a gating signal output.

## Formatting

Applications that require formats are also filled by the 1900 series. The 1925 A can generate a 2 to 16 bit word in RZ or NRZ format, or PRBS signals at clock rates up to 50 MHz . Also in the 0 to 50 MHz range is a 4 phase clock generator 1934A which features a selectable phase pactern. The 1930A provides bit error detection, random signal simulation, and coding and decoding functions in the 0 to 40 MHz range.

## Output

The output pulse shaping modules control the width, transition times, polarity, offset and amplitude of the test pulses. The modules cover high and low voltage and fixed or variable transition time requirements.

## Optional programmability

All the major functions of the 1900 series are designed for remote analog programming. This permits semi-automatic testing where several different pulse waveforms are required. This economical programming facility can be ordered as a factory installed option or an easily installed programming kit.

For complete automatic control, digita! programming is available for seven of the plug.ins. Using a 6940A Multiprogrammer as an interface between a 1900 series pulse generator and a minicomputer, efficient and reliable control of a large number of pulse parameters is possible. Another advantage is that up to 240 separate parameters can be controlled from one computer I/O slot. For more information see the Programming description.

1900 PULSE GENERATOR SYSTEM

1900 Mainframe $\quad$ 1916A. | 50V/nis, var |
| :--- |
| 1 output |




Specifications, 1905A and 1906A
(Except as noted, specifications apply to both rate generators.)

Frequency
Internal: 1905A, 25 Hz to 25 MHz in 6 ranges; 1906A, 10 Hz to 125 MHz in 8 ranges. $10: 1$ vernier allows con. tinuous adjustment over selected range.
External: $1905 \mathrm{~A}, 0$ to $25 \mathrm{MHz} ; 1906 \mathrm{~A}, 0$ to 125 MHz .
Period Jiter: $<0.1 \%$ of selected period.
External trigger
Amplitude: 1905A. 0.5 V p-p min, s V p.p max.: 1906A, 0 to $50 \mathrm{MHz}, 0.5 \mathrm{~V}$ p-p min: 50 to 125 MHz 1.5 V P-P min. Maximum input. s V p.p.
Slope: positive or negarjve (selectable).
Trigger level: selectable on inpur waveform from 0 to $\pm 3 \mathrm{~V}$.
Deliy: 1905A, approx. 27 as between external input and rate output: 1906 A , appros: 12 ns between external input and rate outpur.
Input impedance: approx. so ohms. de-coupled.
Synchronous gating
Amplitude: $1905 \lambda,-2 \mathrm{~V}$ gates generator on, -5 V max. ; 1906A, +1 V gates generator on, +5 V max.
input impedance: approx. 50 ohms, dc-coupled.

## Output pulse

Impedance: approx. 90 nms , dc.coupled.

Amplitude: $>1.5 \mathrm{~V}$ into 50 ohms (drives two 1900 series plug-ins).
Rise time: 1905A, <5 ns; 1906A, <3 ns.
Width: 1905A, <10 ns; 1906A, <s ns.

## General

Welght: ner, $11 / 4 \mathrm{lbs}(0,6 \mathrm{~kg})$; shipping, $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Price
1905A: 25 MHz Gencrator, $\$ 215$.
1906A: 125 MHz Rate Generator, $\$ 275$.
Options
001: analog programming. Provides connector and circuit card for control of Rate Source (INT, EXT, +, 一) and pulse rate. Price: 1905A/6A Oprion 001, add $\$ 100$.
005: (1905A only) digital programming. Provides digital control of Rate Source and Pulse Rate. Refer to 1900/ 6940A deseription or contact your Helwletr-Packard Field Engineer for more information.
Price: 1905A Option 005, add $\$ 500$.
Accessories
Programming kit: HP Part No. 0190S-69501, provides for field installation for Option 001.
Price: $\$ 100$.

## Specifications, 1908A

Risetime: <5 ns.
Width: <10 ns.

## General

Weight: net, $11 / 4 \mathrm{lbs}(0,6 \mathrm{~kg})$; shipping, $6 \mathrm{lbs}(2.7 \mathrm{~kg})$.
Price: Model 1908A. Delay Generator, $\$ 215$,
Options
001: analog programming. Provides connector and circuits for control of Drive Output (Delay, Double Puise) and Time Interval. Drive Output modes and Time Interval ranges are selected by contact closure to ground. Time Interval vernier is controlled by analog currenr.
Price: Option 001. add $\$ 100$.
005: digital programming. Provides digital control of Drive Output (Delay, Double Pulse) and Time Interval. Refer to 1900/6940A description or contact your Hewletr. Packard Field Engineer for more information.
Price: 1908A Option 005, add $\$ 500$.
Accessories
Programming kit: HP Part No. $01908-69501$ provides for field installation for Oprion 001.
Price: $\$ 100$.

DELAY GENERATORS


- O to 125 MHz Rep Rate
- Delays from 0 to 1 ms
- Double Pulse
- Gating Pulses from 8 ns to 1 ms


## Specifications, 1909A <br> Time Interval

Delay range: 0 to l ms in 6 ranges, $10: 1$ vernier gives continuous adjustment within ranges.
Double and gate pulse ranges: 8 ns to 1 ms in 6 ranges, 10:1 vernier gives continuous adjustment within ranges.
Jitter: < 25 ps plus $0.1 \%$ of pulse delay.
Time intersymbol interference: delay change with rep. rate typically $<1.5$ ns plus $2 \%$ of delay.

## Rate input

Repetition rate: 0 to 125 MHz in delay mode; 0 to 65 MHz in double pulse and gate modes.
Input impedance: $51 \Omega \pm 1 \Omega$, dc coupled.
Sensitivity 0 to 125 MHz amplitude, $\geq 1.5 \mathrm{~V}$ : width, $\geq 3$ ns; slope, approx $0.2 \mathrm{~V} /$ ns at 0.7 V .
Sensittuity 0 to 25 MHz amplitude, $\geq 1 \mathrm{~V}$; width, $\geq 6 \mathrm{~ns}$; slope approx $0.4 \mathrm{~V} /$ os at 0.7 V .

## Drive autput

Amplltuda: $\geq 1.5 \mathrm{~V}$ into $25 \Omega$ (drives two 1900 series plug. ins), $\geq 2.5 \mathrm{~V}$ into $50 \Omega$ in gate mode.
Width: $<4$ ns delay, double pulse modes.
Minimum propagation delay: approx 16 ns with respect to rate input.

Trlgger output
Amplitude: $>1.5 \mathrm{~V}$ into $25 \Omega$ (drives two 1900 series plugins).

- O to 125 MHz Rep Rate
- 5 ns to 100 ns Delay
- Delay Regardless of Rep Rate
- <10 ps Jitter


## General

Weight: net, $13 / 4 \mathrm{lb}(0,6 \mathrm{~kg})$; shipping, $6 \mathrm{lb}(2,7 \mathrm{~kg})$. Price: Model 1909A Delay Gencrator, $\$ 325$. Options

001: analog programming. Provides connector and circuits to control Drive Output and Time Interval. Price: Option 001, add $\$ 100$.

Specificiations, 1910A
Time interva! (from Trigger Output to Drive Output)
Range: $S$ ns to 100 ns in 5 ns increments.
Jitter: < [0 ps.
Rate input
Repetition rate: 0 to 125 MHz .
Amplitude: 0 to $25 \mathrm{MHz} ; 1 \mathrm{~V}$ peak min, 5 V peak max. 25 MHz to 125 MHz ; 1.5 V peak min, 5 V peak max.
Maximum delay after rate input (with delay control set to min):
Trigger output: approx 5 ns.
Drive output: approx 10 ns.
Input impedance: approx 50 ohms, dc coupled.
Trigger and drive outputs
Output impedance: approx 50 ohms.
Amplitude: $>1.5 \mathrm{~V}$ into 25 ohms.
Risetime: <3 ns.
Width: < 5 ns .

## General

Welght: net, $21 / 2 \mathrm{lbs}(1,13 \mathrm{~kg})$; shipping, $43 / 4 \mathrm{lbs}(2,2 \mathrm{~kg})$. Price: Model 1910A, Delay Generator, $\$ 225$.


## Specifications, 1915A <br> Output pulse

Source impedance: 50 ohms or high impedance: self conrained so ohm termination can be disconnecred.
High Impedance output: approx. 4 kohm shunted by <is pF.
50 ohm output: approx. 50 ohms shunted by $<45 \mathrm{pF}$.
Amplitude (short-circuit current): 50 mA to 1 A in 4 ranges, 2.5:1 vernier allows concinuous control within ranges. Voltage into external 30 nhms is $\pm 2.5 \mathrm{~V}$ to $\pm 50 \mathrm{~V}$ with high impedance source of $\pm 1.25 \mathrm{~V}$ to $\pm 25 \mathrm{~V}$ with 90 ohm source. Maximum aroplitude (including offser) is $\pm 50 \mathrm{~V}$.

## Puise shape

Pulse top variations: 50 ohm source and 50 ohm load, $\pm 5 \%$ for rransition times 7 ns to $20 \mathrm{~ns}, \pm 2 \%$ for transition times $>20 \mathrm{~ns}$; high impedance source and 50 ohm load, $\pm 5 \%$ for all transition times.
Transitlon tímes: 7 ns ( 10 ns with high $Z$ source) to 1 ms in 11 ranges ( $1,2,5$ sequence), two $100: 1$ verniers provide inde. pendent control of rise and fall times. Transition time variations over entire amplitude range ( $\pm 0.2 \mathrm{~V}$ to $\pm 25 \mathrm{~V}$ ) : $\pm 15 \%, \geq 100$ ns ; $\pm 40 \%, 7 \mathrm{~ns}$ to 100 ns .
Polarity: positive or negative, selectable,
Basellne offset: $\pm 60 \mathrm{~mA}$, max. offset inno external 50 ohms is $\pm 1.5 \mathrm{~V}$ with so ohms source. $\pm 3 \mathrm{~V}$ with high Z source.

## Width

internal: 15 ns to 40 ms in 7 decade ranges (excepl first range15 ns - 40 ns ), $10: 1$ vemier provides continuous adjusement within ranges; width jitter $<0.5 \%$ of selected width.
External: provides pulse amplifier operation: output pulse width determined by drive inpue width.
Duty cycle: $>65 \%$ on all ranges except $>50 \%$ on 0.015 to 0.04 $\mu \mathrm{s}$ width range; 0 to $100 \%$ in external mode. For $<0.2 \%$ duty cycle operation, refer to overload specification.

## Overtoad

Overioad lamp lights to indicate when power detector prosection circuits are turning of the ourput current to prevent damage 10 the output transistors. The porer detector is energized for single pulse or $<0.2 \%$ duty cycle operation for pulse widths $>1 \mu \mathrm{~s}$. Is single pulse or low dury cycic operation is required. Option His on in programmable (OOS) versions, H51 may be ordered.

## Drive lnput

Repetition rate: 0 to 25 MHz (see overload specification for low rep, rate considerations).
Amplitude: I V peak min., s V peak max.
Input impedance: 50 ohms, dc-coupled,
Maximum delay: (after drive inpui) <45 ns.

## General

Weight: net, $51 / 2 \mathrm{lb}(2,5 \mathrm{~kg})$; shipping, $9 \mathrm{lb}(4,1 \mathrm{~kg})$.
Price: Model I915A Variable Transurion Time Output, $\$ 1700$.


Options
OOI: analog programming. Provides connector and circuiss to control width. transition time, amplitude, polarity and offset. Price: Option 001, add $\$ 275$.
002: positive outpu:. Provides positive-only plise ourput and positive-only offser. Price: Option 002, deduct $\$ 225$.
003: negative output. Provides negative-only pulse output and negative-only offset. Price: Option 003, deducr $\$ 225$.
004: volrage calibration. Calibration of pulse amplitude in vol. tage. Price: Option 004, add $\$ 25$.
005: digital programming. Provides digital control of Widih, Transition Time, Amplitude, Polarity and Offiser. Reler to 1900/6940A description or contact your Hewlett-Packard Field Engíneet for more information. Price: Option 005, add $\$ 2750$.

## Accessories

Programming kit: HP Part No. 01915-69501, provides field in. stallation of Option 001. Add $\$ 275$.

Specifications, 1916A
Pulse characteristics: ( $50 \Omega$ source and load impedance).
Transitlan times: 2.5 ns to $250 \mu \mathrm{~s}$ in 3 ranges; 50 : 1 verniers pro. vide separate control of rise and fall times. Nonlinearity; maximum deviation from steaight line between $10 \%$ and $90 \%$ ampli. tude, less than $5 \%$ of pulse amplitude.
Overshoot, ringing and proshoot: $<5 \%$ of puise amplitude.
Amplitude: $<200 \mathrm{mV}$ to 5 V (actoss $50 \Omega$ ) in four ranges. Vernier provides continuous adjustment within ranges.
Pulse output: channe! $A$; pos-normal, pos-symmetrical (abour off. set volrage) or neg.complement. Channel B; neg-nommal, negsymmerrical or pos-complement. Switch selectable.
Maximum duty cycle: $>50 \%$ for internal width; up to $100 \%$ with complement: up to $100 \%$ for external width.
Source impedance: $50 \Omega \pm 4 \Omega$ shunted by 10 pF (typ.).
DC offset: $\stackrel{ \pm}{\ddagger} 2.5 \mathrm{~V}$ across $50 \Omega$, independent of amplitude. Can be switched off.
Pulse width: 5 ns to 1 ms in 6 ranges. $10: 1$ vemier provides con. tinuous adjustment within ranges.
Width Jitter: $<0.1 \%+2 s$ ps of pulse width.
External width: pulse width within $\pm 2$ ns of external input width when input width measured ar 0.6 V .

Drive Input
Repetition rate: 0 to 100 MHz .
Input impedance: $50 \Omega$, dc coupled.
Pulse shape: amplitude, $>1.5 \mathrm{~V}$ : width $>3 \mathrm{~ns} ;$ slope, $>0.25$ $\mathrm{V} / \mathrm{ns}$ in internal width. $>0.15 \mathrm{~V} / \mathrm{ns}$ in external width (smaller slopes may cause performance degradation).
Maximum Input: $\pm 5 \mathrm{~V}$.
Propagation delay: internal width mode, 23 ns approx; external width mode, 18 ns approx.

General
Welght: ner, $21 / 2 \mathrm{lb}(1,13 \mathrm{~kg})$; shipping, $63 / 4 \mathrm{lb}(2,8 \mathrm{~kg})$.
Price: Model 1916A Variable Transition Time Ourput, $\$ 1290$

## PULSE GENERATORS



Specifications, 1917A

## Output pulse

Source tmpedance: 50 ohms or high $\mathrm{Z}_{\text {; }}$ selected with in. ternal switch. High impedance output, approx. 3 k ohms shunted by 45 pF ; 50 ohms output, approx. 50 ohms shunted by is pF .
Amplitude: (volts into 50 ohms) 0.2 to 10 V with 50 ohms source; 0 to 14 V ( 8 to 400 mA ) with 3000 ohms source; 2.5:1 vernier provides continuous adjustment over each range.
Pulse shape
Pulse top variations: $\pm 5 \%$ for transition times $>7 \mathrm{~ns}$.
Transition times: 7 as to $500 \mu \mathrm{~s}$ in 5 ranges; two $50: 1$ verniers provide independent control of rise and fall times. Transition time variations over entire amplitude range ( $\pm 0.2$ ro +10 volts) $: \pm 15 \%, \geq 100 \mathrm{~ns} ; \pm 40 \%$. 7 to 100 ns.
Polarity: plus or minus, selectable.
Basellne offset: $\pm 2.5 \mathrm{~V}$ into external 50 ohms with 50 ohm source: 100 mA with 3000 olim source.
Width
Internal: ranges, 15 ns to 40 ms in 7 ranges; $10: 1$ vernier provides contiouous adjustment over each range; width jitter, < $0.25 \%$ of selected pulse width.
External: provides pulse amplifier operation: outpur pulse width determined by width of drive input.
Duty cycle: internal width mode, $65 \%$ except for 15 to 40 ns width range. $50 \%$ on 15 to 50 ns width range; external width mode, up to $100 \%$ : limited by output pulse transi. tion times.
Drive input
Repetition rate: 0 to 25 MHz .
Input Impedance: 50 ohnrs, dc-coupled.
Arnplitude: 1 V peak min., 5 V peak max.
Maximum delay after drive input: approx. 35 ns .

## General

Weight: net, $21 / 2 \mathrm{lbs}(1,13 \mathrm{~kg}$ ) ; shipping, $61 / 4 \mathrm{Jbs}(2,8 \mathrm{~kg})$.
Price: Model 1917A, Variable Transition Time Output, $\$ 95$. Options
001: analog programming. Provides connector and circuits to control Width, Transition Time, Amplitude, Polarity, and Offset. Price: Option 001, add $\$ 275$.
005: digital programming. Provides digital control of Width, Transition Time, amplitude, Polarity, and Offset. Refer
to 1900/6940A description or contact your Hewlett-Pack. ard Field Engineer for more information.
Price: 1917A Option 005, add $\$ 2000$.

## Accessorles

Programming kit: HP Part No. 01917-69501 provides for field installation of Option 001. \$275.

## Specifications, 1920A

## Pulse output

Source resistance: 50 ohms $\pm 5 \%$.
Amplitude: 0.5 to $\mathrm{S} V$ into 50 ohms in three ranges; $1,2,5$ sequence. 2.5:1 vernier provides continuous adjustment over each range. Output circuit cannot be damaged by shorting.
Pulse shape (measured at 5 V into 50 ohms )
Leading edge: risetime, <350 ps; preshoor. $<1 \%$, overshoot and ringing, $<10 \% \mathrm{P} \cdot \mathrm{P}$; rime to settle to within $3 \%$ of hat top, <5 ns; rounding < $5 \%$
Trailing edge: falltime, <400 ps: preshoot, <1\% for pulse width $>s$ as; overshoot and ringing, $<10 \%$ p-p; time to setrle to within $3 \%$ of baseline, $<5$ ns except for perturbation 10.20 ns after trailing edge $< \pm 4 \%$; rounding, $<5 \%$.
Polarity: plus or minus, selectable.
Baseline offset: plus, minus, or off; selectable, 0.2 V into 50 ohms.
Width: 0 to $10 \mu \mathrm{~s}$ in four ranges. $10: 1$ vernier provides continuous adjustment between ranges.
Width jitter: <20 ps or $0.1 \%$ whichever is greater.
Duty cycle: 0 to $>25 \%$ ( 0 to 20 MHz rep. rate); 0 to $10 \%$ ( $>20 \mathrm{MHz}$ rep rate).

## Drive input

Repetition rate: 0 to 25 MHz .
Amplitude: 1 V peak min., 5 V peak max.
Maximum delay after rate input: approx 60 ns.
Input impedance: 50 ohms, dc-coupled.

## General

Welght: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping, $10 \mathrm{lbs}(4,5 \mathrm{~kg}$ ).
Price: Model 1920A, 350 ps Rise Time Output, $\$ 1975$.
Options
001: analog programming. Provides connector and circuits to control width range and vernier, offset range and vernier, and amplitude vernier
Price: Option 001, add $\$ 150$.


## Specifications, 1921A and 1922A Output pulse

Source impedance: approx 50 ohms shunted by 9 pF . Reflection coefficient is typically $<0.15$ for incident pulses with rise times $>1.5$ ns.
Puise amplitude: (volts into 50 ohms) 0.5 to $5 \mathrm{~V} ; 2.5: 1$ vernier provides continuous adjustment over each range.
Polarity: 1921A, positive; 1922A, negative. Opposite pulses can be obtained from each unit by adjusting offset, amplitude and complement controls.
Duty cycle: $>50 \%$ in internal; up to $100 \%$ with complement; external width mode, up to $100 \%$.
Feedthru mode: allows output pulses to be added on a 50 ohm transmission line for bipolar applications.
Complement: selects normal pulse or its logic complement. Transition time shift: normal to complement, typically $< \pm 1$ ns.

## Pulse shape

Pulse top variations: $< \pm 5 \%$ for amplitudes from 1 to 5 V and $< \pm 7 \%$ for amplitudes of $<1 \mathrm{~V}$.
Base line offset: 0 to $\pm 5 \mathrm{~V}$ into 50 ohms.
Transition times: $<2$ ns.

## Width

Internal: ranges, 4 ns to 1 ms in 6 ranges ( $10: 1$ vernier provides continuous adjustment over each range); jitter, $<25 \mathrm{ps}+0.1 \%$ of pulse width; time intersymbol inter. ference, width change with rep rate $<1.5 \mathrm{~ns}+2 \%$ of pulse width.
External: provides pulse amplifier operation; output pulse width is determined by width of drive input. Pulse width tracking is within approx $\pm 1$ ns with input pulse width measured at 0.6 V . Time intersymbol interference: transition shift with rep rate, $<1 \mathrm{~ns}$.

## Drive ingut

Repetitlon rate: 0 to 125 MHz . Input impedance: so ohms dc-coupled.
Pulse shape: amplitude, $>1.5 \mathrm{~V}$; width, $>3 \mathrm{~ns}$; slope, $>0.25 \mathrm{~V} / \mathrm{ns}$ at 0.7 V in internal width, $>0.15 \mathrm{~V} / \mathrm{ns}$ at
0.7 V in external width (smaller slopes may cause degradation of performance).
Maximum input: $\pm 5 \mathrm{~V}$.
Propagatlon delay: internal width mode, approx 18 ns; external width mode, approx 15 ns ; feedthru mode, approx 4 ns.

## General

Weight: net, 3 lbs ( $1,4 \mathrm{~kg}$ ); shipping, $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Price: Model 1921 A Positive Output, $\$ 950$.
Model 1922A Negative Output, $\$ 950$.
Options (order by Option number)
001: analog programming. Provides connector and cir. cuits to control width, amplitude, complement and offset.
Price: Option 001 for 1921A or 1922A, add $\$ 150$.
Specifications, 1927A and 1928A
(Excepl as noted, specifications apply to both
fan-in and fan-out amplifiess.)
Input
Threshoid: continuously variable from +0.5 V to +3 V . In 1927A, one adjustment sets all eight inputs to the same level.
Repetition rate: 0 to 125 MHz .
Amplitude: 1 V min., 4 V max.
Width: $>4 \mathrm{~ns}$.
Propagatlon delay; 1927A, $<8 \mathrm{~ns} ; 1928 \mathrm{~A},<10 \mathrm{~ns}$.
Input impedance: 50 ohms, do.coupled.
Output
Source impadance: unterminated current source.
Logic one: $45 \mathrm{~mA}, \pm 5 \mathrm{~mA}$ current source; $>2 \mathrm{~V}$ into 50 ohms.
Transition tímes: <3ns.
Pulse stretching: increase in pulse width is $<3 \mathrm{~ns}$.
1928A differential delay between output ports: $<3 \mathrm{~ns}$.
General
Weight: net, $11 / 4 \mathrm{lb}(0,6 \mathrm{~kg})$; shipping, $6 \mathrm{lb}(2,7 \mathrm{~kg})$.
Price:
1927A. Fan-In Amplifier
$\$ 150$
1928A Fan-Out Amplifier
$\$ 225$


Description, 1930A
Model 1930A is a quatter-size, formatting plug-in for the 1900 pulse system. It can generate a pseudorandom binary sequence (PRBS) in either return-to-zero (RZ) or non-return-to-zero (NRZ) formats at clock rates up to 40 MHz (typically to 50 MHz ). The length of a sequence can be varied from 7 to 1048575 bits before being repeated. A PRBS is apparently random in that, for samples of $n$ bits or less, it follon's closely the statistical characteristics of a binomial distribution but it is deterministic and periodic.

## Random signal simukation

Random signal simulation allow's a device thar processes digital information to be completely exercised while providing the stationary characteristics of a repetitive signal. In pattern sensitive devices, pseudo-random binary sequences provide a fast, easy and complete method of generating all possible combinations of up to 20 bits for detecting worst case patterns. Also. in an n cell device, a random sequence can be generated that is $2^{n} .1$ bits long and contains all possible combinations of $n$ bits except the all zeros combination. In 1930A, $n$ can be between 3 and 20, thus it is possible to select the sequence length to avoid "beating" with other signals in the device being exercised.

## Bit error detection

One of the main reasons for testing digizal processing equipment is to determine hor accurately the transmitted signal is received and to find the effect of noise in the ransmission system. A measure of the quality of a digital system is Bit Error Rate (BER).

Bit enror detection in digital transmission systems is simplified by the ability of 1930A to synchronize rapidly to a data stream (either words or pseudo-random sequences) and compare the incoming data bir by bit with a stored replica. For example: one 1930A generates a signal that is transmited over a digital communication link while a second 1930A synchronizes to the incoming signal from the link. Each time the received signal differs from the stored replica an error pulse is produced at the error output. Error pulses can be counted to provide the bit error rate. This rechnique is not restricted to
transmission systems, it is equally applicable when testing mass-storage memory devices.

## Coding

Coding in digital applications is accomplished by dividing the incoming data stream by the characteristic equation of the generator. The pseudo-random binary sequence completely scrambles the original dara in both time and frequency domains. Eleven different scrambling patterns can be selected with a front panel register length switch, and feedback tapes inside the plug.in allow over 73,000 different pseudo-random patterns. Scrambling patterns may also be set by remote, electronic program signals through the rear panel of an Option 001 mainframe. To decode the information, another 1930A set to the same sequence multiplies the scrambled signal by the same equation to regain the original data.

## Specifications, 1930A <br> Clock input

Repetition rate: 0 to 40 MHz (typically to 50 MHz in most sequences).
Input R: 50 ohms, dc-coupled.
Amplitude: +1 V min.
Width: $>4$ ns and < 15 ns .
Propagation delay: 40 ns max. (clock input to rransition of output data).
Maximum input: $\pm 5 \mathrm{~V}$.
Data input
Repetition rate: 0 to 40 MHz (typically to 50 MHz ).
input R: son, de-coupled.
Amplitude
One level: +1 V min.
Zaro level: 0 V .
Maximum input: $\pm 5 \mathrm{~V}$.
Trigger output
Amplitude: 1 V (open circuit).
Width: approx I clock period.
Source R: 50 ohms.
Error output
Amplitude: $45 \pm 5 \mathrm{~mA}$ current source or $>2 \mathrm{~V}$ into 50 ohms.
Width: $>10 \mathrm{~ns},<50 \%$ of period in RZ mode.
Source R: unterminated curcent source.
Self generated error rate: $<1 \times 10^{-12}$.
PRES output
Amplitude: $45 \mathrm{~mA} \pm 5 \mathrm{~mA}$ or $>2 \mathrm{~V}$ into 50 ohms.
Rlse and fall times: <4 ns.
Wieth: typically $>7$ as and $<14$ ns.
Source R: unterminated current source.
Programming inputs
(Requires Option 001 1900A or 1901A Mainframes)
False: contact closure to $<0.6 \mathrm{~V}$.
True: open or $>3.0 \mathrm{~V}$.
Response: < 300 ns.
Threshold: approx 2.2 V or 5.5 k ohms. General
Weight: net, $21 / 4 \mathrm{lb}(1,02 \mathrm{~kg})$; shipping. $41 / 2 \mathrm{lb}(2,04 \mathrm{~kg})$.
Price: Model 1930A, PR Binary Sequence Generator, $\$ 1200$. Options
005: digital programming. Enables control by a 6940 A Multiprogrammer. Por more information see 1900/6940A description or contact your Hewlett-Packard field engineer. Price: Option 005, add $\$ 300$.


- 0 to 50 MHz Clock
- 2 to 16 Bit Words
- RZ/NRZ Formats
- Word/Word Complement


## Specifications, 1925A

Clock input
Repetition rata: 0 to 50 MHz ( is to $35^{\circ} \mathrm{C}$ ), 0 to 45 MHz ( 0 to $50^{\circ} \mathrm{C}$ ).
Input impedance: 50 ohms, dr-coupled.
Amplitude: +1 V min, +5 V max.
Width: $>4 \mathrm{~ns},<18 \mathrm{~ns}$ at +0.6 V .
Propagation delay: 35 ns max., leading edge of transition of output data.
Transition time jitter: (berween clock or END and WORDOL'T) 100 ps.
Start input
Period: $>$ (word length plus 30 ns).
Ingut impedance: so ohms, dccoupled.
Amplitude: +1 V min, +5 V max.
Wldth: >s ns.
Programming inputs (requires 1900A Option 001 or 1901 A Option 001 mainframe).
True: contact closure, saturated DTL, or voltage source (TTL) $<+0.2 \mathrm{~V}$.
False: open, of DTL, or voltage source (TTL) $>2.5 \mathrm{~V},<4.0 \mathrm{~V}$.
Noise immunity: $>0.7 \mathrm{~V}$ p-p. When true $<0.2 \mathrm{~V}$, when false $>3.5 \mathrm{~V}$.
Noise bandwidth: <15 MHz.
Word and End output
True: $45 \pm 5 \mathrm{~mA}$ current source or $>1 \mathrm{~V}$ into 25 ohms
False: $<1 \mathrm{~mA}$.
Risetime and falltime: $<4$ ns.
Perturbations: $<15 \%$.
Source impedance: unterminated current source.
Word length: 2 to 16 bits, set by internal switches.
Word content: set by front panel switches or programmed.

## General

Woight: ner, $21 / 4 \mathrm{lb}(1,02 \mathrm{~kg}$ ); shipping. $41 / 2 \mathrm{lb}$ ( $2,04 \mathrm{~kg}$ ) Prica: Model 1925A. Word Generator
\$850. Options
005: digital programming. Enables digital control from a 6940A Multiprogrammer. For more information, see 1900/6940A description or contact your Hewlett-Packard Field Engineer.
Price: Oprion 005, add $\$ 300$.

- Selectable Phase Pattern
- 2 Phase, 25 MHz
- 4 Phase, 12.5 MHz
- RZ/NRZ Formats


## Specifications, 1934A

Clock input
Repetition rate: de to $>50 \mathrm{MHz}$.
Width: >4 as and <1/2 clock period.
Input R: 50 ohms, de-coupled.
Amplitude: $\geq+1$ V or $<+3 \mathrm{~V}$.
Maximum input: $\pm 5 \mathrm{~V}$.
Data clock output
Repetition rate: two phase, $1 / 2$ input rate: four phase, $1 / 4$ input rate.
Width: <15 ns.
Transitlon times: <áns.
Source impedance: emitter folloner voltage source.
Amplitude: $>2 \mathrm{~V}$ into 50 ohms.
Position with respect to matrix bit: $>15$ ns advance.
Phase outputs
Amplitude: $45 \mathrm{~mA}=5 \mathrm{~mA}$ or $>2 \mathrm{~V}$ into 50 ohms.
Repetition rate: two phase, dc to $>25 \mathrm{MHz}_{\text {; }}$ four phase, dc to $>12.5 \mathrm{MHz}$.
Width: NRZ, one input clock period; RZ, <10 ns.
Source impedance: unterminated current source.
Transition time: < 4 ns.

## Bit delay

Range 1: 7 to 35 ns .
Range 2: is to 500 ns .
Vernier: provides rariable delay between trailing edge of preceding bit and leading edge of selected bit and must not exceed $1 / 2$ input clock period delay time.
Programming inputs (requires 1900A Option 001 or 1901A Option 001 mainframe).

## Functions

False: contact closure to $<0.6 \mathrm{~V}$.
True: open or $>3 \mathrm{~V}$.
Sottling time: <300 ns.
Threshold: approx 2.1 V or 5700 ohms.

## Vernier

Sustaining voltage: -4.7 V .
Current: -0.7 mA to -10 mA .

## General

Weight: net, $21 / 4 \mathrm{lbs}(1,02 \mathrm{~kg}$ ); shipping, $41 / 2 \mathrm{lbs}(2,04 \mathrm{~kg})$.
Price: Model 1934A, Multiphase Clock Generator


1900


6940

## Introduction

The capability of a pulse generator to he programmed, enables it to be incorporated in automatic or semi-automatic test systems. This added fexibility is invaluable for applica. tions that require several different but repeatable pulse waveforms. Hewlett-Packard offers this capability in a number of their pulse generators, particularly in the 1900 series.

## Analog programming

Analog programming is patticularly suitable for simple applications where only partial remote control is necded or when only a few pulse waveforms are required sepeatedly. Available in the 1900 series are eight plug-ins which feature aralog programming as an option. They are:

1905A	001	1915A 001	Programming of these modules re-
1905A	001	19208 001	quires an option 001 1900A or
1908A	001	1921A 001	19014 mainframe.
1909A	001	1922A 001	

Also, in the range of dedicated pulse generators, Model 8003 A is analog programmable when ordered with Option 001 . Programming is by contact closure for ranges and by resistor or analog current for vernier functions.

## Digital programming

For flexible control of a pulse generator, digital programming is the answer and Hewlett-Packard's contribution is the $1900 / 6940 \mathrm{~A}$ programmable pulse generator.

The plug-in 1900 system and the 6940 A Multiprogrammer allows reliable and efficient control of a large number of functions by a mini-computer, using only a single 16 bit I/O slot. Up to fifteen 6941A Extenders may be added to pcovide control of up to 240 separate functions still using only one computer I/O slot.


Available in the 1900 series are six plug ins which feature digital programming as an option. They are:

1905A	005				
1908 A	015	1917 A	005		
1995 A	005	1925 A	005		
1930 A	005				Programming of these modules re.
:---					
quires an 0ption 001					
1901A mainframe.					

Only the functions with parameters to be varied need be programmable. For the others, standard plug.ins may be used or part of the programming hardware can be omitted. For example; if only the width of an output stage and not offset, amplitude, etc. is to be programmed, then the cards in the $6940 / 6941 \mathrm{~A}$ which would be required to control these non-varying parameters can be omitted.

The 1900/6940A works with any digital computer, however, for Hewlett-Packard digital computers, software in FORTRAN and BASIC is available.

## Specifications, 1900/6940A

Pulse parameter specifications are contained in the individual specifications for each plug-in. The following specifications apply to programming accuracies for the 1905A, 1908A, 1915A, 1917A, 1925A and 1930A.

## Model 1905A Rate Generator <br> Programmable functlons

Period: 25 Hz to 25 MHz in 6 ranges.
Accuracy: $\pm 5 \%$ of digital input or $\pm 10 \mathrm{~ns}$, whichever is greater.
Resolution: 360 points in each range.
Mode: + Exi, - Ext, Internal.
Response time: <30 ns plus one period.

## General

Multiprogrammer slots required: 1 slot for data distribution and power.
Equipment supplíed: l output card and interconnecting cables.

## Model 1908A Delay Generator <br> Programmable functions

Mode: delay, advance, double pulse.
Delay interval: 15 ns to 10 ms in 6 ranges.
Accuracy: $\pm 5 \%$ of digital input or $\pm 10$ as, which ever is greater.
Resolutlon: 900 points in each range.
Response time: < $30 \mu \mathrm{~s}$ plus one period.
Duty cycle: $50 \%$ max.
Temperature range: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. From $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, specificarions are the same except for Accuracy, which is $\pm 15 \%$ of digital input or $\pm 10 \mathrm{~ns}$, which ever is greater.

## General

Multiprogrammer slots required: I slot for data distribution and porer.
Equipment supplled: 1 output card and interconnecting cables.

## Model 1915A Variable Transition Time Output <br> Programmable parameters

Width: is as to 40 ns in 7 ranges.
Accuracy: $\pm 10 \%$ of digital input or $\pm 10 \mathrm{~ns}$, which ever is greater.
Resolution: 360 points in each range.
Response time: $<30$ us plus one period.
Duty cycle: $50 \%$ max.
Transition time: 7 ns to $100 \mu \mathrm{~s}$ in 5 ranges.
Accuracy: $\pm 15 \%$ of digital input or 10 ns , which ever is greater.
Resolution: 450 points in each range.
Response time: $<30 \mu \mathrm{~s}$ plus one period.
Ampiltude: 0.05 A to 1.0 A (1.25 V to 25 V into 25 ohms) in 4 ranges.
Polarlty: positive or negative.
Accuracy: digital input $\pm 5 \%$ of max. vernier on each range.
Resolution: 300 points in each range.
Response time: $<50 \mathrm{~ms}$ for 50 V pulses from high Z source into 50 ohm load. $<15 \mathrm{~ms}$ for 25 V pulses from 50 ohm source into 50 ohm load. Typically $>500 \mu \mathrm{~s}$ for duty cycle $>0.2 \%$.
Offset: 0 to 60 mA in 1 range ( 0 to 1.5 V into 25 ohms ).

Polarity: positive or negative.
Accuracy: $\pm 2 \mathrm{~mA}$ of digital input ( $\pm 50 \mathrm{mV}$ into 2 s ohms). Resalution: 150 points.
Response time: <250 $\mu \mathrm{s}$.
Temperature range: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$. From $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, specifications are the same excepe for the following: Offser Accuracy, $\pm 15 \%$ or 60 mV , which ever is greater; Transition Time Accuracy, $\pm 20 \%$ or $\pm 10 \mathrm{~ns}$, which ever is greater; Width Accuracy, $\pm 15 \%$ or $\pm 10 \mathrm{~ns}$, which ever is greater: Amplitude Accuracy, $\pm 15 \%$ or $\pm 50 \mathrm{mV}$. whichever is greater.

## General

Multiprogrammer slots required: 5 slots for data distribution and power.
Equipment supplied: 5 output cards and interconnecting cables.

## 1917A Variable Transition Time Output Programmable parameters

Whath: 15 ns to 40 ms in 7 ranges.
Accuracy: $\pm 5 \%$ of digita! input or $\pm 10 \mathrm{~ns}$, which ever is greater.
Resolutlon: 360 points in each range.
Resporse time: <30 $\mu$ s plus one period.
Duty cycle: $50 \%$ max.
Transition tlme: 7 ns to $100 \mu \mathrm{~s}$ in 5 ranges.
Accuracy: $\pm 15 \%$ of digital input or $\pm 5$ ns, which ever is greater for all amplitudes between 2 and 10 volts.
Resolution: 450 points on each range.
Response time: < $30 \mu$ s plus one period.
Amplitude: 0.2 V to 10 V in 5 ranges.
Polarity: positive or negative.
Accuracy: $\pm 5 \%$ of digital input or $\pm 50 \mathrm{mV}$, which ever is greater.
Resolution: 300 points in each range.
Response time: < $30 \mu \mathrm{~s}$ plus one period.
Offset: 0 to 2.5 V in one range.
Polarity: positive or negative.
Accuracy: $\pm 7 \%$ or $\pm 70 \mathrm{mV}$ of digital input, which ever is greater.
Resolution: 250 points.
Response time: $<80 \mathrm{~ms}$.
Temperature range: $10^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$. From $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, specifications are the same except for the following: Offset Ac. curacy, $\pm 15 \%$ or 60 mV , which ever is greater: Width Accuracy, $\pm 15 \%$ or $\pm 10$ ns, which ever is greater; Transition Time Accuracy, $\pm 20 \%$ or $\pm 10 \mathrm{~ns}$, which ever is greater; Amplitude Accuracy, $\pm 15 \%$ or $\pm 50 \mathrm{mV}$. which ever is greater.

## General

Multjprogrammer slots required: 5 slots for data distribution and power.
Equipment supplied; s ourput cards and interconnecting cables.
Model 1925A Word Generator
(Specifications identical to standard version.)
Model 1930A PR Binary Sequence Generator
(Specifications identical to standard version.)
Model 14090 kit is required to adapt the Model 6940A to the Model 1900/01.


## Model 8057A Precision Noise Generator

The Hewlett-Packard 8057A Precision Noise Generator is an audio frequency noise generator which produces pseudo-random signals available at Gaussian distribution and binary outputs. These signals are repeated noise patterns of known content and duration. Both white and pink noise with an equal rms value can be selected by pushbuttons as well as outpur impedance ( 50 ohm or 600 ohm ). By producing a defined rms value, the high stability of the output level allows the use of a directly calibrated attenuator with 0.1 dB cesolution. This makes the 8057A a highly accurate noise source. The frequency spectrum goes from de to 26 kHz .
Price: Model 8057 A , Precision Noise Generator, $\$ 94 \mathrm{4}$.


## Description, 211B and 221A

The Hewlert-Packard Models 211 B and 221A are compact, general purpose square wave generators with frequency coverage from I Hz to 10 MHz . The 211 B features two simultaneous outputs, one from a 50 ohm source and the other from a 600 ohm source, with $180^{\circ}$ phase difference between the two. A symmetry control permits variation of the "on" time from $25 \%$ to $75 \%$ of the period.
Model 221A delivers square waves with amplitudes variable from 0 to 9 V (into 50 ohms) from a single output with 50 ohm source impedance. Frequency programming capability is standard as is output gating. Also, Model 221A may be used as a voltage controlled oscillator (VCO) by applying a dc voltage to a rear panel connector. This enables the frequency to be swept over the full $10: 1$ range selected.
Price: Model 211B Square Wave Generator, $\mathbf{5} 490$; Model 221A Square Wave Generator, $\$ 240$.
For complete specifications contact your Hewlett-Packard field engineer.


Description, 214A
The high 200 watts of pulse power ( 2 amp peak, $\pm 100$ volts into 50 ohms) and fast risetime of 15 ns are particularly suited for resting current-driven devices, such as magneric cores, as well as high-power modulators. To minimize errors caused by refections when operating into unmatched loads, source impedance is 50 ohms. At lower outpur levels, the risetime is less than 13 ns (typically less than 10 ns). Carefully controlled pulse shape, pulse rate and width, and minimum pulse jitter ensure accurate and dependable, test results. All characteristics of the pulse waveform, including overshoot, preshoot, pulse droop and pulse top variations, are completely specified, and pulse irregularities are kept to a minimum.

## Specifications, 214A Output pulse

Source resistance: 50 ohms on 50 V and lower ranges; approx 1500 ohms on the 100 V range.
Transition times: $<13$ ns on 20 V and lower ranges and the -50 V range, $<15 \mathrm{~ns}$ on the +50 V range; typically $<10 \mathrm{~ns}$ with the vernier set for maximum atrenuation and rypically 15 ns on the 100 V tange.
Pulse amplitude: 100 V into 50 ohms. Attenuator provides 0.2 to 100 V in $1,2,5$, 10 sequence ( 9 ranges); vernier reduces output of 0.2 V setring to 80 mV and provides continuous adjusment within ranges.
Polarity: positive or negative.
Overshoot: < $5 \%$, both leading and trailing edges (measured on a 50 MHz oscilloscope).
Pulse top varlation: < $5 \%$.
Droop: $<6 \%$.
Preshoot: < $2 \%$.
Pulse widths: 50 ns to 10 ms in 5 decade ranges; continuously adjustable vernier.
Width jitter: $<0.05 \%$ of pulse width +1 ns .
Maximum duty cycle: $10 \%$ on 100 V and 50 V ranges; $29 \%$ on 20 V range; $50 \%$ on 10 V and lower ranges.
Internal repetition rate: 10 Hz to 1 MHz (s ranges), continuously adjustable vernier.

## General

Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to 66 Hz , approx 325 VA .
Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $183 / \mathbf{B}^{\prime \prime}$ deep ( $425 \times 184 \times$ 467 mm ).
Weight: net, 35 liss ( $16,8 \mathrm{~kg}$ ); shipping, $41 \mathrm{lbs}(19.7 \mathrm{~kg})$.
Price: Model 214A Pulse Generator, \$1095.

## PULSE GENERATORS

## DATA GENERATOR

 PRBS and WORD generation up to $150 \mathrm{Mb} / \mathrm{s}$ Model 3760A

The 3760A Data Generator is a fast, versatile PRBS and WORD generator intended for both factory and field use, with many features which make it especially attractive for applications in bigh frequency digital communications.

The clock frequency, in the range 1.5 to 150 MHz can be derived from an internal clock generator (optional) or the unit can be manually or automatically triggered from an external clock. A clock output, variable in amplitude from 0.1 to 3.2 V pk-pk with a rise time of better than 1 ns , is also provided.

The pseudo-random binary sequence, PRBS, is variable in length from $2^{3}-1$ to $2^{10}-1$ bits, with an additional long sequence of $2^{15}-1$ bits. A sync pulse occurs once per sequence and can be used to initiate a block of 1 to 99 zeros. This block is inserted inro the data stream to facilitate the clock extraction tests used in some PCM systems. As the 3760A Data Generator is often used in conjunction with the 3761 A Error Detector, a deliberate error can be inserted once per 2000 PRBS sequences to check the accuracy of the $3760 \mathrm{~A} / 61 \mathrm{~A}$ system.
The length of the binary word is variable from 3 to 10 bits and its content is selected on the front panel. A syne pulse occurs once per sequence and again it can be used to initiate a block of zeros which is inserted between words. Alternatively, the preprogrammed maximum change sequence, 1010 can be selected.
The data output which can be PRBS, WORD or the fixed maximum change sequence, 1010, is available simultaneously in normal and complemented form. As with the clock, these outputs are calibrated from 0.1 to $3.2 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ in amplitude and 0 to $\pm 3 \mathrm{~V}$ dc in offset with rise times of better than 1 ns . Either RZ or NRZ formats may be selected and the data output can be delayed by up to 100 ns with respect to the clock.

## Specifications

## Modes of operation

PRBS normal: Generates a repetitive $2^{n}-1$ bit, maximal length, PRBS; where $\mathrm{n}=3$ to 10 and 15 .
PRBS zero add: Addition of a block of 1 to 99 zeros into PRBS normal.

PRES error: Error introduced once per 2000 sequences.
1010: Generates a preset repetitive word, content 1010.
Word normal: Generates a continuous 3 to 10 bit word.
Word zero add: Addition of a block of 1 to 99 zeros into word normal, occurring berween words.

## Clock input

Rate: 1.5 to 150 MHz .
impedance: $50 \Omega \pm 5 \%$ dc coupled.
Trigger: + ve or -ve slope.
Manual: Level range -3 to +3 V .
Auto: Input pulse mark: space ratio range $10: 1$ to $1: 10$.
Sensitivity: Berter than 500 mV .
Pulse width: 3 ns minimum.

## Clock output

Outputs: CLOCK or $\overline{\mathrm{CLOCK}}$.
Impedance: Source impedance $50 \Omega \pm 5 \%$.
Amplitude: Continuously variable in 5 ranges from 0.1 to 3.2 V into $50 \Omega$, symmetrical about offset level.
Rise/fall time: $<1$ ns ( $10 \%$ to $90 \%$ level).
DC offset: Variable, o to $\pm 3 \mathrm{~V}$.

## Data autput

Outputs: DATA and $\overline{\mathrm{DATA}}$ simulraneously.
Format: RZ or NRZ.
Delay: Data (and Sync) delayed with respect to Clock continuously in 10 ranges from 0 to 100 ns .
Other specifications as for clock output.

## Syne outpuk

Rate: Once per PRBS or WORD cycle.
Amplitude: +1 V into son.

## Options

001: 758 CLOCK and DATA input/output impedances.
002: Jnternal variable frequency clock, 1.5 to 150 MHz .
003: Options 001 and 002 combined.

## General

Power: 90 to 125 V or 200 to $250 \mathrm{~V}, 40$ to 400 Hz , consump. tion 90 W.
Welght: 30 lbs ( $13,5 \mathrm{~kg}$ ).
Dimenslons: $163 / 4$ in wide $\times 51 / 2$ in high $\times 183 / 4$ in deep. ( 425 $\mathrm{mm} \times 140 \mathrm{~mm} \times 467 \mathrm{~mm}$ ).

## OSCILLATORS, FUNCTION GENERATORS

## Oscillators, Function Generators

Signal sources have been described by various names-oscillators, test oscillators, audio signal generators, function generators, etc. Different names are ap. plied, depending on the design and in rended use of the source. In recently developed sources, the name "test oscillator" has been used to describe an oscillator having a calibrated attenuator and outpur monitor. The term "signal generator' is reserved for an oscillator with modulation capability.
A function generator is a signa! gererator that delivers a choice of different waveforms rith frequencies adjustable over a wide range. Function generators produce sine, rriangle. square wave, saw. tooth waves, and pulses with a provision to sweep. Herelett-Packard's function generators extend from a low frequency of 0.00005 Hz (HP 203A Option 002) up to a high frequency of 5 MHz ( HP 3310A).

## Basic requirements

In selecting an oscillator or funcrion generator, the user will be most inter. ested in its frequency coverage. The question to be answered here is, "Will the instrument supply both the lowest and highest frequencies of interest for anticipated tests?" As shown in Table 1, Hew. lett-Packard manufactures a broad range of oscillators and function generators covering the frequency spectrum from $0.00005 \mathrm{~Hz}_{2}$ to 32 MHz .
The user's next concern will be with the available output power or voltage. Some tests require large amounts of power, while others merely require sufficient voluge output. For almost any application, there is a Hewlett-Packard oscillator capable of delivering the desired voltage output into a high-impedance load on of supplying the desired power into lower impedance loads.

Besides frequency fange and power output, the user will be interested in the instrument stability, its dia! resolution, and the amount of harmonic distortion, hum and noise in the output signal, and functions available. See Table 1 for a comparison of Hewlett-Packard oscilla rors and function generators.

## Frequency stablity

The frequency stability of the oscillator determines the abilicy of the instrument to maintain a selected frequency


- Focreabepuir ino varable phase

Table 1. Functions, frequency range and power output of Hewlett-Packard oscillators, and function generators.
over a period of time. Component aging, power-supply variations and temperature changes all affect stability. Carefully chosen components, such as precision resistors and variable capacitors in the frequency-determining networks, contribute to long-term stability.

## Amplitude stability

Amplitude stability is important in certain oscillator applications. Amplitude stability is inherent in the Hewlett-Pack. ard RC oscillator circuit because of the large negative feedback factor and the amplitude stabilizing techniques. The "frequency response," or amplitude variation as the frequency is changed, is of special incerest when the oscillator is used for response measurements throughout a wide range of frequencies

## Distortion

Distortion in the oscillator's output signal is an inverse measure of the purity of the oscillator's waveform. Distortion is undesirable in that a harmonic of the test signal may feed through the circuits under test. generating a false indication at the output. If the oscillator is used for distortion measurements, the amount of distortion that it contributes to the measurements should be far less than that contributed by the circuits under test.

## Hum and noise

Hum and noise can be introduced at a variety of points in oscillator circuits; but when the circuit operates at a rela. rively high level, the a mount of hum and noise introduced into the device under test is usually negligible. Hum and noise introduced by a power amplifier usually remain constant as the output signal amplitude is diminished. Hence, even though the hum and noise power may be quite small compared to the rated output, these spurious signals sometimes become a significant portion of low level output signals. To overcome such a limitation, many Hewlett-Packard oscillators have their amplitude control on the output side of the power amplifier so that hum and noise are reduced proportionally with the signal when low. level signals are desired for test purposes.

## Function generators

The function generator has emerged as a versatile multiwaveform sigmal source capable of very wide frequency coverage. The function generator has become an indispensable general purpose signal source for production testing, instrument repair, and the electronics lab. oratory. The diverse felds of applica. tions in which the function generator is being used include medical research, education, chemical, communications, geo-

# OSCILLATORS, FUNCTION GENERATORS 

## GENERAL INFORMATION

physics, industrial control, military, and aerospace.
Most function generators are designed around the block diagram shown in Fig. ure 1 .

The basis of this circuir is the generation of a triangle waveform through a feedback network. The upper current source delivers $2 I$ to the integrator and the lower current source takes away -I. This, with the upper current source "on" the integrator, charges linearly with a current I. The output of the integrator


Figure 1. Block diagram, typical function generator.
is sensed by a voltage comparator. When the proper level is reached, the comparator is triggered which in turn "dis. connects" the upper current source. With the upper current source disconnected, the integrator discharges linearly at a -I rate due to the lower current source. When the proper discharge voltage is reached, the comparator again triggers turaing "on" the upper current source; thus, complering the cycle. The resulting triangular waveform is varied in frequency by changing the charge current $I$. To obtain a sine wave, the triangular waveform is processed by a diode shaping network. The square wave is already available at the output of the voltage comparator. By varying the current ratio between the two current sources, ramp and pulse waveforms may be generated.

## 3310A/B

The $3310 \mathrm{~A} / \mathrm{B}$ utilizes this basic circuit with many refinements resulting in a versatile seven function instrument covering a frequency range from 0.0005 Hz to 5 MHz . The 3310 B has the additional capability of tone burst with variable start/stop phase.

## 3311A (New)

For the user with general requirements and a tight budget, the 3311 A is an ideal choice. This instrument generates siae. square, triangle, and pulse waveforms over 20.1 Hz to 1 MHz frequency range. The small size, cast aluminum case, and cutput protection make it a rugged pre.
former

3300A
The 3300A Series offers the user a broad selection of functional capability through the use of plug-ins. The 3300 A , in combination with the 3302 A , offers triggered and phase lock of the mainframe. The phase between locking signal and the mainframe output is continuously variable through a front panel control.

The combination of the 3300A mainframe with the 330tA Sweep/Offser Plug.in provides internal sweeping up to a decade of frequency, and complete off. set capability of all mainframe output functions.

If a log sweeper is called for in your audio testing, the 3300A combined with the 3305 A Plug in is the anstver. This combination will sweep from 0.1 Hz to 100 kHz ( 6 decades) in one continuous sweep. Narrower sweeps can also be made through independent start/stop adjustments.

## 209A

A modification to the Wien bridge oscillator is the 209A Sine-Square Wave Oscillator. Stable, accurate signals, which can be synchronized with an external source, are instantly a vailable over a frequency range of 4 Hz to 2 MHz . The amplitude of the sine and square wave outputs are separately adjustable and are available simultaneously. Distortion and fianess can be improved at low frequencies by a low distortion modes switch.

## 203A

Another Hewlett-Packard generator is the 203A Variable Phase Function Generaror. This instrument has a sine wave and square wave output with a second channel that can be phase-shifted continuously through a full $360^{\circ}$ range.

Although this function generator is intended primacily for low.frequency work, it has a frequency cange extending from 60 kHz down to 0.005 Hz or, with options, down to as low as 0.00005 Hz (five hours for one cycle). All four out. pur signals are supplied simultaneously and all have individual 40 dB attenuators.
For a stable, low-distortion sine wave source, the 203 A is ideal, for it has less than $0.06 \%$ combined harmonic distor. cion. hum and noise at full output.

## Selecting An Osc./Function Gen,

In selecting an oscillator or function generator, the user is faced with a broad specrum of available instruments. To nacrow this spectrum, the following guidelines may be used:

1. Define current requirements and prob. able future requirements in terms of frequency range, power output, functional capability desired,* sine wave harmonic distortion, frequency stability, and output flatness vs. frequency.

* Functions of interest are: multiple ourpur, output level monitor, calibrated attenuator, sine wave, square wave, pulse, ramp, de offset, triggered ourput, pulse, phase lock, ramp, de offset, and modulation capability. Another feature which may be of interest is internal sweep. Most function generators may be swept externally, some have internal sweep as well. The sweep may be linear for narrow-band testing or $\log$ for multidecade sweeps.

2. If your application is general purpose in nature with no stringent requicements, such as $.01 \%$ harmonic distortion, consider the function generator. This class of instruments may be used as a sine wave source, square wave test source, pulse generator, low frequency ramp for $x$-y recording, etc. If, however, any of the intended applications have specific requirements, the function generator will, in most cases, not have sufficiently tight spers to satisfy these requirements. In this case, the user must look to dedicated instrumentation.
3. In general, test oscillators or oscilla. tors will be your choice when large voltage output or low harmonic dis. tortion are requirements.
4. If frequency stability and accuracy are paramount requirements, then synthesizers should be considered. (See page 326.)
5. Specialized output impedances other than 50 or 600 ohm single-ended, will require specialized instruments such as the 654A.
6. If maximum versatility per dollar is the prime consideration, then function generators are your best choice,
7. In the sub.Hertz frequency range, the function generators are rop performers.
8. For digital frequency selection, the 4204 A or the frequency synthesizers should be considered.

# VOLTMETER CALIBRATOR DC, rms and $p$-p volts; flatness $10 \mathrm{~Hz}-10 \mathrm{MHz}$ Model 738BR Option EO2 (738BR \& 652A) 

OSCILLATORS, FUNCTION GENERATORS

## Description

The 738BR Option E02 Voltmeter Calibration system combines the 652A Test Oscillator and the 738BR Voltmeter Calibrator. These instruments calibrate high impedance voltmeters and oscilloscopes for both frequency response and voltage accuracy. The system calibrates for ac* and de voltage levels from $300 \mu \mathrm{~V}$ to 300 V in precise preselected steps and calibrates for frequency response from 10 Hz to 10 MHz .

## Specifications

738BR Opt E02 Volrmerer Calibration System 738BR
Voltage range: $300 \mu \mathrm{~V}$ to 300 V , dc or ac (rms and p-p, 400 Hz ).
Levels: calibration volkage $300 \mu \mathrm{~V}$ to 300 V in steps of $\mathrm{I}, 3$. 1.5 and s: tracking voltages 0.1 to 1 V in 0.1 V steps and 0.05 to 0.5 V in 0.05 V steps.

Accuracy: 300 V working voltage into arrenuator, accurate within $0.1 \%$ dc and $0.2 \%$ ac, after a 30 -minute rarmup.
Attenuator accuracy: within $\pm 0.1 \%$ or $\pm 2.3 \mu \mathrm{~V}$, whichever is larger, open circuit.
Long-term stability: deift per week: $<0.1 \% \mathrm{~d} c,<0.2 \% \mathrm{ac}$.
Power: 115 or ( 230 V must be specified) $\pm 10 \%$ s0 to 60 Hz . 275 VA max.
Dimensions: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $150 / 4 "$ deep behind panel ( $483 \times 178 \times 400 \mathrm{~mm}$ ).
Welght: net, $38 \mathrm{lbs}(17 \mathrm{~kg})$; shipping, $50 \mathrm{lbs}(22,6 \mathrm{~kg})$.
Price: HP 738BR (rack mount), $\$ 1100$.


652A: Specifications are lisred on page 323 of this catalog. General (738BR Opt. EO2)
Dimensions: $201 / 2^{\prime \prime}$ wide, $153 / 8^{\prime \prime}$ high, $181 / 2^{\prime \prime}$ deep ( $521 \times 397 \times$ 470 mm ).
Welght: net, $75 \mathrm{lbs}(33,8 \mathrm{~kg}$ ) ; shipping, $110 \mathrm{lbs}(49,8 \mathrm{~kg})$.
Accessories furnished: cable HP Part Number 739A.16A, BNC to shielded $50 \Omega$ terminated dual banana plug.
Price: HP 738BR Option E02, $\$ 2360$.

- Refars to 40 Hz only; see data sheet.


# THERMAL CONVERTERS Ideal to check response of ac voltmeter calibrators Models 11049A, 11050A, 11051A 

## Description

Hewlett-Packard Thermal Converters are true rms detectors, yielding a dc output voltage proportional to the temperature rise resulting from the input power. The Models 11049A, 11050A and 11051A offer an exceptionally flat response and nearly constant impedance over a wide frequency range; a characteristic which makes these devices ideal to check the response of precision ac voltmeter calibrator (such as the HP Model 738BR Option E02) and to check the response of ac voltmeters.

## Specifications

Maximum input voltage:
11049A: 3 V rms; 11050A: 1 V rms: $11051 \mathrm{~A}: 0.45 \mathrm{~V}$ rms Input impedance: $50 \Omega \pm 0.15 \Omega$ to 10 MHz .
Output voltage for maximum input voltage: 7.5 mV dc (nominal).
Output impedance: <100.
Calibration accuracy

Frequenoy range	In raference to std.	Slandard measitament unoorlainly
20 Hz to 20 kHz	within $=0.01 \%$	* $0.02 \%$
20 kHz to 50 kHz	within $=0.01 \%$	$\pm 0.03 \%$
50 kHz to 1 MHz	within $\pm 0.01 \%$	$\pm 0.06 \%$
5 Hz 10 20 Hz and	within $=0.05 \%$	$\pm 0.12 \%$
1 MHz to 10 MHz		
10 MHz to 30 MHz		
30 MHz to 60 MHz		$\pm 0.50 \%$
60 MHz to 100 MHz		$+1.50 \%$



Dimensions: $3^{\prime \prime}$ wide, $13 / 4^{\prime \prime}$ high, $11 / 2^{\prime \prime}$ deep ( $7,6 \times 4,4 \times 3,8$ cm ).
Weight; net $2.2 \mathrm{oz}(62 \mathrm{~g})$ : shipping $1 \mathrm{lb}(450 \mathrm{~g})$.
Price:
HP Modei 11049A*, 5125; HP Model 11050A*, 5125; HP Model $1105 \mathrm{AA}^{*}$. $\$ 125$.
Option $001^{\text {s }}$ : calibration to 60 MHz , add 530 .
Option 002*: calibration to 100 MHz , add $\$ 50$.

[^28]
## OSCILLATORS, FUNCTION

 GENERATORS
## AC/DC METER CALIBRATOR Four calibrators in one case Model 6920B



Can be used to check:

1. DC Voltmerers up to 1000 volts
2. Average reading $A C$ Voltmeters up to 1000 volts
3. DC Ammeters up to 5 amps
4. Average reading $A C$ Ammeters up to 5 amps

## Description

Model 6920B is a versatile ac/dc meter calibrator, capable of both constant voltage and constant current output. Its absolute accuracy makes it suitable for laboratocy or production testing of panel meters, multimeters, and other meters having accuracy of the order of $1.0 \%$ or higher. This calibrator has been designed for convenience, and combines in one instrument all the outputs needed to test the more commonly used meters. Model 6920B has been packaged in an HP cabinet module suitable for bench or rack use.

## Output switch

An output switch selects the safest mode of operation for the particular type of meter being tested. A "lock" position leaves the testing parameters in operation to free both hands for attaching and disconnecting successive meters. A spring. loaded "test" position facilitates testing meters with several full-scale values and reduces the danger of burn-out.

## AC Output waveshape

When the function switch is set on " $A C$ ", the output waveshape is sinusoidal (to a first approximation) and has the same frequency as the input line power applied to the instrument (except when an external ac reference is used). The feedback loop, which controls and regulates this ac, is actually monitoring the average value of the ac output, although the front panel controls are calibrated in terms of rms. Thus, this calibrator is suitable for use with average
reading ac voltmeters scaled in rms. In addition, the calibrator can be used with true rms meters, provided allowance is made for the total output distortions. This distortion is approximately equal to the line input waveshape distortion (or distoction of the external ac reference) plus $3 \%$.

## Specifications

Input: 115 V ac $\pm 10 \%$, single phase, $58.62 \mathrm{~Hz}, 0.7 \mathrm{~A}, 65$ W max.
Output voltage ranges:
$0.01-1 \mathrm{~V}$ current capability 0.5 A
$0.1-10 \mathrm{~V}$ curreat capability 0-1 A
$1-100 \mathrm{~V}$ current capability 0.100 mA
10.1000 V current capability 0.10 mA

Above output voltage ranges and maximum current capabilities for each range apply in full for either $d c$ or ac operation.
Output current ranges: (s A maximum output)
$1-100 \mu \mathrm{~A}$ voltage capability $0-500 \mathrm{~V}$ (uncalibrated in AC)
$0.01-1 \mathrm{~mA}$ voltage capability 0.500 V
$0.1-10 \mathrm{~mA}$ voltage capability 0.500 V
$1-100 \mathrm{~mA}$ voltage capability 0.50 V
0.01-1 A voltage capability $0-5 \mathrm{~V}$
0.1-10 A (5 A max output) voltage capability 0.0 .5 V

Above output current tanges and maximum voltage capa-
bilities for each renge apply in full for either $\mathrm{dc}, 50 \mathrm{~Hz}$ or 60 Hz operation.
Output accuracy: $\mathrm{DC}-0.2 \%$ of set value plus 1 digit. $A C$ $0.4 \%$ of set value plus 1 digit (when used with average reading meters). Above accuracy applicable over a tem. perature range from $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$, over full input voltage range, and after 1 hour warmup.
Controls:
FUNCTION SWITCH-This is a 3 -position switch: "OFF", "AC", and "DC". In the "OFF" position the ac power input is disconnected from the unit. In the " $A C$ " position the meter calibrator produces an ac output; similarly, in the " $D C^{\prime}$ position the calibrator produces a de output.
RANGE SWITCH-10 positions, one for each voltage and current range.
CALIBRATED OUTPUT CONTROL-Digital potentiometer readout control ( 3 significant digits) determines exact value of output.
OUTPUT SWITCH-Switch described at left.
Output terminals: two front panel terminals are provided; these are the output terminals for both ac and dc operation. In voltage ranges, the negative terminal is grounded.
Ripple: in dc operation the output ripple is typically less than $1.0 \% \mathrm{rms} / 5 \% \mathrm{p}-\mathrm{p}$ of the output range switch setting.
Operatling temperature range: $0.50^{\circ} \mathrm{C}$.
Size: $63 / 4^{\prime \prime}(172 \mathrm{~mm}) \mathrm{H} \times 7-13 / 16^{\prime \prime}(198 \mathrm{~mm}) \mathrm{W} \times 11^{\prime \prime}$ $(279 \mathrm{~mm}) \mathrm{D}$.
Waight: $15 \mathrm{lbs}(6,8 \mathrm{~kg}$ ) net, $17 \mathrm{lbs}(7,71 \mathrm{~kg})$ shipping. Price: $\$ 750$.
Option 005: 50 Hz output regulation realignment, add $\$ 25$.
Optlon 028: $230 \mathrm{~V} \mathrm{ac} \pm 10 \%$, single phase input, add $\$ 10$.


## Temperature coefficient

$10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}:< \pm(0.0002 \%$ of reading $+1 \mu \mathrm{~V}) /{ }^{\circ} \mathrm{C}$.
Line regulation: $< \pm(0.001 \%$ of reading $+2 \mu \mathrm{~V})$ for $10 \%$
line voltage change.
Input characteristics
Input resistance: (independent of null). 100 mV to 1000 V ranges: $>10^{10} \Omega$. 10 mV range: $>10 \Omega$. 1 mV range: $>10^{8} \Omega$.
Effective common-mode rejection (ECMR): $>120 \mathrm{~dB}$, at and above 60 Hz .
Normal-mode rejection (NMR): $>100 \mathrm{~dB}$, at and above 60 Hz .

## DC voltmeter

Voltage ranges: $1 \mu \mathrm{~V}$ to $1000 \mathrm{~V} \uparrow$ in 10 decade ranges.
Accuracy: $\pm(2 \%$ of range $+0.1 \mu \mathrm{~V})$.
Input resistance: 100 mV to 1000 V range: $>1010 \Omega ; 10 \mathrm{mV}$ range: $>10^{\circ} \Omega ; 1 \mu \mathrm{~V}$ to 1 mV range: $10^{s} \Omega$.
Zero dritt: $<2 \mu \mathrm{~V}$ per day; zero control limits: $> \pm 10 \mu \mathrm{~V}$.
Normal-mode relection: same as de differential voltmeter.

## DC amplifier

Voltage gain: 1 mV range, $60 \mathrm{~dB} ; 10 \mathrm{mV}$ range, $40 \mathrm{~dB} ; 100$ mV range, $20 \mathrm{~dB} ; 1 \mathrm{~V}$ to 1000 V ranges, 0 dB .
Gain accuracy: $\pm(0.01 \%$ of input $+0.0005 \%$ of range +2 ${ }_{\mu} \mathrm{V}$ ) referred to input.
Linearity: $\pm 0.002 \%$ on any cange.
Stability, tomperature coefficient, line regulation, input resistance, ECMR, NMR: same as dc differential roltmeter.
Load regulation, output eurrent, and output resistance: same as de standard.

## General

Operating temperature: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ unless specified otherwise.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
RFI: meets MIL-I-6181D.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 100$ VA max.
Dimensions: full module, $163 / 4^{\prime \prime}$ wide, $67 / 8^{\prime \prime}$ high, $181 / 4^{\prime \prime}$ deep. ( $425 \times 175 \times 464$ ).
Welght: net, $47.3 \mathrm{lbs}(21,3 \mathrm{~kg})$; shipping, $64 \mathrm{lbs}(28.8 \mathrm{~kg})$.
Accessories furmished
11054 A input cable assembly; 11055B output cable assembly, Price: HP 740B, $\$ 2995$.
f Maximum or - 500 y de with respect to line ground can be apolied to or

- obtained from the HP 740 B .
- Refer to data sheet for complete specitications.


# AC CALIBRATION SYSTEM <br> Precision source; to $1100 \mathrm{~V} ; 10 \mathrm{~Hz}$ to 110 kHz Models 745A \& 746A 

## Description

The 7is A AC Calibrator combined with the 746A High Voltage Amplifier. is a compact, calibraced ac source with a continuously-adjustable frequency output from 10 Hz to 110 kHz . The output can be varied from 0.1 mV to 1099.999 V in steps of 1 ppm of range over the entire frequency band.
The Model 745A provides the first six voltage ranges, 0.1 mV to 109.9999 V . while the combination of the 745 A and 746 A permits the expansion to 1099.999 V as a seventh range. The model 745A/746A voltage range, frequency range and error range are programmable through a rear-panel connector by transistor or switch closures to ground.

## 745A/746A Combined Specifications Ranges

Output voltage ranges: 7 ranges with $10 \%$ overrange as follows:

Range	Settability and Pesolution
1 mV	0.100000 mV to 1.099999 mV in 1 nV steps
10 mV	1.00000 mV to 10.99999 mV in 10 nV steps
100 mV	10.0000 mV to 109.9999 mV in 100 nV steps
1 V	0.100000 V to 1.099999 V in $1 \mu \mathrm{~V}$ steps
10 V	1.00000 V 1010.99999 V in $10 \mu \mathrm{steps}$
100 V	$10.0000 \mathrm{~V} 10109.9999 \mathrm{~V} 100 \mu \mathrm{~V}$ steps
1000 V	100.000 V 101099.999 V in 1 mV steps

The output voltages from $100 \mu \mathrm{~V}$ to 110 V are a vailable from 74sA output terminals; voltages from 100 V to 1100 V are available from the $\overline{7} 6 \mathrm{~A}$ output cable.
Output frequency range: continuously adjustable from 10 Hz to 110 kHz in 4 decade ranges with $10 \%$ overlap.
Error measurement: 2 ranges with zero center dial: $\pm 0.3 \%$, $\pm 3 \%$. A zero range is provided to switch out the effects of the error measurement system.

## Performance rating

Accuracy: accuracy holds for a 90 -day period and is met after a 1 -hr warmup period at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with $<95 \%$ RH. This applies only to the 745 A . 746 A warmup time required is approximately 30 s .
Voltage: specifications are absolute, traceable to the National Bureau of Standards.
1 mV to 100 V ranges:

Frequency	Accuracy
50 Hz to 20 kHz	$\pm(0.02 \%$ of setting $+0.002 \%$ of range $+10 \mathrm{sV})$
20 Hz 1050 Hz	$\pm(0.05 \%$ of setting $+0.005 \%$ of range $+50 \mathrm{VV})$
20 kHz 10.110 kHz	
10 Hz to 20 Hz	$\pm(0.2 \%$ of setting $+0.005 \%$ of range $+50 \mu \mathrm{~V})$

1000 V range:

Frequancy	Accuracy
50 Hz to 20 kHz	$\pm 0.04 \%$ of setting
20 Hz 1050 Hz	$\pm 0.08 \%$ of setting
20 kHz to 50 kHz	
50 kHz to 110 kHz	$\pm 0.15 \%$ of setting
10 Hz to 20 Hz	$\pm 60.2 \%$ of setting $+0.005 \%$ of range)

Frequency: $\pm$ ( $2 \%$ of setting $+0.2 \%$ of end scale).
Error measurement: $\pm$ ( $0.5 \%$ of setcing $+0.5 \%$ of range ).
Temperature coefficient
Voltage: 1 mV to 100 V ranges: $\pm 0.0003 \%$ of seeting per ${ }^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C} .1000 \mathrm{~V}$ range: $\pm 0.0005 \%$ of setting per ${ }^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Frequency: $\pm 0.05 \%$ of end scale per ${ }^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. Derate accuracy specifications by this temperature coefficient -Refer to data sheet for complete spacifications.

for operation in temperature range of $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Voltage stability: stability met after 1 -hr warmup period at constant temperature with $<95 \%$ RH.

## 1 mV to 100 V ranges

Long-term: $\pm 0.01 \%$ of setting for 6 mo.
Short-term: $\pm 0.005 \%$ of setting for $2 f$ hr.
1000 V range
Long-term: 50 Hz to $20 \mathrm{kHz}: \pm 0.01 \%$ of setcing for 6 mo. 10 Hz to 50 Hz and 20 kHz to $110 \mathrm{kHz}: \pm 0.02 \%$ of setting for 6 mo .
Snort-term: $\pm 0.005 \%$ of setting for 24 hr .

## Output characteristics*

Total distortion and noise: $0.05 \%$ of setting $+\mathbf{1 0} \mu \mathrm{V}$ over 100 kHz bandridth on all ranges.

## Load capabillity

1000 pF or 50 mA on 1 V to 100 V ranges ( 50 mA allows 800 pF at $100 \mathrm{~V}, 100 \mathrm{kHz}$ ).
1000 pF or 63 mA on 1000 V range ( 63 mA alloms 100 pF at $1000 \mathrm{~V}, 100 \mathrm{kHz}$ ).
Line regulation: $\pm 0.001 \%$ of serting change in output voltage for $10 \%$ change in line voltage (included in accuracy spec).

## General

Operating temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Power: $745 \mathrm{~A}: 115 \mathrm{~V}$ or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 115$ VA max. 746A: 115 V or $230 \mathrm{~V} \pm 10 \%$, 50 Hz to 60 Hz , 1 kVA max. 746A aux porrer output rated at 120 VA max.
Dimensions: 745A: $163 / 4{ }^{\prime \prime}$ wide, $8^{3 / 4}{ }^{\prime \prime}$ high, $18 \frac{1 / 8}{}{ }^{\prime \prime}$ deep ( 425 x $221 \times 467 \mathrm{~mm}) .746 \mathrm{~A}: 16 \frac{3}{4}$ " wide, $7^{\prime \prime}$ high, $181 / 4^{\prime \prime}$ deep ( $425 \times 177 \times 464 \mathrm{~mm}$ ).
Weight: 745 A: net, $65 \mathrm{lbs}(29,3 \mathrm{~kg})$; shipping, $81 \mathrm{lbs}(36,5 \mathrm{~kg})$. 746 A : net, $75 \mathrm{lbs}(34 \mathrm{~kg})$ : shipping, $93 \mathrm{lbs}(41,9 \mathrm{~kg})$

## Accessories furnished

745A: rack mount kit; HP Part No. 5060.0630, 22.pin printed circuit board extender; HP Part No. 5060.0043, 15-pin printed circuit board extender; HP Part No. 50600031.10 -pin printed circuit board excender; HP Part No. $1251-0084$ remote programming mating plug.
746A: accessory kit; HP Part No. 00746.84401; HP Part No. 1251.0485, remote right angle connector; HP Parr No. 1450.0356, incandescent lamp; HP Part No. $40-10.0427$, extractor: HP Part No. 5040.0404, probe holder; HP Parr No. 5060.0216 , joining kit bracket; HP Part No. $5060-$ 0630 , 22-pin printed circuit board extender; 7H rack mounting kit; HP Part No. 00746-02701, foam filter.
Price: HP 745A, \$3995; HP 746A, $\$ 2270$.

## AUDIO OSCILLATORS

Balanced, floating and single ended
Models 200AB, 200CD, 201C, 202C
OSCILLATORS, FUNCTION GENERATORS


## Description

The Hewlett-Packard series oscillators have high stability and accurate, easily resettable tuning circuits. Low-impedance operating levels, togecher with superior insulation guarantee peak performance throughout years of trouble-free service. The instruments have a wide frequency range and long dial lengths and feature an improved vernier frequency control.

Specifications

	200AB	200CD	201 C	202 C
Frequenoy Range	20 Hz 1040 kHz	5 Hz to 60 kHz	20 Hz 1020 kHz	1 Hz to 100 kHz
Number of Ranges	\& overlapping	5 overlapping	3 overlapping	5 overlapping
Dial Accuray	$\pm 2 \%$	$=2 \%$	$\pm 1 \%$	$\pm 2 \%$
Frequanay Rosponse	$\pm 1 \mathrm{~dB}$ ( 1 kHz ref)	$\pm 1 \mathrm{~dB}$ ( $1 \mathrm{kHz} \mathrm{ref)}$	$\pm 1 \mathrm{~dB}(\mathrm{l} \mathrm{KHz} \mathrm{ref})$	$=1 \mathrm{~dB}$ ( $\mathrm{l} \mathrm{kHz} \mathrm{ref)}$
Oufput (into gron load	1 W (29.5 V)	$\frac{>160 \mathrm{~mW}(10 \mathrm{~V})}{\text { Opt. } 120.93 \mathrm{~mW}(7.5 \mathrm{~V})}$	$3 \mathrm{~W}(42.5 \mathrm{~V}$ )	160 mW (10 V)
Oulput Impedance	$<75 \Omega$ from $20 \mathrm{~Hz} \cdot 15 \mathrm{kHz}$	$600 \Omega$	$\begin{aligned} & \begin{array}{l} 600 \mathrm{n}=10 \%, 20,30 \text { and } 40 \mathrm{~dB} \\ \text { settings. } \\ \text { Setoin, } 0 \mathrm{~dB} \text { and } 10 \mathrm{~dB} \\ \text { settings } \end{array} \end{aligned}$	6009
Oubut Balanoe	Balanced to ground and floating over entire frequency range.	Balance and floating. Better than $0.1 \%$ at lower trequencies and approx. $1 \%$ at higher frequencies	One terminal at ground potenlial	Balance and floating. Better than $0.1 \%$ at lower irequencies and approx. $1 \%$ at 100 kHz
Distortion	$<1 \%, 20 \mathrm{~Hz}$ to 20 kHz $<2 \%, 20 \mathrm{kHz}$ to 40 kHz (Into 6000 load or higher impedence)	$0.2 \%, 20 \mathrm{~Hz} 10200 \mathrm{kHz}$   $0.5 \%$. 5 Hz to 20 Hz and   200 kHz to 600 kHz   OpL H20: $0.06 \%$. 60 Hz to 50 Hz .   $0.1 \%, 20 \mathrm{~Hz}$ to 60 Hz and 50 kHz to 400 kHz .   $0.5 \%, 5 \mathrm{~Hz} 1020 \mathrm{~Hz}$ and 400   kHz to 600 kHz .	$<0.5 \%, 50 \mathrm{kz}$ to 20 kHz (63) IW $<1 \% \%, 20 \mathrm{Kz}$ to $20 \mathrm{kHz} @ 3 \mathrm{~W}$	$<0.5 \%$ above 5 Hz (indepen. ent of load impedance).
Hum and Nolse	66 dB below maximum rated output	<0.1\% of rated output	< $0.03 \%$ of rated output	<0.1\% of rated output
Attenuator	Bridged "T"	Bndged "T"	0 to 40 dB in 10 dB steps. Coarse and fine controls.	Bridged "T"
Input Power	115 or 230 V (must be specified) $50 / 400 \mathrm{~Hz}, 75 \mathrm{VA}$	$\begin{aligned} & 115 \text { or } 230 \mathrm{~V}, 50 \text { to } 1000 \mathrm{~Hz}, \\ & 90 \mathrm{VA} \end{aligned}$	$\begin{aligned} & 115 \text { or } 230 \mathrm{~V}, 50 \text { to } 400 \mathrm{~Hz} \text {, } \\ & 75 \mathrm{VA} \end{aligned}$	115 or $230 \mathrm{~V}, 48 \mathrm{~Hz}$ to 440 Hz , 90 VA .
Welght Tbs (kg)	Net: $15 \mathrm{lbs}(6,7 \mathrm{~kg})$ Shipping: 16 ibs ( $7,2 \mathrm{~kg}$ )	Net: $22 \mathrm{lbs}(9.9 \mathrm{~kg})$ Shipping: 24 its ( $10,8 \mathrm{~kg}$ )	Net: $16 \mathrm{lbs}(7.2 \mathrm{~kg})$ Shipping: 19 ibs $(8,6 \mathrm{~kg})$	Net: $25 \mathrm{lbs}(11,3 \mathrm{~kg})$ Shipping: 28 los $(12,7 \mathrm{~kg})$
WxHxD Dhmenstons	$\begin{aligned} & 74 / 2 \times 111 / 2 \times 12 \\ & (191 \times 292 \times 305) \end{aligned}$	$\begin{aligned} & 73 / 8 \times 111 / 2 \times 143 / 8 \\ & (187 \times 292 \times 365) \end{aligned}$		$\begin{aligned} & (71 / 2 \times 111 / 2 \times 141 / 4 \\ & (191 \times 292 \times 368) \end{aligned}$
Price	\$270	$\begin{aligned} & \hline \$ 310 \\ & \text { Opt. } H 20, \$ 370 \end{aligned}$	\$330	$\$ 370$

## SINE, SQUARE OSCILLATORS <br> Low distortion; wide range; balanced output <br> Models 209A, 204C, 204D



The HP 200A is a small, lightweight, sine/square oscillator. Stable, accumate signals which can be synchronized with an external source are instantly available over a frequency range from 4 Hz to 2 MHz . Separately adjustable sine/square outputs are located on the Front panel. Distortion and fintress can be minimized at low frequencies by a rear panel LOW DISTORTION MODE swicth.

The HP 204C is a small, tightweight capacitivertuned oscillator. Interchangeable power packs, line, rechargeable batteries or mercury batteries make this instrument ideal for both field and laboratory use. Internal hear generation and temperature coefficient is small, resulting in unusually low drift. Stable, accurate signals which can be synchronized with an external source are instantly available over a frequency range from 5 Hz to 1.2 M Hz , Distortion can be minimized at low frequencies by a rear panel Low Distortion Mode switch; however, settling time with a rapid frequency change is increased.
The HP 204D Oscillator is identical to the 204C with the addi. tion of an $80 d B$ attenuatoi and vernier. The attenuator with the vemier provides excellent outpur amplitude setability.

## Specifications (209A)

Frequency: 4 Hz to 2 MHz in 6 ranges.
Dial accuracy: $\pm 3 \%$ of frequency setting.
Flatness: at raximum output into $600 \Omega$ load. 1 kHz reference.

Low datartlan made	$\pm 1 \%$	$\pm 0.5 \%$	$\pm 1 \%$	$\pm 5 \%$									
Normal mode	$+5 \%,-1 \%$	$\pm 0.5 \%$	$\pm 1 \%$	$\pm 5 \%$									
100											300 k	1 M	$2 \mathrm{M}(\mathrm{Hz})$

Distortion: 200 Hz to $200 \mathrm{kHz}, 0.1 \%(-60 \mathrm{~dB})$; \& Hz to 200 Hz , $<0.2 \%(-54 \mathrm{~dB}) ; 200 \mathrm{kHz} \cdot 2 \mathrm{MHz},<1 \%(-40 \mathrm{~dB})$.
Hum and noise: $<0.01 \%$ of inpue.

## Output characteristics sine wave

Output voltage: 5 V rms ( 40 mW ) into $600 \Omega$; 10 V open circuit. Outgut Impedance: $600 \Omega$.
Output control: $>26 \mathrm{~dB}$ range continuously adjustable.
Output balance: $>40 \mathrm{~dB}$ below 20 kHz . Output can be floated up to $\pm 500 \mathrm{~V} p$ between output and chassis ground.

## Output characterlstics square wave

Output voltage: 20 V p-p open circuit symmetrical about 0 V . Ou:put can be floated up to $=500 \mathrm{~V}$ p.
Rise and fall time: $<50$ ns into $600 \Omega$. Symmetry: $\pm 9 \%$.
Output impedance: $600 \Omega$.

## Synchronization

Sync output: sine wave in phase with outpur; 1.7 V tms open circuit (high end affected by capacitive loads); impedance $10 \mathrm{k} \Omega$. Sync input: same as 204C.
Price: HP 209A, $\$ 355$.

## Specifications (204C)

Frequency: 5 Hz to 1.2 MHz in 6 overlapping ranges
Dial accuracy: $\pm 3 \%$ of frequency setring.
Flatness (at maximum output into $600 \Omega$ load, 1 kHz reference)

Low dlstortion mode	$\pm 1 \%$	$\pm 0.5 \%$	$\pm 1 \%$		
Normal mode	$+5 \%,-1 \%$	$\pm 0.5 \%$	$\pm 1 \%$		
500			300 k		$1,2 \mathrm{M} \mathrm{(Hz)}$

Distortion: 30 Hz to $100 \mathrm{kHz}, 0.1 \%(-60 \mathrm{~dB})$; 5 Hz to 30 Hz , $<0.6 \%(-44 \mathrm{~dB}) ; 100 \mathrm{kHz}-1.2 \mathrm{MHz}$, linearly derated to $<1 \%$.
Hum and nolse: <0.01\% of outpuc.

## Output characteristics

Output voltage: $>2.5 \mathrm{~V}$ rms ( 10 mW or +10 dBm ) into $600 \Omega$; $>5 \mathrm{~V}$ rms open circuir.
Output Impedance: 600 $\Omega$.
Output control: $>40 \mathrm{~dB}$ range; continuously adjustable
Output balance: $>40 \mathrm{~dB}$ below 20 kHz . Can be hoated up to $\pm 500 \mathrm{~V}$ p berveen output and chassis ground.

## Synchronlzatlon

Sync output: sine wave in phase with output; $>100 \mathrm{mV}$ rms into $<100 \mathrm{pF}$ over entire range; impedance $10 \mathrm{k} \Omega$.
Sync input: oscillator can be synchronized to external signal. Syne range, the difierence between sync frequency and set frequency, is a linear function of sync voltage. $\pm 1 \% / \mathrm{V}$ rms for sine rave with a maximum input of $\pm 7 \mathrm{Vp}( \pm 5 \mathrm{~V} \mathrm{~ms})$.

## Specifications (204D)

(Identical to 204 C except "output control" is replaced by the following:)
Output attenuator
Range: 80 dB in 10 dB sleps.
Overall accuracy: $\pm 0.3 \mathrm{~dB},+10 \mathrm{~dB}$ through -60 dB ranges: $\pm 0.5 \mathrm{~dB}$ on -70 dB range.
Output vernler: $>10 \mathrm{~dB}$ range, continuously adjustable.

## General

Operating temperature: specifications are met from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Power: standard: ac-line 115 V or $230 \mathrm{~V} \pm 10 \%$, 48 Hz to 440 Hz , $<7$ VA max. Opt, 001 : mercury batteries 300 hours operation. Opt. 002 : line/rechargeable batteries 115 V or $230 \mathrm{~V} \pm 10 \%$, 48 Hz to $140 \mathrm{~Hz},<7 \mathrm{VA}$ max. 35 hours operation per recharge.
Dimensions: $51 / 8^{\prime \prime}$ wide, $67 / 4^{\prime \prime}$ high (without removeable feet), $8^{\prime \prime}$ $\operatorname{deep}(130 \times 159 \times 203 \mathrm{~mm})$.
Weight: net $6 \mathrm{lbs}(2,7 \mathrm{~kg})$; shipping $9 \mathrm{lbs}(4 \mathrm{~kg})$.
Accessories available: HP 1113SA AC Power Pack for 204C, \$60. HP 11136A Mercury Power Pack for 204C, \$75. HP 11137A Rechargeable Battery/AC Power Pack for 204C, \$95. HP 11075A Instrument Case, $\$ 60$.
Price: HP 204C (ac line), $\$ 260$; HP 204D, $\$ 335$; HP 204C or 204D option 001 (mercury batteries), add $\$ 15$. HP 204C or 204 D option 002 (rechargeable batteries, ac-line), add $\$ 35$.

# DIGITAL OSCILLATOR <br> Four digit frequency resolution, 10 Hz to 1 MHz Model 4204A 

OSCILLATORS, FUNCTION GENERATORS


## Description

The Hewlerr-Packard 4204A Digital Oscillator provides accurate. stable test signals for both laboratory and production work. This one instrument does the jobs of an audio oscillator. and ac voltmeter, and an electronic counter, in applications requiring an accurate frequency source of knorrr amplitude.

Any frequency between 10.0 Hz and 999.9 kHz can be digitally selected with an in-line rotary switch. As many as 36,900 discrete frequencies are available. Infinite resolution is provided by one vernier control, ahich also extends the upper frequency limit to 1 MHz . Frequency accuracy is better than $\pm 0.2 \%$ and repeatability is rypically better than $\pm 0.01 \%$.

A built-in high impedance voltmeter measures the output. The meter is calibrated to read volts or dBm into a macched 600 ohm load. ( $0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600 ohms). The output atrenuator has an 80 dB range. adjustable in 10 dB steps with a 20 dB vernier. Maximum output power can be increased to 10 volts into $600 \mathrm{hms}(+22 \mathrm{dBm})$.

Specifications, 4204A
Frequency range: 10 Hz to $1 \mathrm{MHz}, 4$ ranges.
Frequency accuracy: $\pm 0.2 \%$ or $\pm 0.1 \mathrm{~Hz}$ (at $25^{\circ} \mathrm{C}$ ).
Frequency stabilly
$\pm 10 \%$ line voltage variation: $< \pm 0.01 \%$.
Change of frequency with temperature: $< \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Frequency response: flat within $\pm 3 \%$.
Output: $10 \mathrm{~V}(22 \mathrm{dBm})$ into 600 m , ( 160 mW ). 20 V open circuit.
Output attenuators: 80 dB in 10 dB steps: $< \pm 0.5 \mathrm{~dB}$ error. Distortion: $<0.3 \%, 30 \mathrm{~Hz}$ to $100 \mathrm{kHz} .<1 \%, 10 \mathrm{~Hz}$ to 1 MHz . Hum and noise: $<0.05 \%$ of output.
Dimensions: cabinel, $53 / 4$ " high, $163 / 4^{\prime \prime}$ w.ide, $1\left[1 / 4^{\prime \prime}\right.$ deep ( $134 \times 426 \times 286 \mathrm{~mm}$ ).
Power: $115 \mathrm{~V} / 230 \mathrm{~V}$ switch. $\pm 10 \%$. 11 VA max. 501060 Hz . Weight: net, $19 \mathrm{lbs}(8,5 \mathrm{~kg})$ : shipping, $26 \mathrm{lbs}(10,7 \mathrm{~kg})$. Price: HP 1204A $\$ 910$.
Option 001: output monitor top scale calibrated in $\mathrm{dBm} / 600 \mathrm{n}$; botrom scale calibrated in volrs, add $\$ 20$

## TEST OSCILLATOR <br> Rechargeable battery operation Model 208A

## Specifications, 208A

Frequency range: $s \mathrm{~Hz}$ to 560 kHz in s ranges. $5 \%$ overlap betaveen ranges, vernier control.
Dial accuracy: $\pm 3 \%$.
Frequency response: $\pm 3 \%$ into rated load.
Output: 10 mW nominal 2.5 V rms ( +10 dBm ) into 6000 . Output impedence: $600 \Omega$.
Output attenuator (Option 001: 0 to 110 dB in 1 dB steps) Meter scale value: 0.01 mV to 1 V full scale ( 6 steps).
Multipller: 2.5 multiplier, concentric with Meter Scale Value switch, to obeain 0.025 mV to 2.5 V
Output attenuator accuracy: 5 Hz to 100 kHz , erroc is $< \pm 3 \%$ at any step. From 100 kHz to 560 kHz , error is $<5 \%$ at any srep. Specifications include multiplier accuracy. (Option 001, see data sheer.)
Output monitor: transistor voltmeter monitors level at input to attenuator and after ser level. Accuracy $\pm 2 \%$ of full scale into $600 \Omega$. (Option 001, accuescy $\pm 0.2 \mathrm{~s} \mathrm{~dB}$ at +10 dBm into 6008. )
Set level: continuously variable bridged " $T$ " attenuator with 10:1 voltage range. (Option $001,20 \mathrm{~dB}$ minimum range.)
Distortion: <1\%.
Hum and noise: $<0.05 \%$ at maximum output.


Operating temperature range: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Power source: four rechargeable batteries (furnished): 30 hr operation per recharge. Oscillator may he operated during recharge from ac line ( 115 V or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz , 3 W).
Dlmenslons: 7.25/32" wide, $61 / 4^{\prime \prime}$ high (without removable feet ), $8^{\prime \prime}$ deep ( $197 \times 155 \times 203 \mathrm{~mm}$ ).
Welght: net, $81 / 4 \mathrm{lbs}(3,5 \mathrm{~kg})$; shipping, $11 \mathrm{lbs}(5 \mathrm{~kg})$.
Price: HP 208A, \$61s. Option 001, add $\$ 15$.

OSCILLATORS, FUNCTION GENERATDRS

VARIABLE-PHASE GENERATOR
Sine- and square-waves 0.00005 Hz to 60 kHz
Model 203A


The solid-state HP Model 203A Low-Frequency Function Generator provides two transient-free low-distortion square and sinusoidal test signals particularly useful for a wide variety of low-frequency applications. Field and laboratory testing of servo, geophysical, medical and high-quality audio equipment becomes practical when using the 203A.

The 203 A frequency range of 0.005 Hz to 60 kHz is covered in 7 overlapping bands ( 2 additional ranges available on special order, offering frequency range to 0.00005 Hz ). Accurate $\pm 1 \%$ frequency setting is provided by 180 dial divisions. A vemier drive allows precise adjustment.

## 30 volt output

The 203A provides a maximum output voltage of 30 V peak-to-peak for all waveforms. The sinusoidal signals have a distortion that is less than $0.06 \%$ and provide virtually transient-free outputs when frequency and operating conditions are varied rapidly. The four output circuits of the 203A have individual 40 dB continuously variable attenuators.

Outputs consist of a reference sine and square wave, and a variable-phase sine and square wave. The two sine- and square-wave outputs are electrically identical except that one sine- and square-wave output contains a 0 -to- 360 degree phase-shifter. These four signals (two reference phase and two variable phase) are available simultaneously from the 203A. The output system is floating with respect to ground and may be used to supply an output voltage that is terminal grounded, or may be foated up to 500 volts de above chassis ground. The output impedance is 600 ohms for all outputs.

## Special features

A front-panel calibration provision permits the user to easily calibrate the oscillator frequency to the environment in which the instrument is used. The HP 203A features a unique method of mixing, filtering and dividing the frequency to maintain an exact decade relationship. Interchangeable decade modules provide greater reliability and ease of servicing.

## Specifications, 203A

Frequency range: 0.005 Hz to 60 kHz in seven decade fanges.* Dlal accuracy: $\pm 1 \%$ of reading.
Frequency stablity; within $\pm 1 \%$ including warmpp drift and line voltage variations of $\pm 10 \%$.
Output waveforms: sine and square waves are available simultaneously; all outputs have common chassis terminal.
Reference phase: sine wave, 0 to 30 V peak-to-peak; square Wave, 0 to 30 V peak-to-peak (open circuit).
Varlable phase: sine wave, 0 to 30 V peak-to-peak; square wave, 0 to 30 V peak-to-peak; continuously variable, 0 to $360^{\circ}$; phase dial accuracy, $\pm 5^{\circ}$ sine wave, $\pm 10^{\circ}$ square wave (open circuit).
Output impedance: 600 ohms.
Output power: $s$ volts into $600 \mathrm{ohms}(40 \mathrm{mD}) ; 40 \mathrm{~dB}$ continuously variable attenuation on all outputs.

Distortion: total harmonic distortion hum and noise $>64 \mathrm{~dB}$ below fundamental ( $<0.06 \%$ ) at full output.

Output system: direct-coupled outpert is isolated from ground and may be operated fioating up to 500 V de .

Frequency response: $\pm 1 \%$ referenced to 1 kHz .
Sqyare wave response: rise and fall time, <200 ns; overshoot, $<5 \%$ at full output.

Power: 115 or 230 volts $\pm 10 \%$, 48 to $440 \mathrm{~Hz}, 27.5$ VA max.
Dimensions: cabinet: $51 / 4^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ deep ( 13 ; x $425 \times 286 \mathrm{~mm}$ ) ; rack mount kit (00203-84401) furnished with instrument.

Weight: nes, $20 \mathrm{lbs}(9,17 \mathrm{~kg})$; shipping, $28 \mathrm{lbs}(12,6 \mathrm{~kg})$.
Price: HP 203A, $\$ 1465$; Option 001 ( 0.0005 Hz range), add $\$ 65$; Oprion 002 ( 0.00005 Hz range), add $\$ 190$.

[^29]

## Description

Plug-ins and multiple outputs ser the HP 3300A Function Generator apart from other function generators. Any two of three waveforms-sine, square or triangular-may be selected by a front-panel switch over the frequency range from 0.01 Hz to 100 kHz , continuously adjustable in seven decade sanges. This solid-state, mulri-purpose source provides simultaneous signals of any two waveforms over the entire frequency range with independent variable amplitudes.
Plug.ins, which insert directly into the front panel, include the HP 3301 A Auxiliary Plug-in to provide internal connections for basic unit operation. The 3302A plug-in provides single and multiple-cycle operation with adjustable start-stop phase. A phase-lock loop in the 3302A permits syachronizing the 3300 A with an exrernal signal and gives adjustable phase control. The HP 3304A Sweep/Offser Plug-in provides internal sweeping, de offset, sawrooth waves and offset square waves. The 3305 A Sreeper Plug-in supplies internal $\log$ sweep and manual sweep over four decades with calibrared variable startstop frequency control within four decades. Sweep width is continuously-adjustable. It has manual or external triggering. Sweep can be analog.progranmed with horizontal sweep avail. able for driving scopes or recorders.
The frequency of the HP 3300 A can be controlled by either the front-panel frequency dial or an external voltage applied to a rear-terminal connector. This feature is useful for sweeping filters, amplifiers and other frequency-dependent devices and for externally programming frequencies for production resting.
The output system of the HP 3300A is de coupled and fully Roating with respect to power-line ground. An internal shield reduces radiated interference and provides common-mode re. jection with floating output. A balanced output can be obtained by using both outpur amplifers. Each output amplifier will deliver 35 V P.P into an open circuit.

## Specifications

Output waveforms: sinusoidal, square and triangular selected by panel switch (any two outputs available simultaneousiy).

Frequency range: 0.01 Hz to 100 kHz in 7 decade ranges. Typical frequency stabillty

Short term: drift $< \pm 0.05 \%$ of setring for 10 min .
Long term: drift $< \pm 0.25 \%$ of setting for 24 hrs .
Frequency response: $\pm 1 \%, 0.01 \mathrm{~Hz}$ to 10 kHz ; $\pm 3 \%, 10$ kHz to 100 kHz on the X 10 k range.
Dial accuracy: $\pm 1 \%$ of maximum dial setting ( 1 minor division), 0.01 Hz to 10 kHz at $+25^{\circ} \mathrm{C} ; \pm 2 \%$ of maximum dial setting ( 2 minor divisions), 10 kHz to 100 kHz on the Xlok range.
Maximum output per channel: $>35$ V p-p open circuit; $>15 \mathrm{~V}$ p.p into 6002; $>2 \mathrm{~V}$ p-p into $50 \Omega$.

Output attenuators (bath channels): 40 dB range.
Sine-wave distortion: $<1 \%, 0.01 \mathrm{~Hz}$ to $10 \mathrm{kHz}:<3 \%, 10$ kHz to 100 kHz on the X 10 k range.
Squarewave response: $<250$ ns rise and fall time on all ranges: $<1 \%$ sag, $<5 \%$ cvershoot at full output; $<1 \%$ symmetry error; $<500 \mathrm{~ms}$ rise and fall time ( -A ).
Triangle-linearlty error: $<1 \%, 0.01 \mathrm{~Hz}$ to $10 \mathrm{kHz} ;<2 \%, 10$ kHz to 100 kHz at full output; $<1 \%$ symmetry error.
Sync-pulse output: >10 V p-p open circuit. < $5 \mu$ s duration.
Output impedance (both channels): $600 \Omega \pm 20 \%$.
DC stability: drift $< \pm 0.25 \%$ of P-P amplitude over a period of 24 hours (after $30-\mathrm{min}$. warmup).
Remote frequency controt: 0 to -10 V will linearly change frequency $>1$ decade within a single range. Frequency resetrability with respect to voltage $\pm 1 \%$ of maximum frequency on range selecred.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to 440 Hz .65 VA max.
Dimenslons: standard Hewlett-Packard full module $163 / 4^{\prime \prime}$ wide, $5.7 / 32^{\prime \prime}$ high, $11^{\prime \prime}$ deep ( $425 \times 133 \times 279 \mathrm{~mm}$ ).
Weight: net, $20 \mathrm{lbs}(9 \mathrm{~kg}$ ) ; shipping, $25 \mathrm{lbs}(11,3 \mathrm{~kg}$ ).
Accessories furnished: rack mount kit for $19^{\prime \prime}$ rack.
Plug-ins available
HP 3301A Auxiliary Plug in, $\$ 35$
HP 3302A Trigger/Phase Lock Plug-in (see page 322).
HP 3304A Sweep/Offset Plug-in (see page 322).
HP 3305A Sweeper Plug in (see page 322).
Price: HP 3300A Function Generator, $\$ 775$.

# OSCILLATORS, FUNCTION GENERATORS 



The HP 3302A Trigger/Phase Lock Plug.in provides single. cycle, multiple-cycle, and phase-lock operation. The instrument can be triggered over the entire frequency range, either manually or by applying an external voltage.
The HP 3304A Sweep/Offset Plug-in provides internal sweeping, de offsel, sawtooth waves, and offset square waves. Up to $\pm 16 \mathrm{~V}$ of dc offset is available for all signals generated in the main frame and plug-in. In addition, the independently frequencycontrolled sawtooth wave may be switched internally' to the frequency control circuit of the HP 3300A. Function Generator to permit sweeping over a decade of frequency within a single range.
The HP 330sA Sweep Plug in will sweep logarithmically, repetitively between any two frequencies within one of the three (4-decade) ranges: 0.1 Hz to $1 \mathrm{kHz}, 1 \mathrm{~Hz}$ to 10 kHz , and 10 Hz to 100 kHz . Calibrated independent START-STOP controls greatly simplify setting desired sweep end points. Adjustable sweep time., from 0.01 to 100 seconds, provides sweep times slow enough for accurate response testing of low-frequency high-Q systems and fast enough for good visual displays of higher frequency responses.

## Specifications, 3302A

Trigger requirements
Single cycle: manual or external, do coupled. Requires at least 0.5 V to trigger extemaily. Mas be triggered with positive or negative input voltage which starts at or goes through 0 V ( $\pm 20 \mathrm{~V}$ p max.).
Multiple cycle: manual or external stast/stop, de coupled. Requires at least 0.5 V to starr, 0 V to stop. May be eriggered with either positive or negative ( $\pm 20 \mathrm{~V}$ p max.).
Phase lock: 10 Hz to 100 kHz (upper 4 ranges only). de coupled. Requires + and $-0.5 \mathrm{~V} p$ to lock, $10 \mathrm{~V} \mathrm{p.p}$ for specifed accuracy with sine wave input. The 3302A will lock on a fundamental or harmonic of the inpur signal.
Phase dial accuracy: $\pm 10^{\circ}$ from 10 Hz to $10 \mathrm{kHz} ; \pm 20^{\circ}$ from 10 kHz to 100 kHz on X10 k range (fundamental),
Introduced distortion: $<1 \%, 10 \mathrm{~Hz}$ to $10 \mathrm{kHz} ;<3 \%, 10 \mathrm{kHz}$ to 100 kHz on X 10 k ragge (fundamental).

## Specifications, 3304A

DC offset
Voltage range: adjustable 0 to $\pm 16 \mathrm{~V}$ open circuit and $\pm 1 \mathrm{~V}$ vernier.
DC stability: $\dot{ \pm} 50 \mathrm{mV}$ over 24 -hr period (after $30-\mathrm{min}$. warmup).
Offset square wave
Output polarity: positive or negative, from de offset voltage or ground potential.
Amplitude: >1s V p-p open circuit; continuously adjustable with 3300 A amplitude control. Rise time: $<400 \mathrm{~ns}$. Overshoot: $<5 \%$ at full output. $\mathrm{Sag}:<1 \%$.

## Sawtooth waveform

Frequency range: 0.01 Hz to 100 kHz , continuously adjustable over 7 decade ranges.

Dial accuracy: $<=10 \%$ full scale, 0.01 Hz to $1 \mathrm{~Hz} ;< \pm 5 \%$ full scale, i Hz to 100 kHz .
Amplitude: $>15$ V p-p open circuit; continuously adjustable over a to dB range with 3300 A amplitude control.
Frequency response: $<2 \%, 0.01 \mathrm{~Hz}$ to $10 \mathrm{kHz}:<5 \%, 10 \mathrm{kHz}$ to 100 kHz .
Output polarity: positive or negative, from de offset volmage or ground potential.
Linearity: $<1 \%, 0.01 \mathrm{~Hz}$ to 10 kHz ; overshoot, $<5 \%$. $<2 \%, 10 \mathrm{kHz}$ to 100 kHz ; overshoot, $<5 \%$.
Flyback tlme: $<5 \%+250 \mathrm{~ns}$.
Internal sweep
Controls: start frequency set by 3300 A frequency dial; sweep range set by sweep widen control on plug-in.
Sweep rate: determined hy savinnth Frequency setting.
Sweep width: adjustable from 0 to at least 1 decade on any one range.

## Specifications, 3305A

Frequency range: 0.1 Hz to 100 kHz in 3 overlapping tanges.
Sweep width: limits adjustable 0 to 4 decades in any of 3 (4. decade) bands: 0.1 Hz to $1 \mathrm{kHz}, 1 \mathrm{~Hz}$ to $10 \mathrm{kHz}, 10 \mathrm{~Hz}$ to 100 kHz . Start-stop dial accuracy: $\pm 10 \%$ of setting.

## Sweep modes

Automatic: repetitive iogarithmic sweep between start and stop frequency settings.
Manual: vernier adjustment of frequency between start and stop frequency settings.
Trigger: sweep between starc and stop frequency sellings and retrace with application of external trigger voltage or by de. pressing front-panel trigger button.

Trigger requirements: ac coupled, positive going at leas:
$1 \mathrm{~V} \cdot \mathrm{p}$ wich $>2 \mathrm{~V}$ per mas rise ratc. Max. input, $\pm 90 \mathrm{~V}$ p.
Sweep time: 0.01 s to 100 s in 4 decade steps, continuously ad. justable vernier.
Retrace time: $<0.003 \mathrm{~s}$ for 0.1 to 0.01 s sweep times; $<0.03 \mathrm{~s}$ for 1 to 0.15 sweep times; $<4 \mathrm{~s}$ for 100 to 1 s sweep times.
Blanking: oscillator disabled during zetrace.
Pen lift: terminals shorted during sweep; open during retrace in auto and trigger modes for 100 to 1 s sweep times.
Sweep output: linear ramp at CHANNEL B OUTPUT (PLUG-
IN): amplitude adjustable independently of sweep width; max. output $>15 \mathrm{~V}$ p-p into open circuit, $>7 \mathrm{~V} \mathrm{p} \cdot \mathrm{p}$ into $600 \Omega$.
External frequency control
Sensitivity: $6 \mathrm{~V} /$ decade (refer: START setting), $\pm 24 \mathrm{~V}$ max.
V-to-F converslon accuracy: for each 6 V change in programming voltage, frequency changes 1 decade $\pm 5 \%$ of end $F$. Input impedance: $400 \mathrm{k} \Omega \pm 5 \%$. Max. rate: 100 Hz .

## General

Dimensions: $6.1 / 16^{\prime \prime}$ wide, $43 / 4 "$ high, $101 / 4^{\prime \prime}$ deep ( 154 x $121 \times 260 \mathrm{~mm}$ ).
Weight: ner. $4 \mathrm{lbs} 602(2 \mathrm{~kg})$; shipping $8 \mathrm{lbs} \quad(3,6 \mathrm{~kg})$.
Price: HP 3302A, $\$ 255$ : HP 3304A, $\$ 295$; HP 3305A, $\$ 1015$.

# TEST OSCILLATORS 10 Hz to $10 \mathrm{MHz} ; 2 \% /$ mo amplitude stability Models 651B, 652A, 654A 

## OSCILLATORS, FUNCTION GENERATORS



## Description

Amplitude and frequency stability of the 6518 Test Oscillator provides test quality signals for laboratocy of production measurements from 10 Hz to 10 MHz . Two output impedances are available from the front pane! providing 200 mW into sos. or 16 mW into 600 m .
The 652 A is the same as the 651 B with the addition of an expandable monitor for amplitude control to $0.25 \%$ across the band.

The 654A Test Oscillator is a lightweight, porrable solid. state signal source. Its 10 Hz to 10 MHz frequency band, amplitude stability, accuracy, and level flatness make it an ideal general purpose test oscillator. The selective ourput impedances of $50 \Omega, 75 \Omega$ unbalanced, and $135 \Omega, 150 \Omega, 600 \Omega$ balanced make it usefu) in electronic research laboratories, in production testing, and for use as a commercial test instrument.

## 651B Specifications*

Frequency range: 10 Hz to 10 MHz , 6 band. dial calibration: 1 to 10.
Amplitude stability: $\pm 2 \%$ per mo. $20^{\circ} \mathrm{C} \cdot 30^{\circ} \mathrm{C}$.
Dial accuracy (Including warmup and $\pm 10 \%$ line voltage varlations): $\pm 2 \%, 100 \mathrm{~Hz}$ to $1 \mathrm{MHz}:=3 \%, 10 \mathrm{~Hz}$ to 100 Hz and 1 MHz to 10 MHz .
Output (max): 3.16 into $50 n$ oc 600 n ; 6.32 open circuit.
Ranges: 0.1 mV to 3.16 V full scale, 10 steps in $1,3,10$ sequence: -70 dBm to +23 dBm ( $50 \Omega$ output) full scale, 10 dBm per step; coarse and fine adjustable.

## Flatness

Amplitude not readjusted to a reference on the output monitor: $\pm 2 \%, 100 \mathrm{~Hz}$ to $1 \mathrm{MHz}: \pm 3 \%, 10 \mathrm{~Hz}$ to 100 $\mathrm{Hz}_{i} \pm 4 \%, 1 \mathrm{MHz}$ to $10 \mathrm{MHz}{ }^{*}$.
Amplitude readjustad to a reference on the output monitor:


Distortion: $<1 \%$. 10 Hz to $2 \mathrm{MHz} ;<2 \%, 2 \mathrm{MHz}$ to 5 MHz ; $<4 \%$, s MHz to 10 MHz .
Attenuator
Range: 90 dB in 10 dB steps.
Accuracy: $\pm 0.075 \mathrm{~dB},-60 \mathrm{dBm}$ to $+20 \mathrm{dBm} ; \pm 0.2 \mathrm{~dB}$, -70 dBm to -60 dBm .
Amplitude control: 20 dB range, coarse and fine.
Temperature range: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 35 \mathrm{VA}$ max.

[^30]Dimenslons: $163 / 4^{\prime \prime}$ wide, $5-7 / 32^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep.
Weight: net, $17 \mathrm{lbs}(7,7 \mathrm{~kg})$; shipping, $22 \mathrm{lbs}(0,9 \mathrm{~kg})$.
Accessory furnished: rack mount kit for $19^{\prime \prime}$ rack.
Price: HP 651B, $\$ 660$.
Option 001: output monitor reads dBm for $600 \Omega$, add $\$ 30$. Option 002: outputs, $75 \Omega$ and $600 \Omega$; in $\mathrm{dBm} / 75 \Omega$, add $\$ 30$. Note: other outpur impedances above son are available

## 652A Specifications ${ }^{\text {" }}$

(Same as Model 651 B except as indicated below)
Expand scale; expands reference voitage of the normal scale from 0.9 to 1.0 or 2.8 to 3.2 .
Flatness (amplitude readjusted using expanded scale on output monitor: $\pm 0.25 \% 3 \mathrm{~V}$ and 1 V range: $\pm 0.75 \% 0.3 \mathrm{~V}$ to 0.3 mV range: $\pm 1.75 \% 0.1 \mathrm{mV}$ range.

Accessories furnished: HP 11048B s.0ת feed-thru termination; rack mounting kit.
Price: HP 652A, \$795.

## 654A Specifications*

Frequency range: 10 Hz to 10 MHz in 6 bands.
Frequency accuracy: 100 Hz to $5 \mathrm{MHz}, \pm 2 \% ; 10 \mathrm{~Hz}$ to 100 $\mathrm{Hz}, \pm 3 \% ; 5 \mathrm{MHz}$ to $10 \mathrm{MHz}, \pm 4 \%$.
Level flatness ( +10 dBm and 0 dBm ): $\pm 0.5 \%$ from 10 Hz to 10 MHz for unbalanced outputs, 10 Hz to 5 MHz for $135 \Omega$ and $150 \Omega$ ourputs, and 10 Hz to 1 MHz for $600 \Omega$ output.
Output impedance: $50 \Omega$ unbalanced, $75 \Omega$ unbalanced, $135 \Omega$ balanced, 1500 balanced, and 6005 balanced.
Output level: +11 dBm to $-90 \mathrm{dBm}, 10 \mathrm{~dB}$ and 1 dB steps with adjustable $\pm 1 \mathrm{~dB}$ meter range; calibrared for each im. pedance.
Attenuator
Range: 99 dB in 10 dB and t dB steps.
Accuracy: $\pm 1.5 \%(0.15 \mathrm{~dB})$ except $\pm 10 \%(1 \mathrm{~dB})$ at out put levels below 60 dBm at frequencies $>300 \mathrm{kHz}$.
Amplitude accuracy: $\pm 1 \%$ for 90 days ( $1 \mathrm{kHz}+10 \mathrm{dBm}$ ).
Meter tracking: $\pm 0.05 \mathrm{~dB}$.
Balance (on balanced impedances): $>\mathrm{SO} \mathrm{dB}$ for frequencies from 10 Hz to $1 \mathrm{MHz} .>40 \mathrm{~dB}$ to 5 MHz .
Distortion (THD): 10 Hz to $1 \mathrm{MHz},>40 \mathrm{~dB}$ below fundamental; 1 MHz to $10 \mathrm{MHz},>34 \mathrm{~dB}$ below fundamental.
Operating temperature: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.130^{\circ} \mathrm{F}\right)$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $4.10 \mathrm{~Hz}, 35 \mathrm{VA}$ max.
Dimensions: $16 \frac{1}{4}$ " wide, $5.7 / 32^{\prime \prime}$ high, $11 / 4^{\prime \prime}$ deep ( $425 \times 133$ $\times 286 \mathrm{~mm}$ ).
Weight: net, $21 \mathrm{lbs}(9,5 \mathrm{~kg}$ ) ; shipping, $23 \mathrm{lbs}(10,4 \mathrm{~kg}$ )
Accessories furnishod: rack mounting kit for $19^{\prime \prime}$ rack.
Accessories available: 11143 A Balanced Cable, $44^{\prime \prime}$ overall length (BNC to clip lead), $\$ 2 \mathrm{~s}$.
Price: HP 65AA, $\$ 960$.

## OSCILLATORS, FUNCTION GENERATORS

## FUNCTION GENERATORS

Compact, 7 functions, 10 decades of frequency
Model 3310A/B

## Description

The 3310A Function Generator is a compacr voltage-controlled generator with 10 decades of range. Ramp and pulse functions in addition to sine, square and triangle plus de offset and external voltage control provide wide versatility. Also on the front panel is the fast rise time sync output, square wave in symmetrical functions and rectangular in pulse and ramp. Aspect ratio of non-symmetrical function is $15 \% / 85 \%$.

The 3310 B has all the features of the standard 3310 A plus single and multiple cycle output capability. With the starr/stop phase knob in the detent position (max ccw) the instrument has the sanne specifications as the standard 3310A. When the start/stop phase knob is out of the detent, single or multiple cycle outputs can be obtained using either manual or external triggering.

## Specifications (3310A)

Output wavetorms: sinusoidal, square, triangle, positive pulse, negative pulse, positive ramp and negative ramp. Pulses and ramps have a $15 \%$ or $85 \%$ duty cycle.
Frequency range: 0.0005 Hz to 5 MHz in 10 decade ranges.
Sine wave frequency response
0.0005 Hz to $50 \mathrm{kHz}: \pm 1 \%: 50 \mathrm{kHz}$ to $\mathrm{S} \mathrm{MHz}: \pm 4 \%$.

Reference, 1 kHz at fuil amplitude into $50 \Omega$.
Dlal accuracy
0.0005 Hz to 500 kHz all functions: $\pm(1 \%$ of setting $+1 \%$ of full scale).
500 kHz to 5 MHz sine, square and triangle: $\pm(3 \%$ of setting $+3 \%$ of full scale).
500 kHz to 5 MHz pulse and ramps: $\pm(10 \%$ of setting $+1 \%$ of full scale).
Maximum output on HIGH: $>30 \mathrm{~V}$ p-p open circuit: $>15 \mathrm{~V}$
$p \cdot p$ into $50 \Omega$ (except for pulses at frequency $>2 \mathrm{MHz}$ ).
Pulse (frequency $>\mathbf{2} \mathrm{MHz}$ ): $>24 \mathrm{~V}$ p-p open circuir: $>12 \mathrm{~V}$ p-p into $50 \Omega$.
Minimum output on LOW: <30 mV p-p open circuit: < 15 mV p-p into $50 \Omega$.
Output level control: range $>30 \mathrm{~dB}$. HIGH and LOW outputs overlap for a total range of $>60 \mathrm{~dB}$; LOW output is 30 dB down from HIGH outpur.
SIne wave THD (below fundamental)
0.0005 Hz to $10 \mathrm{~Hz}:>40 \mathrm{~dB}(1 \%)$.

10 Hz to 50 kHz (on I k range): $>46 \mathrm{~dB}(0.5 \%)$.
50 kHz to $500 \mathrm{kHz}:>40 \mathrm{~dB}(1 \%)$.
500 kHz to $5 \mathrm{MHz}:>30 \mathrm{~dB}$ ( $3 \%$ ).
Square wave and pulse response: $<30 \mathrm{~ns}$ rise and fall times at full output: $<35$ ns rise and fall times with AMPLITUDE control not fully CW: $<5 \%$ rotal aberrations.
Trlangle and ramp linearity: $0,0005 \mathrm{~Hz}$ to $50 \mathrm{kHz},<1 \%$.
Triangle symmetry: 0.0005 Hz to $20 \mathrm{~Hz}:<1 \% ; 20 \mathrm{~Hz}$ to 50 $\mathrm{kHz}:<0.5 \%$.
Impedance: $50 \Omega$.
Sync
Amplitude: $>4 \mathrm{~V}$ p.p open circuit, $>2 \mathrm{~V}$ p-p into $50 \Omega$.
Rise and fall times: $<20 \mathrm{~ns}$.
Waveform: square for symmetrical functions, rectangular for pulse and ramp.
Output impedance: $50 \Omega$.
Offset
Amplitude: $\pm 10 \mathrm{~V}$ open circuit, -5 V into $50 \Omega$, continuously adjustable.
Note: max $V$ ac $p+V$ de offset is $\pm 15 V$ open circuit; $\pm 7.5 \mathrm{~V}$ into $50 \Omega$.
External frequency control range: 50:1 on any range.


Input requirement: with dial set to low end mark, a linear positive ramp of 0 to $+10 \mathrm{~V} \pm 1 \mathrm{~V}$ will linearly increase frequency 50:1. With dial ser at 50 , a linear negative ramp of 0 to $-10 \mathrm{~V} \pm 1 \mathrm{~V}$ will linearly decrease frequency $50: 1$. An ac voltage will $F M$ the frequency about a dial setting within the limits ( $1<f<50$ ) x range serting.
Linearity: tatio of ourput frequency to input voltage $\left(\frac{\Delta \mathrm{F}}{\Delta \mathrm{V}}\right)$
will be linear within $0.5 \%$.
Sensitivity: approximately $100 \mathrm{mV} /$ minor division.
Input Impedance: $10 \mathrm{k} \Omega$.
Note: specifications apply from 5 to 50 on the frequency dial.

## General

Power: 115 V or $230 \mathrm{~V} \pm 10 \%$, 48 Hz to $440 \mathrm{~Hz}, 32 \mathrm{VA}$ max. Dimenslons: $73 / 4^{\prime \prime}$ wide, $41 / 2^{\prime \prime}$ high (without removable feet) $8^{\prime \prime}$ deep ( $197 \times 114 \times 203 \mathrm{~mm}$ ).
Weight: net, $6 \mathrm{lbs}(2,7 \mathrm{~kg})$; shipping, $10 \mathrm{lbs}(4,5 \mathrm{~kg})$.

## Accessories avallable

HP Part No. 5060-0105 filler strip for use with HP 1051 A combining case or HP $5060-0797$ rack adapter frame.
Price: HP 3310A, \$595.

## Specifications (3310B)

Specifications for 3310 B are same as 3310 A with the addition of the following:
Modes of operation: free run, single çcle, multiple cycle.
Frequency range: 0.0005 Hz to 50 kHz (usable to 5 MHz ).
Single cycle**: EXT TRIGGER (ac coupled) requires a positive going square wave or pulse from 1 V p-p to 10 V p-p of lower frequency than that set on the 3310B; the triggering signal can be dc offser, but (V ac peak +V dc) $\leq \pm 10$ V. EXT GATE (dc coupled) will trigger a single cycle on any positive waveform $\geq 1 \mathrm{~V}$ but $\leq 10 \mathrm{~V}$ which has period greater than the period of the 3310 B output, and a duty cycle less than the period of the 3310 B output. The gate signal cannot exceed 10 V .
Muitiple cycle*: MANUAL TRIGGER will cause the 3310 B to free run when depressed. When the trigger button is released, the waveform will stop on the same phase as it started. EXT GATE will cause the 3310 B to free run wheo the gate is held at between +1 and +10 V . When the gate signal goes to zero, the 3310 B will stop on the same phase as it started. For accurate gating, a square wave or square pulse is recommended.
Start-stop phase: The start-stop phase can be adjusted over a range of approximately $\pm 90^{\circ}$ using the front panel control. Input impedance; EXT TRIGGER: 390 PF in series with $500 \Omega$.

EXT GATE: $500 \Omega$.
Price: HP Model $3310 \mathrm{~B}, \$ 735$.

* Thls specification applies on the X .0001 to XI k range only.



## Description

The 3311A Function Generator offers wide functiona! capability at a modest price. This compact unit has seven decades of range from 0.1 Hz to 1 MHz . Pushbutton tange and function selection add convenience to versatility. Added features normally not found on function generators in this price range are 10:1 voltage control and a separate pulse output suitable for synchronization or driving TTL logic circuits.

Output
10 V p-p into $600 \Omega$ ( 20 V p-p O.C.). This output may be attenuated by $>30 \mathrm{~dB}$ by a variable atrenuator and offset by $\pm s \mathrm{~V}$. The dc offset allows the sine, square, and triangle functions to be positioned to the most desited level. This feature adds to the usefulness of all three functions.

## V.C.O.

The dc coupled voltage control allows the use of an ex:ernal source to sweep the $3311 \mathrm{~A}>10: 1$ in frequency. An ac voltage can be used to FM the function generator.

## Pulse output

A separate TTL compatible pulse output provides current sinking for up to 20 TTL loads. The pulse has a $15 / 85$ aspect ratio with a < 25 ns rise time.

## Specifications

Navetorms: sinusoid, square, triangle, and positive pulse.
Frequency range: 0.1 Hz to 1 MHz in seven decade ranges.
Dlal accursey: $\pm 5 \%$ of full scale.
|solatlon: using an external supply, the ourputs may be floated ip to $\pm 500 \mathrm{~V}$ relative to the instrument case (earth ground).

## 500 Ohm Output

Maximum output amplitude: 20 V p-p open circuit; 10 V p-p into $600 \Omega$.
Amplitude control: continuously variable, $>30 \mathrm{~dB}$ range.

OC offset: up to $\pm 10 \mathrm{~V}$ open circuit, $\pm 5 \mathrm{~V}$ into $600 \Omega$, continuously adjustable and independent of amplitude control. Maximum $V_{a c}$ peak $+V_{d c}$ offset without clipping is $\pm 10 \mathrm{~V}$ open circuit, $\pm 5 \mathrm{~V}$ into $600 \Omega$.
Dutput Impedance: $600 \Omega \pm 10 \%$.
Sine wave amplitude flatness: within $\pm 3 \%$ of 10 kHz ref. erence (maximum output amplitude) $10100 \mathrm{kHz}, \pm 6 \%$ to 1 Hz .
Sine wave total harmonic distortion: $<3 \%$ (maximum out. put amplitude).
Triangle linearity: deviation $<1 \%$ Erom best straight line at 100 Hz (maximum output amplitude).
Square wave transition time; cise dime: <100 ns; fall time: $<100$ ns.
Square wave time axis symmetry error: $\pm 2 \%$ maximum to 100 kHz .
دulse Output
Jutput amplitude: $>3 \mathrm{~V}$ positive (open circuit) TTL compatible.
Outy cycle: $13.5 \%$ to $16.5 \%$ of the total period.
Transition times: <25 ns.
External Frequency Control
VCO range: $>10: 1$ on any frequency cange.
Input requirement: with frequency dial set to 1.0 , a linear camp of 0.0 V to $-10 \mathrm{~V} \pm 2 \mathrm{~V}$ will linearly increase〔requency $>10: 1$.
nput impedance: $10 \mathrm{k} \Omega \pm 10 \%$.

## General

Jperating temperature: $0.55^{\circ} \mathrm{C}$ : specifications apply from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Power: $100 / 120 / 220 / 240 \mathrm{~V}-10 \%$, $+5 \%$ switchable: 48 Hz to $440 \mathrm{~Hz} ; \leq 12 \mathrm{VA}$.
Jimenslons: height, $31 / 2^{\prime \prime}(89 \mathrm{~mm})$, width, $61 / 4^{\prime \prime}(160 \mathrm{~mm})$, depth, $93 / 4^{\prime \prime}(248 \mathrm{~mm})$.
Neight: net, $3.1 / 3 \mathrm{lbs}(1,5 \mathrm{~kg})$; shipping, $51 / 2 \mathrm{lbs}(2,5 \mathrm{~kg})$.
Price: $\$ 249$.

## Frequency synthesizer equals stabllity translator

Hewletr-Packard frequency synthesizers translate the stable frequency of a precesion frequency standard to one of thousands or even billions of frequencies over a broad spectrum that extends from de to 1300 MHz .

## Direct and Indlrect synthesis

Hewlett-Packard builds two types of fre. quency sfythesizers, "direa" and "indirect." Direct synthesis performs a series of arithmetic operations on the signal from the frequency standard to achieve the desired output frequency. In indirect syathesizers of the type built by Hewlet Packard. several internal ossillators are phase-locked to signals derived from the frequency standard. The outputs of these phase-focked oscillators are then combined to form the desired output frequency.

## Direct type synthesizers

The $5100 \mathrm{~B} / 5110 \mathrm{~B}$ and the $5105 \mathrm{~A} / \mathrm{s} 110 \mathrm{~B}$ Syncthesizers are made up of two completels solid-state units: the synthesizer proper, and the driver.

The driver contains a frequency source, a spectrum generator, and appropriate selective networks. The source is a high quality crystal oscillator housed in an oren. It is well protected from line valtage variations, and has an aging rate of less than three parts in $10^{0}$ per day.

The driver provides a series of fixed frequencies between 3 and 39 MHz which are fed 10 the synthesizer unit. The $\$ 110 \mathrm{~B}$ Driver provides outputs (optiona!) to drive up to four synthesizers simultaneously. This feature effectively reduces the cost per synthesizer in multifle output systems.

The synthesizer unjt contains harmonic generators and suitable mixers, dividers, and amplifiers to derive the desired oulput frequency as a function of the Exed frequencies. The front panel pushbuttons actuate a diode switching matrix.

All frequencies appearing ar the inputs to this matrix are alwars present. This is the advantage of the direct syathesis method; it allows fast switching speeds.

## High speed switching

The oscillogram of Figure 1, Page 334. shows the 20 microsecond or better speed which is typical of the Hewlert-Packard S100B and S105A Synthesizers when they change output frequency under electronic command. The upper waveform is synthe-
sizes output; the lower is the externally ap. plied switching voleage. Note the virtual absence of dead time and switching transients.

## Relisblity

Since their introduction in 1963, HewlettPackard $\$ 100$ Series Synthesizers have proven their high performance and reliability in many critical applications. Their continued use in deep space tracking systems, military satellite communication systems and radar applications attesr to their performance and reliability. Actual operating feld hisory has demonstrated a mean time between failure (MTBF) in excess of 10,000 hours for the synchesizer system.

## Indirect type synthesizers frequency generation

The $3320 \mathrm{~A} / \mathrm{B}, 3330 \mathrm{~A} / \mathrm{B}$ and $8660 \mathrm{~A} / \mathrm{B}$ are made up of one or more phase-locked loops, locked to a reference crystal oscillator. Each phase-locked loop generates a variable outpur frequency which has the long term stability of the reference crystal oscillator.

The $3320 \mathrm{~A} / \mathrm{B}$ contains only one phaselocked loop since only three significant digits of frequency must be controlled (each PLL can generate three variable digits followed by several zeroes)

The $3330 \mathrm{~A} / \mathrm{B}$ and $8660 \mathrm{~A} / \mathrm{B}$ require sev. eral phase-locked loops since eight variable digits of frequency are gencrated. PLL's are used both to generate frequency digits and to sum digits.

## Level control

The oulput of the frequency generation section is applied to the input of the level control circuits:

1. The 3320A and 3330A fiter and amplify the outpur. A potentiometer provides 0 to +13 dBm ( $50 \Omega$ ) output control.
2. The 3320 B and 3330 B use a unique True RMS ourput scheme to provide .05 dB flatness and .01 dB level reso. lution over a 100 dB outpur range.
3. The $8660 \mathrm{~A} / \mathrm{B}$ use several interchange. able plag-ins to provide oupput Bexibility including a wide range a atrenuator with 1 dB resolution and $\mathrm{AM} / \mathrm{FM}$ capability.

## Digital sweep

The $3330 \mathrm{~A} / \mathrm{B}$ and 8660 B are the most accurare sweepers ever built. Keyboard con-
trol of the built-in microprocessor gives all three instruments digital sweep (a point-bypoint sweep with frequency synthesizer atcuracy.) Phase continuity when switching is very good. This means that high $Q$ devices can be swept quickly and accurately.
The 3330 B also offers digital amplitude sweeps. Amplitude can be swept in increments as small as 0.01 dB to test level sensitive circuits like voltage-controlled oscillators and automatic gain control loops.

## Commurications applications

The high spectral purity of synthesizer output signals makes them ideal as local oscillarors in receive: applications where frequency agility and/or narrow I.F. bandwidths are required of the receiver.

Precise level control in the 3320B and 3330 B synthesizers removes the need for external leveling and attenustion. With 0.01 $d B$ resolutions, even the most demanding applications in manufecturing and operating sompanies can be satisfied.
A surveilliance receiver system which monitors multiple data channels by rapidly switching between channels is an ideal area of application for one of the Hewletr-Pack. ard frequency synthesizers. With its rapid, highly repeatable switching capability, a synthesizer will serve as the local oscillator in this type of receiver, providing the proper local oscillator frequency for each channel under surveillance. A similar application arises in radio sounding applications.

## Radar applications

The $5100 \mathrm{~B} / 5110 \mathrm{~B}$ is capable of switching berween output frequencies in 0.01 Hz increments at a very fast rate; thus it is capable of making very good approximations of frequency versus time functions. This performance feature finds application in high performance "chirp" radar installations, which require an ultralinear sweep.

In doppler radar applications, the Hew-lett-Packard frequency syothesizer supplies all the necessary requirements for piecise velocity measurements. The excellent stability of the synthesizer makes it ideal as the basir signal source in the transmitter, which requires stabiliny capable of staying within a receiver bandwidth only a few cycles wide in the microwave region. A frequency synthesizer also is well suited for use as the local oscillator in the doppler receiver, where the local oscillator must be capable of rapid change in order to keep the retuming signal within the narrow receiver bandwidth.

## NMR applications

Nuclear magnetic resonance spectroscopy methods are used to determine the qualitative and quantirative structure of molecules. In NMR, the strength of an applied dc magnetic field and the frequency of simultaneously applied rf field uniquely determine the spin-interaction of nuclei. In this application, the broad frequency range and precise 0.01 Hz increments of frequency are very valuable.

## New synthesizer features

Мапиal or programmable AM/FM
Use the 86632A modulation section with the $8660 \mathrm{~A} / \mathrm{B}$ main frames to generate pre-
cise AM and FM signals. Built-in oscillators provide the modulation.

## Precise level control

A new idez in syothesizers. 100 dB of level range, 0.05 dB Eaness, and 0.01 dB resolution make the 3320 B and 3330 B unique as synthesizers. Precise level control eliminates the need for external leveling and level monitoring.

## Digital sweep

Most accurate sweepers ever built. A built-in microprocessor allows the $3330 \mathrm{~A} / \mathrm{B}$ and 8660 B to do digital sweeps with synthesizer accuracy.

## Keyboard control

Combination of Hewlett-Packard iostrument and calculator technology. No more twisting knobs with the $3330 \mathrm{~A} / \mathrm{B}$ and 8660 B . Simply enter frequency, level, and sweep parameters through a calculator-like keyboard.

## Flexible remote control

Hewlert-Packand has a new corporate interface and programming structure .. the ASCII Buss. The $3320 \mathrm{~B}, 3330 \mathrm{~A} / \mathrm{B}$ and 8660 B all plug right into the ASCII Buss with a variety of controllers, card readers, calculators and computers . . . plus orher new Hewlett-Packard instruments.

HP Model	Frequency Rango	Frequenay Resolution	Frequanoy Stabllity	Level Range dBm $-80 \Omega$	Leval Aesoluthon	Remoto Control	Other*   Fathures
$\begin{aligned} & 3320 \mathrm{~A} \\ & (\mathrm{Pg} .328) \end{aligned}$	$\begin{gathered} \mathrm{DC}-13 \mathrm{MHz} \\ 5 \text { Ranges } \end{gathered}$	$\begin{gathered} 0.01 \mathrm{~Hz} \text { to } \\ 10 \mathrm{kHz} \text { (4 digits) } \end{gathered}$	$10^{-1} / \mathrm{day}$	$010+13$	3/4 turn Varnier	Freq.	1
$\begin{aligned} & 3320 \mathrm{~B} \\ & (\mathrm{Pg} .329) \end{aligned}$	$D C-13 \mathrm{MHz}$   5 Ranges	0.01 Hz to 10 kHz (4 digils)	$10^{-1} /$ day	-73 to +27	$0.01 d 8$   (4 digits)	Freq. and Ampl.	1
$\begin{aligned} & 3330 \mathrm{~A} \\ & (\mathrm{og} .330) \end{aligned}$	$\mathrm{DC}-13 \mathrm{MHz}$	0.1 Hz (9 digits)	10-0/0ay	0 to +13	3/4 turn vernier	Freq.	$2,5,8$
$\begin{aligned} & 3330 \mathrm{~B} \\ & (\mathrm{Pg} .331) \end{aligned}$	$\mathrm{OC}-13 \mathrm{MHz}$	0.1 Hz   (9 digits)	$10^{-8} /$ day	-87 to +13	0.01 dB   (4 digits)	Freq. and Ampl.	$2,5,6,8$
$\begin{aligned} & 5100 \mathrm{~B} / 51108 \\ & (\mathrm{Pg} .333) \end{aligned}$	DC 050 MHz	$\begin{gathered} 0.01 \mathrm{~Hz} \\ \text { (10 digits) } \end{gathered}$	$3 \times 10-1$ day	+13 fixed		Freq.	4
$\begin{aligned} & \text { 5105A/5110B } \\ & (\mathrm{Pg} .333) \end{aligned}$	$100 \mathrm{kHz}-500 \mathrm{MHz}$	0.1 Hz   ( 10 digits)	$3 \times 10^{-9} /$ day	-6 to +6	8/4 turn pot	froq.	3.4
8600A/86601A/ 86632 A ( Pg .340 )	10 kHz to 100 MHz	$\begin{gathered} 1 \mathrm{~Hz} \\ \text { (9 digits) } \end{gathered}$	$3 \times 10^{-8} /$ day	-146 to +13	1 dB steps plus Vernier	Freq. and Ampl.	7, 8, 3
8660A/86602A/ 86632 A ( Pg .340 )	10 kHz to 100 MHz	$\begin{gathered} 1 \mathrm{~Hz} \\ (\mathrm{~S} \text { digils) } \end{gathered}$	$3 \times 10^{-8} / \mathrm{day}$	-146 to +13	I dB steps plus Vernier	Freq. and Ampl.	7,8,9
$8680 \mathrm{~B} / 85601 \mathrm{~A} /$ 85632A (Pg. 340 )	1 MHz to 1300 MHz	$\begin{gathered} 1 \mathrm{~Hz} \\ (10 \text { digits) } \end{gathered}$	$3 \times 10^{-8} /$ day	$-14610+13$	1 dB steps olus Vernier	Freq. and Ampl.	$5,7,8,9$
$8650 \mathrm{~B} / 8660 \mathrm{~A} /$ 86632 A (Pg. 340)	1 MHz to 1300 MHz	$\begin{gathered} 1 \mathrm{~Hz} \\ \text { (10 digits) } \end{gathered}$	$3 \times 10^{-8} /$ day	-146 to +13	I dB sleps plus Vernier	Freq. and Ampl.	5, 7, 8,9

*Other fealures
${ }^{1} 10^{-z} /$ day Irea. stability optional
${ }^{2} 10^{-9} /$ day freq. stability optional

- external phase modulation
- internal search oscillator
s digital freq. sweep
s digital ampl. sweep
' internal AM/FM
- external AM
$93 \times 10^{-9} /$ day stability opt. 001

FREQUENCY SYNTHESIZER . 01 Hz to 13 MHz frequency standard/test osc. Models 3320A, 3320B


## Description

The 3320A/B Frequency Synthesizer has the frequency accuracy, stability, and cesolution demanded by many of today's exacting applications. The ease and flexibility' of adding greater stability means the $3320 \mathrm{~A} / 8$ can be tailored to your needs as they emerge. Spectral purity and low signal-to-phase noise complement the frequency qualities of the $3320 \mathrm{~A} / \mathrm{B}$.
The 3320 B is more than a synthesizer. It offers precise level conrrol, superior frequency response, low harmonic distortion and high poner output.
Tro choices of digital remote control afford great Aexibility for today's system applications. High precision in both frequency and amplitude means that expensive system monitoring is unnecessary.

## Frequency

The 3320A/B Frequency Syathesizer has a broad frequency range of 0.01 Hz to 13 MHz in seven frequency ranges.
Three digits plus a ten-turn two-digit continuous vernier, plus $30 \%$ overrange capability, gives the $3320 \mathrm{~A} / \mathrm{B}$ one part in $10^{6}$ frequency resolution across its total frequency range.

## Amplitude

The 3320A has a maximum one volt fims into 50 ohms output ( +13 dBm ) with a continuous +13 dBm 100 dBm amplitude vernier
The 3320B ieatures a four-digir leveling loop with a 0.01 dB level resolution of a calibrated ourput from +26.99 dBm to $-69.99 \mathrm{dBm}(-73.00 \mathrm{dBm}$ under semote concrol).
Frequency response of $\pm 0.05 \mathrm{~dB}$ over the range of 10 Hz to 13 MHz , and level accuracy of $\pm 0.05 \mathrm{dBm}$ absolute at 10 kHz , complement the level capability of the 3320 B .

## Programmability/Remote Control

The $3320 \mathrm{~A} / \mathrm{B}$ is a programmable signal source. Digital remore concrol capability may be purchased installed in the
instrument, or may be added later if the need arises.
The 3320 A with its Option 003 allows pasallel BCD remote control of frequency only. The first digit of the frequency vernier and the frequency range may be controlled digitally, as well as the main frequency digits.

The 3320 B has two remote control aptions. Both options allow full coatrol of all functions except the last vernier digit and the line switch. Option 00t is paraliel BCD remote control capability. Option 007 is a unique bit-parallel/word-serial ASCII programming option. This option is advantageous where several 3320B's need to be controlled. since only one programming device is needed. The ASCII programming option has eight input lines, thus allowing direct interiace to the HP 3260A Marked Card Programmer. phoro reader, or any other eight-bit controller. This buss line programming means a saving of computer interface slots and a simplification of soft. ware.

## Specifications, 3320A/B

Frequency range: 0.01 Hz to 13 MHz in 7 ranges.
Frequency ranges: $10 \mathrm{MHz}, 1000 \mathrm{kHz}, 100 \mathrm{kHz}, 10 \mathrm{kHz}$, $1000 \mathrm{~Hz} ; 100 \mathrm{~Hz}$ and 10 Hz (optional). $30 \%$ overrange on all ranges.
Frequency resolution:

Range	Vernier Out   (losal or remote)	Vernier In   (logal)	Vernlor In   (remota)
10 MHz	10 kHz	10 Hz	1 kHz
1000 kHz	1 kHz	1 Hz	100 Hz
100 kHz	100 Hz	0.1 Hz	10 Hz
10 kHz	10 Hz	0.01 Hz	1 Hz
1000 Hz	1 Hz	1 mHz	0.1 Hz
100 Hz	0.1 Hz	0.1 mHz	0.01 Hz
10 Hz	0.01 Hz	0.01 mHz	0.001 Hz

## Frequency accuracy

Vernier out: $\pm 0.001 \%$ of setting for $6 \mathrm{mo}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. Versler in: $\pm 0.01 \%$ of range for $6 \mathrm{mo}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

## Frequency stability

Long term: $\pm 10$ parts in $10^{\circ}$ of setting per year (vernier out) with ambient temperature reference. Optional high stability crystal reference oven available (Option 002).
Signal-to-phase noise (integrated): $>40 \mathrm{~dB}$ down in 30 kHz band, excluding $\pm 1 \mathrm{~Hz}$, centered on carrier. 10 MHz range, vernier out. Improves on lower frequency ranges.
Harmonic distortion: with output frequencies $>0.1 \%$ of range
at full output amplitude, any harmonically related signal will be less than the following levels.
-60 dB with output from 5 Hz to 100 kHz .
-50 dB with oulput from 100 kHz to 1 MHz .
-40 dB with output from 1 MHz to 13 MHz .
Spurious: $>60 \mathrm{~dB}$ down.
internal frequency standard: 20 MHz crystal.
Phase locking: the $3320 \mathrm{~A} / \mathrm{B}$ may be phase locked with a 200 mV to 2 V rms signal that is any subhatmonic of 20 MHz .
Rear panel output: front or rear panel output is standard.
Auxillary outputs
Tracking outputs: 20 MHz to 33 MHz offset signal. $>100 \mathrm{mV} \mathrm{rms} / 50 \Omega$.
1 MHz reference octput: $220 \mathrm{mV} \mathrm{ms} / \mathrm{son}$ ( $>\mathrm{dBm} / 50 \Omega$ ).
Low level output: same frequency as main ouiput but remains between 50 mV rms and 158 mV rms (into 500 ) depending on main ourput level setting.
3320A Amplitude Section
Amplitude: maximum $1 \mathrm{v} \mathrm{cms} \pm 10 \%$ into sos.
Amplitude range: 0 dBm to +13 dBm range through $3 / 4$ turn front panel control (not programmable).
Frequency response: $\pm 2 \mathrm{~dB}$ over rotal range.
Output impedance: 500 (759, Option 001)

## 3320 B Amplitude Section

Amplitude range: +26.99 dBm ( $1 / 2$ watt) to -69.99 dBm ( -93.00 dBm under remore control) into 508. $(+26.99$ $\mathrm{dBm}=5 \mathrm{~V}$ rms into 50 n ).
Amplitude resolution: 0.01 dB .
Frequency response ( 10 kHz reterence):

10 Hz		13 MHz
	$=0.05 \mathrm{d8}$	
	$=0.1 \mathrm{~dB}$	$-23.00 \mathrm{dBm}$
$=0.5 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$	- 53.00 dBm
	$=0.4 \mathrm{~dB}$	

Amplitude acturacy (absolute): $+26.99 \mathrm{dBm} . \pm 0.05 \mathrm{~dB}$ at 10 kHz and $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$.
Output impedance: 50§ (750, Option 001 ).

## Options

Option 001 (3320A/B) 75 ohm
Amplitude range ( 3320 B only): +24.99 dBm to -69.99 $\mathrm{dBm}(-75.00 \mathrm{dBm}$ under remote control) into 75 s.$$
Option 002 (3320A/B) crystel oven*
5 MHz crystal in temperarure stabilized oven.
Long term stability: $\pm 1$ part in $10^{3} /$ day; $\pm 1$ part in $10: / \mathrm{mo}$.
Frequency accuracy: $\pm 1$ part in $10^{\circ}$ of setting per mo. For
field installation order accessory kit HP 11237 A .
Option 003 (3320A only) BCD remote control*
Allows digital remote control of frequency only on 3320A. The most significant digit of the vernier may be programmed, thus giving four digits, plus $30 \%$ overrange, control of frequency in seven ranges (two are optional).

Frequency switching and setting time: $\pm 0,1 \%$ or range, is $\mathrm{ms} ; \pm 0.001 \%$ of range. 60 ms .
For fieid installation order accessory kit HP 11238A.
Option 004 ( 33208 only) BCD remote control*
Allows digital remore control of frequency and amplitude.
**Four digits of frequency, overrange, frequency range,
Vernier In/Out, four digits of amplitude, and leveling loop response times are all controlled digitally.
Frequency switching and settling time: $\pm 0.01 \%$ of range, 15 $\mathrm{ms} ; \pm 0.001 \%$ of range, 60 ms .
Amplitude switching and setting time: <1.5 s to rated ac. curacy.
Option 007* (3320B only) ASCII remote control
Allows bir-parallel wrord-serial remote control of all funcrions. **A 3320 B with this option will recognize an address and then accept instructions in a serial fashion. Instructions are a seven-bit parallel ASCII code. Due to the addressing feature, up to ten 3320B's (with this option) may be pro. grammed from one'programmer. The HP 3260A Marked Card Programmer may be used as a programmer for this option. This option requires eight digital imput lines for full control.
**Seven of the eight are programming input lines and one is a data command line.

Full digital isolation is standard with this option.
Logic Level Requirements for all Digital Remote Control Options.

8tale	Requlrements
"Low" (logical "1")	$0 \vee$ to $0.4 \vee(5 \mathrm{~mA}$ max.) or contact closure to ground through < 80 ohms.
"High" (logical "0")	$+2.4 \vee$ to $+5 \vee$ or removal of contact closure to ground.

Option 006 (3320A/B) $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$ Ranges*
Adids two lower frequency range, 100.0 Hz and 10.00 Hz , yielding greater resolution for lon' frequency outputs (see resolution section of specifications). These two ranges are fully programmable if digital remote options are installed.

For field installation, order accessory kit HP 11240 A .

## General 3320A/B

Operating temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Power requirements: 115 V or $230 \mathrm{~V} \pm 10 \%$, 18 Hz to 63 Hz , 110 VA max, ( 400 Hz operation on special basis).
Weight
3320A: 32 lbs ( $14,4 \mathrm{~kg}$ ): shipping, $47 \mathrm{lbs}(21,3 \mathrm{~kg}$ ).
33208: 34 lbs ( $15,4 \mathrm{~kg}$ ) ; shipping, $49 \mathrm{lbs}(22,2 \mathrm{~kg}$ ).
Dimensions; $163 / /^{\prime \prime}$ wide, $193 / 8^{\prime \prime}$ deep. $5.7 / 32^{\prime \prime}$ high ( 425 x $491,5 \times 132,6 \mathrm{~mm}$ ).
Accessories furnished: rack mounting kit.
Prices: HP 3320A, $\$ 1900$ : Option 001, 75 0 output, N.C. Option 002, crystal oven, add $\$ 290$; Option 003, BCD remote control, add $\$ 300$; Option $006,100 \mathrm{~Hz} / 10 \mathrm{~Hz}$ ranges, add $\$ 200$.
HP 3320E, \$2550: Option 001 758 outpue. Option 002, crystal oven, add 5290 ; Option 004, BCD remote control, add $\$ 400$; Option $006,100 \mathrm{~Hz} / 10 \mathrm{~Hz}$ ranges, add $\$ 200$. Option 007, ASCII remote control, add $\$ 595$.
Kit for interfacing to Hewlett-Packard 2100 Series computers. HP 11232A for interfacing 3320B Option 007.

## Useful accessories

HP 11048C, 50 feedthrough, \$1s; HP $11094 \mathrm{~B}, 75 \Omega$ feedthrough, $\$ 15$; HP 3260A Marked Card Programmer al. lon's the 3320 B with ASCII remote to be easily programmed by a punched or marked card.

[^31]

## Description

Two new frequency synthesizers, the 3330 A and 3330 B , have a stability of $\pm 1 \times 10^{-8}$ per day, -50 dB signal-to-phase noise, with a conseant resolution of 0.1 Hz up to 13 MHz . These new signal sources have read-only-memories (ROM's) buitt in for control of all instrument operations. Four-digit amplitude control to a resolution of 0.01 dB oves a 100 dB range is srandard on the Model 3330B. The 3330A has a manual control for amplitude, and oupput is leveled to $\pm 0.5$ dB. Both instruments are programmable except for amplitude of the Model 3330A.

Operation of both instruments is controlled from an easy. to-use keyboard. Solid-state displays show frequency and amplitude on the Model 3330B, and frequency only on the Model 3330A. Nine digits of frequency are displayed on both instruments, and four digits of amplitude on the Model 3330 B .
Spectral purity not normally associaced with frequency synthesizers, is a feature of borh units. Spurious is $>70 \mathrm{~dB}$ below the catrier and harmonics are $>60 \mathrm{~dB}$ to 40 dB below the carrier, depending upon the frequency setting. As sweepers, the instruments use digital sseeping for linearity. Either single or continuous sweeps may be set up. Parameters such as center frequency, frequency step, time per srep, and the number of steps go into the memory. then are executed by pressing a single button. The ROM operates the sweep as set up until told to stop. Many of the sweep parameters can be changed while the instrument is sweeping. The Model 33308 sweeps amplitude in steps as small as 0.01 dB . The amplitude can be stepped at the end of each frequency sweep cycle to produce a family of curves.
Both instruments are fully programmable. Both models can be amplitude modulated using an external signal of up to 100 ! Hz .

Specifications, 3330A/B
Frequency range: 0.1 Hz to $13,000,999.9 \mathrm{~Hz}$.
Frequency resolution: 0.1 Hz ( 8 digits + overrange).
Frequency stablity

## Long term

$\pm 1 \times 10^{-s}$ of frequency per day.
$\pm 1 \times 10^{-i}$ of fequency per month.

## Temperature

$\pm 1 \times 10^{-8}$ of frequency at $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$.
$\pm 1 \times 10^{-i}$ of frequency at $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

Largest diglt ohanged	$\begin{aligned} & 0.1 \mathrm{~Hz} \\ & \text { or } 1 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 10 \mathrm{~Hz} \\ \text { or } 100 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 1 \mathrm{kHz} \\ \text { or } 10 \mathrm{kHz} \end{gathered}$	$\text { er } 10 \mathrm{MHz}$
Switohlne and Settling Tlrae	$\begin{aligned} & <1 \mathrm{~ms} \text { to } \\ & \text { within } \\ & 500 \mu \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & <1 \mathrm{~ms} \mathrm{to} \\ & \text { within } \\ & .05 \mathrm{~Hz} \end{aligned}$	$<1 \mathrm{~ms}$ to within 5 Hz . $<50 \mathrm{~ms}$ to within 0.01 Hz	$<1$ ms to within $500 \mathrm{~Hz}<50 \mathrm{~ms}$ 10 within) Hz

FREQUENCY STEP. NUMBER OF STEPS, TIME PER STEP, and SWEEP DIRECTION.
Sweep width: the product of STEP SLZE and NUMBER OF STEPS
Step size: continuously adjustable in 0.1 Hz increments.
Step accuracy: $\pm 1 \times 10^{-8}$ per day for standard reference crystal.
Number of steps: 10. 100 , or 1000
Time per step: $1 \mathrm{~ms}, 3 \mathrm{~ms}, 10 \mathrm{~ms}, 30 \mathrm{~ms}, 100 \mathrm{~ms}, 300 \mathrm{~ms}$, 1000 ms , and 3000 ms .
Direction of sweep: up, borh, dow'n.
Single sweep: initiated by momentary pushbutton.
Continuous sweep: initiated by momentary pushbutton.
Manual sweep: accomplished by holding down the FREQ^ or $\mathrm{FREQ} \downarrow$ keys. Display will follow outpur.
Sweep output: stepped de valtage proportiona! to sweep position, 0 to +10 V .
Accuracy: $\pm 0.2 \%$ of sull scale.
Linearity: $\pm 0.1 \%$ of full scale.
Digital outputs
Step count: 0 to 1000 count on 12 BCD (1-2.4-8) lines to indicate sweep position.
Sweep status: line to indicate when instrument is sweeping.
Step ready: indicates instrument has spent the selected time per step and is ready to go to the next step.
Sweep modiflcation (contInuous): during a continuous sweep, the STEP SIZE, CENTER FREQUENCY, SWEEP DIRECTION, and TIME PER STEP may be changed with. out stopping the sweep.
Center frequency modifitation: accomplished by pressing FREQ^ or FREQ ${ }^{4}$.
Frequency step: to widen or narrow the sweep width, the frequency step size may be expanded or contracted by factors of 2 or 10 . The keys labeled FREQ STEP $\times 2$, FREQ STEP $\div 2$, FREQ STEP $\times 10$ and FREQ STEP $\div 10$ may be pressed.
Sweep modification (single): during a single sweep, the TIME PER STEP and DIRECTION SWEEP may be changed without stopping the sweep.

## Amplitude: <br> 3330A amplitude section

maximum 2 V rms $\pm 10 \%$ open circuit.
maximum l V rms $=10 \%$ inco $50 \Omega$.
Amplitude range: -0 dBm to +13 dBm range through $3 / 4$ turn front panel control (not programmable).
Frequency response ( 10 kHz reference): $\pm 0.5 \mathrm{~dB}$ across total range.
Output impedance: $50 \Omega$ ( $75 \Omega$ Option 001 ).
Amplitude modulation: requires external modulation source. Rear panel BNC.
Modulating signal: de to 100 kHz .
Modulation depth: 0.95 V rms modulating signal for $95 \%$ modulation depth. ( $0.0 \mathrm{l} \mathrm{V} \mathrm{mms} / 1 \%$ depth.)

## Amplitude: <br> 33308 amplitude section

maximum 2.1 V cms into open circuit.
maximum 1.05 V ims iato $50 \Omega$.
Amplltude range: +13.44 dBm to -86.5 S dBm into $50 \Omega$.
Amplitude resolution: 0.01 dB .
Output impedance: $50 \Omega$ ( $75 \Omega$ Option 001 ).
Dlsplay: four digit readout in dBm with reference to $50 \Omega$.
Leveled frequency response ( 10 kHz reference) $10 \mathrm{~Hz}-13$ MHz.*
+13.44 dBm to $-16.55 \mathrm{dBm}: \pm 0.05 \mathrm{~dB}$
-16.55 dBm to $-36.55 \mathrm{dBm}: \pm 0.1 \mathrm{~dB}$
-36.55 dBm to $-66.55 \mathrm{dBm}: \pm 0.2 \mathrm{~dB}$
-66.65 dBm to $-86.55 \mathrm{dBm}: \pm 0.4 \mathrm{~dB}$

- Add $=0.5 \mathrm{~d}$ for leveling off.

Amplitude attenuator accuracy: $\pm 0.02 \mathrm{~dB} / 10 \mathrm{~dB}$ step (at 10 kHz ) of attenuation down from maximum output.
Amplitude accuracy (absolute): $\pm 0.05 \mathrm{~dB}$ at 10 kHz and $+13.44 \mathrm{dBm}\left(15^{\circ} \mathrm{C} \pm 9^{\circ} \mathrm{C}\right)$. (For absolute accuracy at other frequencies and amplitudes, add 0.05 dB to the leveled frequency response specification, plus the attenuator accuracy specification.)
Amplitude modulatlon: requires external modulation source. Rear panel BNC. ALC switch must be in SLOW position. Modulating signal: 100 Hz to 100 kHz .
Modulation depth: 0.95 V rms modulating signal for $95 \%$ modulation dapth.
Digital sweeping of amplitude ( 3330 B only): accomplished by entering and setting the CENTER AMPLITUDE, an AMPLITUDE STEP, NUMBER OF STEPS, TIME PER STEP and SWEEP DIRECTION.
Type: linear and symmetrical about the center amplitude.
Sweep width: product of the STEP SIZE and NUMBER OF STEPS.
Step size: 0.01 dB to 99.99 dB in 0.01 dB increments.
Number of steps: 10,100 , or 1000 .
Time per step: $30 \mathrm{~ms}, 100 \mathrm{~ms}, 300 \mathrm{~ms}, 1000 \mathrm{~ms}, 3000 \mathrm{~ms}$. Direction of sweep: up, both, down.
Single sweep: momentary pushbutton. Display follows output.
Continuous sweep: momentary pushbutton. Display of center amplitude or step.
Manual sweep: accomplished by holding down the AMPL $A$ or AMPL $\downarrow$ keys. Display will follow output.
Sweep ourput, digital outputs, sweep modification (continu. ous). sweep modification (single), all the same as with frequency sweep.

## Digital remote control

The 3330 A and 3330 B are programmable on a staodard basis. The 3330 B allows full programming of frequency, amplitude, sweeping. The 3330 A has full programming of frequency and all frequency sweeping controls, but not amplitude.

Each key, slideswitch position, and control has a seven-bit parallel ASCII code assigned to it. Programming is accomplished by sending the 3330A/B a series of seven-bit codes (instructions). Before the instrument will accept instructions, it must be addressed. This is done by preceeding the first instructions with the ASCII code for the instrument being addressed. The address of a $3330 \mathrm{~A} / \mathrm{B}$ is set at Octal " $044^{\prime \prime}$ by the manufacturer but may be easily changed by the user.

The addressing capability of the $3330 \mathrm{~A} / \mathrm{B}$ allows up to 15 units to be connected in parallel on the ASCII buss. Up to 63 different addresses are available,
The HP 3260A Marked Card Programmer may be used as a programmer for one or more $3330 \mathrm{~A} / \mathrm{B}$ 's.
Miming: maximum of $310 \mu \mathrm{~s}$ per digit.
Maximum of 1 ms to enter and initiate program control codes.
Maximum of 2.5 ms to enter and initiate sweep.
Input control lines: 7 "Program Data" lines. 1 "MRE"*
1 "Data Strobe" line
1 "Remote Enable" line
1 "Step Inhibit" line (use not required)
Output control lines: 1 "Ready for Data"
1 "Data Accepted"
14 "Sweep Parameter" lines
(use not required)
Isolation: the input and output control lines on the standard $3330 \mathrm{~A} / \mathrm{B}$ do not have isolated grounds with respect to output signal ground. For isolation of these digital grounds, order Option 004.

[^32]Logic level requirements:

8talo	Hequlrements
"Low"   (logical "l")	$0 \vee$ to $0.4 \mathrm{~V}(5 \mathrm{~mA}$ max) or contact closute to ground   through $<80$ ohms.
"high"   (logical "0")	+2.4 V to +5 V or removal of conlact to ground.

## Options

Option 001, 75 Ohms • I V RMS
Attenuation and output referenced to $75 \Omega$.
Amplitude range
3330A: +11 dBm to -2 dBm .
$3330 \mathrm{~B} ;+11.25 \mathrm{dBm}$ to -88.74 dBm . (Factory installa. tion only.)
Option 002, High Stability Crystal Oven
Frequency stability
Long term:
$\pm 1 \times 10^{-9}$ per day.
$\pm 2 \times 10^{-3}$ per month.
Temperature:

$$
\pm 1 \times 10^{-9} \text { cotal frequency at } 25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}
$$

$\pm 1 \times 10^{-8}$ total of frequency at $25^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Frequency adjustments: same as standard instrument.
Option 003. Deletion of Crystal Oven
20 MHz ambient temperature crystal reference oscillator.
Frequency stability: $\pm 10$ parts in $108 / \mathrm{yr}$.
Frequency adjustments: reas panel 1 turn por or rear panel voltage control inpur for $30 \times 10^{-8}$ maximum control.
Option 004, Isolated Digital Input. (Factory installation only.)
With this option, the digital input lines are electrically isolated from the signal ground.

DC isolation: $\pm 250 \mathrm{~V}$.
AC isolatlon: $>30 \mathrm{~dB}, 0$ to 1 MHz .
Option 005, 5 V RMS - 50 Ohm Oukput
This option gives the $3330 \mathrm{~A} / \mathrm{B}$ a $1 / 2$ watt output.
Amplitude range
3330A: 27 dBa to 14 dBm into 50 ohms.
33308: +26.99 dBm to -73 dBm into 50 ohms.
All other specifications remain unchanged.

## General

Operating temperature: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Turn on time
Application of power to "On": $<20$ min to within $\pm 1 \times 10^{-}$of the final frequency
"Standby" to "On": <1s s to full specifications.
Power requirements: 115 V or $230 \mathrm{~V} \pm 10 \%$, 48 Hz to 63 Hz , ( 400 Hz line frequency operation on special basis), $<20 \mathrm{~W}$ standby. <200 W on.
Weight 3330A: $49 \mathrm{lbs}(22,1 \mathrm{~kg})$; shipping $58 \mathrm{lbs}(26,4 \mathrm{~kg})$. 3330B: 53 lbs ( 22.6 kg ); shipping $63 \mathrm{lbs}(26,8 \mathrm{~kg}$ ).
Dimenstons: $163 / 4^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 211 / 2^{\prime \prime}$ deep ( $426 \times 178 \times$ 547 mm ).
Price: 3330A, $\$ 3100,3330 \mathrm{~B}, \$ 6000$.
Option 001, $75 \Omega$ - I V Output, no charge. Option 002. Crystal Oven, add $\$ 500$. Option 003. Deletion of Oven, less $\$ 200$. Option 004, Isolated ASCII, add $\$ 225$. Option 00s.s V . 50 O Output, add $\$ 250$.

## MARKED CARD PROGRAMMER

Reads marked and punched cards Model 3260A


## Description

The Hewlett-Packard Model 3260A is an eight channel optical mark sense card reader. The HP 3260 A Marked Card Programmer detects pencil marks on hand-fed cards and gives a voltage output corresponding to the presence of marks in the eight columns. Punched holes are sensed the same as pencil marks. The TTL logic level output is " 1 " state low. The 3260A has its own internal power supply and card drive motor for maximum versatility. Cards are stacked in the output tray from the bottom so that the original card order is alw'ays retained.

## General

Weight: ner, $8 \mathrm{lb}(3,7 \mathrm{~kg})$; shipping, $11 \mathrm{lb}(5 \mathrm{~kg})$.
Power: 120 V or $240 \mathrm{~V}+5 \%-10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz},<8$ VA when ide, <9 VA when reading a card.
Dimensions: $5 \cdot 1 / 3^{\prime \prime}$ wide. $31 / 2^{\prime \prime}$ high, $111 / 4^{\prime \prime}$ deep ( 134.5 x $88,9 \times 285,8 \mathrm{~mm}$ ).
Temperature: operating range, $0^{\circ}-55^{\circ} \mathrm{C}$.
Cable: s it detachable cable supplied with Hewlect-Packard ASCII bus connector. Connector is in stackable housing for parallel connection ro multiple devices.

## Cards

Furnlshed: 100 program cards (HP Part Number 9320 2886). Dimensions are $73 / \mathrm{s}^{\prime \prime} \times 31 / 4^{\prime \prime}(187,2 \times 82,6 \mathrm{~mm})$,

Avallable: package of $2000, \$ 15$; package of $10,000, \$ 60$. Output tray extends for use with 11 inch cards.
Price: HP 3260A, $\$ 750$.


## Advantages:

Frequencies from dc to 500 MHz
Remote programming
Switching speed typically $20 \mu \mathrm{~s}$
Proven reliability

## Applications:

Automatic testing of frequency-sensitivity derices
Communications systems
Doppler radar
The Models $5105 \mathrm{~A} / 5110 \mathrm{~B}$ and $5100 \mathrm{~B} / 5110 \mathrm{~B}$ together provide complere frequency coverage from dc to 500 MHz . The instruments both use direct synthesis to achieve their very fast switching speeds and high spectral purity. This technique translates the stability and spectral purity of a reference source to the selected output and in addition provides a fail-safe output. A precision high stability 1 MHz quactz oscillator is provided, or an external 1 MHz or $5 \mathrm{MHz}_{2}$ standard may be used. Both units provide pushbutton or remote frequency selection and include a selectable search capability. The 5105 A has 0.1 Hz steps from 100 kHz to 500 MHz in addition to a variable outpur level and phase modulation. The 5100 B provides 0.01 Hz steps from de to 50 MHz (dc to 100 kHz from separate connector). The 5110 B Synthesizer Driver supplies 22 fixed frequencies requited to input to the 5105 A or 5100 B . Borh
units or any combination of them up to four may be driven by the 5110 B .

## Continuous tuning, sweep, FM

For both units a search oscillator provides continuously variable frequency selection over the range of any one column except the left-hand two. Operation of a front-panel control or application of an external do voltage tunes the search oscillator over the complete frequency range of the selected digir (column). One of the adrantages afforded by continuous control is the easy identifcation of an unknown frequency by beating it against the synthesizer output.
The search oscillator can be frequency modulated from an external source (sinewave) at a maximum rate of 1 kHz while retaining the voltage control calibration.

## Remote operation

The $5105 \mathrm{~A} / 5110 \mathrm{~B}$ and $5100 \mathrm{~B} / 5110 \mathrm{~B}$ Synthesizers provide great control flexibility of a precision frequency source over a range grearer than ever before available. Any frequency or search oscillator position available from the keyboard can be remotely selected and can be rapidly switched: in $20 \mu$ s, rypically.

Rear panel connectors on the $5105 \mathrm{~A} / 5100 \mathrm{~B}$ provide pins corresponding to each front panel pushbutton, a ground connection, and a - 12.6 volt line for use in remote programming. A combination of remote and local programming may be used, if so desired. For parallel BCD commands use HP 2759 B Programmer.

No actual contact closure, such as a selay, is required. The -12.6 volts dc may be applied to the selected pin by electronic means.

## Fast switching

The remarkably fast switching speed, valuable for such tasks as automatic digital frequency tracking, is one of the significant advantages of the direct synthesis method.

Figure 1 shows (upper trace) the sios $A / 5110 B$ output frequency switched between 399.8 MHz and 400.2 MHz with 400 MHz subtracted to display switching in greater detail. The sweep is $25 \mu \mathrm{~s} / \mathrm{cm}$. The lower trace is that of the switching waveform applied to the synthesizer. The $5100 \mathrm{~B} / 5110 \mathrm{~B}$ displays similar performance up to 50 MHz .

figure 1. Synthesizer switching speed (25 $\mu \mathrm{s} / \mathrm{cm}$ ).

## Low noise performance

To achieve the excellent low-noise output specified for the Hewlett-Packard synthesizers over the full range requires the utmost care in design to identify and minimize noise sources followed by extensive testing at each srage of manufacture.

Figure 2 shows typical phase noise distribution for both synthesizers. The ratio of ourput signal to single-sideband phase noise (in a 1 Hz bandwidth) is plotred against frequency of offset from the signal.

The noise performance reflected in this plor is very good for instruments as complex and versatile as the $5105 A$ and sI00B. It also demonstrates their suitability for applications where spectrum requirements are critical.


Figure 2. Composite phase noise plot for Hewlett•Packard synthesizers.

## Spectral purity and stability

Particular care has been exercised in the design of the Hewlett-Packard synthesizers to insure a very clean output signal is provided over the entire frequency zange of the instruments. A high order of spectral purity is essential for accurate doppler measurements, microwave spectroscopy, nafrow band telemerry, communications and similar applications. The careful design and modulat construction of the syothesizers make it possible to obtain output signals with spurious content at least 90 dB below the selected output in the case of the 51008 . The 5105 A spurious signals are at least 70 dB below its output over the entire 500 MHz range.

Many applications require that a signa! be multiplied into the microwave region. If the frequency multiplying device is broadband, the ratio of toral sideband power to signal power increases as the squate of the multiplying factor. Since the toral power in a frequency modulated wave is constant, the increased sideband power must come from the carrier. The spectrum of the signal begins to "spread" since the increased sideband amplitude causes the intermoduation between sidebands to become appreciable. It is desirable, then, that the original signal have the highest possible signal to phase noise ratio.

The specified values in the table on the next page for rms Fractional Frequency Deviation at various averaging times and at various output frequencies represent the standard deviation of the short term frequency instability due to randorn noise. For example, the value given for one-second averaging at an output of 500 MHz is $1 \times 10^{-11}$. This corresponds to a standard frequency deviation of 0.0050 Hz . In other words, $68.3 \%$ of all observed frequency variations for measurement times of one second will differ from the carrier by less than plus of minus that amount. $99.7 \%$ of all frequency variations will differ from the carrier by less than $=0.0150 \mathrm{~Hz}$.

## Modular construction

Modular construction has been used throughout the synthe. sizers and driver. The modular concept enables the system to meet stringent demands regarding spurious signals since the isolation that it affords minimizes spurious coupling. It also enhances serviceability and reliability. Careful design and qual. ity control insure that all modules are interchangeable from one instrument to another.

## Synthesizer driver, 5110B

The HP $3110 B$ Synthesizer Driver supplies the HP 5100B and 5105 A Synthesizers with 22 fixed, spectrally pure signals derived from a 1 MHz precision quartz oscillator.
The 1 MHz quartz oscillator which is the source for all output frequencies of the synthesizer driver is stable to 3 parts in $10^{\circ}$ per 24 hours. To help maintain this excellent crystal stability, oven circuits are energized any time the instrument is connected to the power line. A circuit check meter allows verification of correct oven operation.

Where special requirements make it necessary that synthesized frequencies be derived from an external frequency standard, a rear panel connectot on the 5110 B accepts a 1 MHz or 5 MHz signal. The output spectral purity is partially dependent on the purity of the cemote frequency standard.

## Specifications

Specifications for the 5105A and 5100B Synthesizers and s110B Synthesizer Driver are given on the following page.

Specifications
51008/51108 and 5103A/51108 Synthesizers

Speolfipations	6505A/51108							51008/51108				
Output frequency	100 kHz 10500 MHz							de to 50 MHz				
Digital frequancy selection	0.1 Hz through $100 \mathrm{MH}_{2}$ per step. Selection by front panel pushbutton or by remote switch closure. Any change in frequency may be accomplished in $20 \mu s$ typically.							0.01 Hz through 10 MHz per step. Selection by front panel pushbution or by remote switch closure. Any change in frequency may be accomplished in $20 \mu \mathrm{~s}$ tyoically.				
Oulpul voltage	Fixed: $0 \mathrm{dBm}=1 \mathrm{dBm}$ into a 50 ohm resistive load. Variable: -6 dBm to +6 dBm into a 50 ohm resistive load.							1 valt rms $\pm 1 \mathrm{~dB}$ from 100 kHz to 50 MHz . 1 volt rms +2 dB . -4 dB from 50 Hz to 100 kHz , into a 50 ohm resistive load, Nominal source impedance is 50 ohms. 15 mV rms minimum oden circuit dc to 100 kHz , at separate rear connector, source impedance of 10 K ohms with shunt capacitance 70 pF .				
Search oscillator	Provides continuous variable frequency selection with 8 seleclable incremental range of L J Hz through 10 MHz . Manual or externat voltage ( -1 to -11 volts) control with linearity of $\pm 5 \%$. The search oscillater may be externally swept up to a 1 kHz sinewave rate.							Provides continuously variable frequency selection with an incremental range of 1.0 Hz through 1 MHz . Manual or external voltage ( -1 to -11 volts) control with linearity of $=5 \%$. The search oscillator may be externally swept up to a 1 kHz sinewave rate.				
Phase modulation	(rear panel input) $\pm 3$ radians maximum deviation; do to 1 MHz rale.											
Signal-to-phase noise ratio*	Measured in a 30 kHz band centered on the signal (excluding a 1 Hz band centered on the signal) is greater than:							Greater than 54 dB in a 30 kHz band centered on the signal (excluding a I Hz band centered on the signal).				
	Output frequency - MHz				50	100	500					
	Ratio-dB				48	48	40					
Signal-to-AM noisa ratio	(Above 100 kHz ) : Greater than 74 dB in a 30 kHz band.											
RMS fractional frequency deviation (with a 30 kHz noise bandwidth) using 5110 B internal oscillator*	Averaging lime	Output Frequency						Output Frequency				
		1 MHz			100 MHz	50	MHz	1 MHz	5 MHz	10 MHz	50 MHz	
	10 ms 15	$\begin{aligned} & 1 \times 10^{-1} \\ & 2 \times 10^{-8} \end{aligned}$			$1 \times 10^{-9}$ $2 \times 10^{-11}$	$\begin{aligned} & 6 x \\ & 1 x \end{aligned}$		$\begin{aligned} & 3 \times 10^{-1} \\ & 3 \times 10^{-10} \end{aligned}$	$\begin{aligned} & 6 \times 10-1 \\ & 6 \times 10^{-11} \end{aligned}$	$\begin{aligned} & 3 \times 10^{-9} \\ & 3 \times 10^{-11} \end{aligned}$	$\begin{aligned} & 6 \times 10^{-10} \\ & 1 \times 10^{-11} \end{aligned}$	
Spurious signals	Non-harmonically related signals are al least 70 dB below the selected frequency							Non-harmonically related signals are at leasl 90 dB below the selected frequency				
Harmonic signals	25 dB below the selected frequency, (applicable to fixed output when terminated in 50 ohms ).							30 dB below the selected frequency (when terminated in 50 ohms).				
Dimensions	$163 / 4$ " wide, $163 / 8{ }^{\prime \prime}$ deep, 15-11/16" high ( $425 \times 416 \times 398 \mathrm{~mm}$ ), incl. 51108											
Price	model 5105A, \$11,000; model 5110B, \$4500							model $5100 \mathrm{~B}, \$ 8750$; model 51108,84500				

- With the 51100 Driver internal frequency standard. When the $5110 B$ Orlver utlizes an external frequency standard, this will alfect the stablity and spectral gurliy of the output. Performance data stated above are based on the excelient internal freouency standard in the 5110 .


## 5110 B internal 1 MHz Quartz Oscillator

Aging rate: less than 3 parts in $10^{\circ}$ per 24 hours.
Stability: as a function of ambient temperature: $\pm 2 \times 10^{-10}$ per ${ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. As 2 function of line voltage $\pm 5 \times 10^{-15}$ for a $\pm 10 \%$ change in line voltage (rated at 115 or 230 volts rms line voltage).

Output, buffered: available at rear panel ( $1 \mathrm{~V} \pm 1.5 \mathrm{~dB}$ into $50 \Omega$ resistive Ioad).

Phase-locking capability: a volage control feature allows 5 parts in $10^{\circ}$ frequency control for -5 to +5 volts applied externally to the 5110 B .

External frequency standard input requirements: 1 MHz or $5 \mathrm{MHz}, 0.2 \mathrm{~V}$ rms minimum, 5 V maximum across 500 ohms.

## General (5105A/5110B and 51008/5110B)

Operating temperature range: 0 to $+55^{\circ} \mathrm{C}$.
Interterence: complies with MIL-I-26600. Class 1 and 3, MIL-J. 6181D.**

Susceptlblity: complies with MIL-X.26600, Class 1 and 3, MIL-I. 6181D.

Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 cycles, 35 W each synche. sizer and driver (separace power supplies).
Optional features: the synthesizer drivers are capable of driving up to fout frequency synthesizers:
Option 002, outputs for driving two synthesizers, $\$ 125$; Option 003. for three, $\$ 233$; Option 004, for four, $\$ 345$.

Any unused outpurs must be terminated in SOS BNC terminations, 10510A.

Note: small phase jumps may be experienced in additional synthesizer when first is switched in frequency.

Weight: s105A and 5100 B , net $85 \mathrm{lbs}(38 \mathrm{~kg}$ ); shipping, 96 lbs ( 42 kg ) each. 5110 B , net, $56 \mathrm{lbs}(26 \mathrm{~kg}$ ); shipping 62 lbs (28 kg).

Accessories furnished: 5100 B and 5105A; Power Cable, Decade Test Cable, Connecting Cable to sil0B Driver (permits approx 2.5 ft vertical separation-longer cables available). 5110B: Power Cable.
** Interference compliance requires that the 5100日/5105A and 51100 are connected by a low Inductance path such as adjacent rack mounting.

## SIGNAL GENERATORS TO 40 GHz

## Signal generators

Hewlett-Packard offers a complete line of easy to use MF, VHF, UHF, and SHF signal generators covering frequencies betreen 10 kHz and 40 GHz . This line includes new solid-state generators and synthesized signal generators as well as a complete line of performance-proven vacuum tube signal generators. Each includes the following features:

1) accurate, easy to read. frequency calibration
2) accurately calibrated variable output level
3) constant, rell-matched, output im. pedance
f) wide modulation capability
4) Jow RF leakage
5) low harmonic content
6) freedom from spurious ourput or incidental modulation.
These features ensure the utmost con. venience and accuracy for all kinds of measurements and signal simulations, including receiver sensitivity, selectivity or rejection, signal-to-noise ratio, gain bandwidth characteristics, conversion gain, antenna gain. and transmission line characteristics, as well as power to drive bridges, slotted lines, filter networks, etc.

## New solid-state generators

This nex group of signal genecators offers all the advantages of solid-state
design, such as increased portability, rug. gedness, and reliability. while still retaining the outstanding signal quality characteristic of Hewlett-Packard's older vacuum tube signal generators. In addr. tion these generators offer many new' fea. tures not found on the older generators such as digital frequency readout ( 8640 B , 8660 B ), ability to count external signals ( 8640 B ), field portability ( $865 \frac{1}{2} \mathrm{~A}$ ) and complete remote programming (8660A. 8660B).

## HF to UHF

The nexest member of the solid-state family is the 8640 signal generator covering 450 kHz to 550 MHz (frequency

Signal generator summary

Model	Frequency range	Characterlistics	Paye
8660A/B Synthesized Generator	$\begin{aligned} & .01 \text { to } 110 \mathrm{MHz} \\ & 1101300 \mathrm{MHz} \end{aligned}$	1 Hz frequency resolution, $3 \times 10^{-1} /$ day stablity. Calibrated output from +13 to -146 dBm . Completely TTL programmable. Plug-ins determine frequency range and AM/FM capability	270
606A/B Signal Generator	$50 \mathrm{kHz} 1065 \mathrm{MHz}^{2}$ 6068 also has:	outpul $3 \vee$ to $0.1 \mu \mathrm{~V}$, mod. BW de 1020 kHz , low drift and noise, low incidental FM , low distortion, auxiliary RF output, stabilized phase lock capability	274
$8708 \bar{A}$   Synchronizar	50 kHz to 455 MHz	companion for 6068 or 5088 permitting 2/10, continuous settrability and stablity. FM and phase modu lation	274
8601A Generator Sweeper	100 kHz 10.110 MHz	$\pm 1 \%$ of frequency dial accuracy, cal output +20 to -110 dBm into 50 ohms, leveled $t 0 \pm 0.25 \mathrm{~dB}$, very low drift, residual FM and AFI leakage, $30 \%$ AM, 75 kHz dev FM, aux output, crystal cal	286
608E   Signal Generator	10 to 480 MHz	outpul 1 V to $0.1 \mu \mathrm{~V}$, into 50 -ohm load; AM, pulse modulation, direct calibration, leveled power output, aux RF output	275
608 F   Signal Genergtor	10 to 455 MHz	output $0.5 \vee$ to $0.1 \mu \mathrm{~V}$ into 50 ohms, amplitude, pulse modulation, direct calibration, low incidental FM and drift, leveled output, aux RF' oulput, stabilized phase lock capability	275
$\begin{aligned} & \text { 8640A/8 } \\ & \text { Signal Generator } \end{aligned}$	$0.5-512 \mathrm{MHz}$	output +19 to -145 dBm into $50 \Omega$; AM, FM, and ext. pulse modulation, direct calibration, leveled output. 85408 has built-in counter and phase. lock capability. All solid state	
$\begin{aligned} & \hline 3200 \mathrm{~B} \\ & \text { Oscillator } \end{aligned}$	$10-500 \mathrm{MHz}$	1 V to $1 \mu \mathrm{~V}$ output into $50 \Omega 2,120 \mathrm{~dB}$ attenuator range $.002 \%$ stability, compact, portable; weight, 15 lbs	272
8654A   Signal Generator	10-500 MHz	oulput 0 to -120 dBm into 50 n, direct calibration, leveled oulput, amplitude and frequency modulation, solid-state, compact, weight 16 los	273
612A   Signal Generator	450 to 1230 MHz	output 0.5 V to $0.1 \mu \mathrm{~V}$ into 50.0 hm load : pulse or square-wave modulation, direct calibration	277
614A Signal Generator	0.8102 .1 GHz	output at least 0.5 mW to $-127 \mathrm{dBm}(0.1 \mu \mathrm{~V})$ into 50 ohms, pulse or frequency modulation, direct calibration	279
8614A   Signal Generator	0.8 to 2.4 GHz	output +10 to -127 dBm into 50 ohms, leveled below 0 dBm ; internal square-wave; external pulse, AM and FM; auxiliary PF output	278
8614B   Signal Source	0.8 to 2.4 GHz	output 15 mW : precision attenuator $130 \mathrm{d8}$ range: internal square-wave, external pulse and FM : auxiliary RF output	278
6168   Signal Generator	1.8 to 4.2 GHz	output ! mW to - $127 \mathrm{dBm}(0.1 \mu \mathrm{~V})$ into $50-\mathrm{ohm}$ losd, pulse or frequency modulation. direct calibration	279
8616A   Signal Generator	1.8 to 4.5 GHz	output +3 to $-127 d 8 \mathrm{~m}$ into 50 ohms, leveled below 0 dBm ; internal square-wave. external pulse, AM and FM; auxiliary RF output	278
86168   Signal Source	1.8 to 4.5 GHz	output 3 mW ; precision attenvator 130 dB range; internal squäre-wave, external pulse and FM; auxiliary Rf output	278
$\begin{aligned} & \hline 618 \mathrm{C}, 6208 \\ & \text { Signal Generators } \end{aligned}$	$\begin{aligned} & 3.8 \mathrm{to} 7.6 \mathrm{GHz} \\ & 710 \mathrm{Il} \mathrm{GHz} \end{aligned}$	output 1 mW (0 $0-127 \mathrm{dBm}(0.1 \mu \mathrm{~N})$ into 50 ohms , pulse, frequency or square-wave modulation, direct calibration, ext FM and puise modulation, auxiliary RF output	280
626A, 628A Signal Generators	$\begin{aligned} & 10 \text { to } 15.5 \mathrm{GHz} \\ & 15 \text { to } 21 \mathrm{GHz} \end{aligned}$	output $+10 \mathrm{d8m}$ to -90 $\mathrm{dBm}^{\text {; pulse, frequency or square-wave modulation, direct calibration }}$	281
938A, 940A Frequency Doublers	$\begin{aligned} & 18 \text { 10 } 26.5 \mathrm{GHz} \\ & 26.5 \text { to } 40 \mathrm{GHz} \end{aligned}$	driven by 9 to 13.25 GHz source, 13.25 to 20 GHz source, $\mathrm{HP} 626 \mathrm{~A}, 628 \mathrm{~A}, 8690$ series sweepers or klystrons; 100 dB precision sttenuator.	281

coverage can be extended to 1100 MHz with an external doubler, and an optional buit-in audio oscillator extends the CW output range down to 20 Hz ). This new generator is available in two models: the 8640 B featuring a built-in 550 MHz counter and the 8640 w with a mechanical slide rule frequency dial.

The 8640 B with buile-in counter includes two significant new features not previously found on Hewlett-Packard signal generators: 1) the ability to count external signals at frequencies up to 550 MHz and 2) a front panel pusbbutton to phase-lock the generator's RF output to the built-in counter time base for frequency stability of better than $5 \times 10^{-8} /$ hour.

Both models of the 8640 are leveled to within 0.5 dB across the full band and provide AM, FM, and pulse modula. tion for a wide range of receiver test applications. AM and FM can be per. formed independently or simultaneously in either the internal or external modes, and modulation is calibrated and metered for direct readout under al! operating conditions.

Internally, the heart of the 8640 is a mechanically tuned high-Q cavity oscillator that operates over the range of 230 to 550 MHz . This oscillator has very good inherent stability and exceptionally low noise characteristics. Nine lower frequency ranges are obtained by dividing down the basic oscillator frequency and filtering out the unwanted harmonics. Using this rechnique, subharmonic and non-harmonic spurious responses are virtually eliminated.

The 8640 's broad frequency coverage and calibrated ourput range, together with full AM/FM modulation capability and exceprionally low noise, make it the ideal choice for complete RE and IF performance tests on virtually any type of HF, VHF, or UHF receiver.

## Compact, field portable

Compacr, portable signal generators form another pare of the solid-state family. The 8654A covering 10 to 500 MHz features calibrated output leve! with a full range attenuator and both AM and FM modulation capability. Small size and light weight make it well suited for field maintenance and operational readiness checks in addition to
general purpose signal generator applica. tions.

The 8601 A covering 100 kHz to 110 MHz is a unique instrument with full sweep capability in addition to AM/PM modulation and a wide range output at. tenuator. Hexpletr-Packard microcircuit technology is used extensively in the 8601A to provide this broad range of performance in a very small package.

## Synthesized signal generators

The 8660 Synchesized Signal Generator family combines the signal stability and resolution of a frequency synthesizer with the modulation and outpur level calibration of a high quality signal generator.

For maximum versatility the 8660 family utilizes plug-in RF sections and modulation sections. Two RF sections provide frequency coverage of 10 kHz to 110 MHz and 1 MHz to 1300 MHz respectively. Modulation section plug-ins include calibrated AM and FM modulation capability as weil as external pulse modulation.

Two mainframes, the 8660 A and 86608 accept the plug-ins. The 8660 A utilizes ten thumbwheel switches to select frequency with 1 Hz resolution. The 8660 B , with its pushbutton keyboard, provides many features not previously found on frequency synthesizers, such as dial uning of the synthesized output frequency, synthesized digital sweep, and pushbutton frequency increment capa. bility. Both mainframes also include complete TTL programming of frequency, output level and modulation, and an interface kit is available for direct connection to any Herlett. Packard com. puter.

The syothesized signal generator is a natural choice for applications requiring maximum signal stability, very fine frequency resolution, or programmability. For example, with the AM/FM modula. tion plug-in installed, the 8660 A or 8660 B is ideally suited for high stability receiver testing. The digital sweep capa. bility of the 8660 B coupled with its 1 Hz frequency resolution and excellent spectral purity make it an ideal choice for designing and testing high-Q devices such as crystal filters. With its full digital programming interface, the 8660 is also an ideal RF source for automatic systems.

## Performance-proven vacuum tube signal generators

Hewlert-Packard's tube-rype signal generators offer signal quality, versatility, and ease of operation which over the years has made them the standards of the industry.

## HF to UHF

The HP 606A, $606 \mathrm{~B}, 608 \mathrm{E}, 608 \mathrm{~F}$, and 612A signal generators collectively cover frequencies from 50 kHz to 1.23 GHz . All feature extremely low dift and incidental frequency modulation, and may be amplitude (sine, square, pulse) modulated.

A feedback loop in the 606A and 606B keeps their output and percent modulation constant as frequency is varied. The 608 E and 608 F also offer leveled ourput power resulting in significant time saving and convenience when the generator is being used to conduct tests ar several fre. quencies. The $606 \mathrm{~B}, 608 \mathrm{E}$, and 608 F offer an auxiliary fixed-level CW signal which can be applied to a counter for very accurate indication of carrier frequency.

The HP 606B and 608F contain voltage variable capacitors in their oscillator circuirs enabling phase-locked operation with the HP Model 8708A RF Synchron. izer. Frequency settability and stability of $2 \times 10^{-7}$ can be obtained without com. promise of the modulation or attenua. tion characteristics. This permits continuous frequency response examination of devices such as highly selective nar-row-band filters, and adds phase and fre. quency modulation capability to the 606 B and 608 F Signal Generators.

## UHF to SHF

A complete line of Hewletr-Packard microwave signa! generators provides coverage from 800 MHz to 21 GHz . The $614 \mathrm{~A}, 616 \mathrm{~B}$. 618C, 620B, 626A, and 628 A incorporate cavity tuned klystron oscillators with very low drift and residual FMC. They may be pulse, squarewave and frequency modulated, making them useful for microniave receiver testing as well as SWR and transmission line measurements.

The HP 8614A and 8616A signal gen. erators covering 0.8 to 2.4 GHz and 1.8 to 4.5 GHz feature built-in PIN diode modulators. These modularors allow in-

## SIGNAL GENERATORS

## SIGNAL GENERATORS

## Special purpose signal sources

Appilcation	Frequaney ranga	Modulation	Output	Mode	Pag@
Test, calibrate FM receivers	5410216 MHz	FM, AM	0.2 V	202 H	348
Test, calibrate FM receivers	$195-270 \mathrm{MHz}$	FM, AM	0.2 V	2021	348
Down converter for 202H, 202J	100 kHz to 55 MHz	See specifications		207H	348
Telemetry tests	1430 to 1540 MHz ; 2150 to $2310 \mathrm{MHz}_{2}$	FM	-10 to - 127 dBm	3205 A	354
VOR/ILS lests	88 to 140 MHz	AM	0.2 V	211 A	354
ILS/Glide Slope tests	329.310335 MHz	AM	0.2 V	232A	354
DME/ATC tests	962 to 1213 MHz	Pulse	$-10 \mathrm{dBm}$	8925A	354

ternal or external output power leveling as well as a wide range of pulse and amplitude modulation.

HP 938A and 910A Frequency Doubler Sets provide low-cost signal generator capability in the 18 to 40 GHz range. Designed to be driven by signal sources in the 9 to 20 GHz range, the frequency doublers preserve the versarility and stability of the driving source. Thus, the signals may be CW, pulsed or swepr. An output monitor and precision attenuator provide a metered outpur, even though the inpur signal is uncalibrated.

## Special signal generators

Herrlett-Packard's FM signal generators offer unusual modulation linearity and stability. The 202H FM.AM Signal Generator operates in the 54 to 216 MHz range and is designed to serve the broadcast FM, VHF.TV, and mobile communications markets. The 202J FM-AM Sig. nal Generator is specifically designed for VHF telemetry and covers the 195 to

270 MHz frequency range. An accessory 207 H Univerter provides additional coyerage when used with either the 202 H or 202J Signal Generators.

The 211A Signal Generator is specif. cally designed for the resting and cali. bration of aircraft VOR and ILS localizer receivers; an external modulator, such as the Collins 4795-3, is required to provide simulated course and bearing. The 232A Glide Slope Signal Generator is specin. cally designed for the testing and calibration of ILS glide slope receivers. The 8925A DME/ATC Test Set is designed to provide complete facilities for the testing and calibration of aircraft DME radios and ATC rransponders; suitable external modulators are required, such as the Collins 578D-1 and $978 \mathrm{~A}-1$, to simulate ground station operation.

## Signal generator accessories

A variety of available accessories enhance the operation of Hewletr-Packard signal generators. The HP 10511A Spectrum Generator and HP 10515A

Frequency Doubler extend the usable frequency range of signal sources/generators up to 1 GHz . The HP 1i507A Output Termination provides three use. ful positions for marching son signal generators to other than $50 \Omega$ impedances and the HP 11687A allows son genera. tors to be used for measurement in $75 \Omega$ systems. The HP 11509A Fuseholder protects generator output attenuators against accidental burnout during transceiver testing. HP 10514 A and 10534 A Balanced Nixers offer varied mixing as well as AM, pulse and squarewave modulation applications.

The HP 8730 series of PIN modulators increases the modulation capability of microwave signal sources and at the same time virtually eliminates incidental FM. The HP 8403A Modulator provides complete control of the 3730 series of PIN modulators, supplying the bias wave-shapes and levels for fast rise times, rated on-off ratios and amplitude modulation as well as providing pulse and squate wave signals for direct ap. plication to signal sources.

## AM-FM SIGNAL GENERATORS <br> Precision, versatile receiver testing 0.5 to 512 MHz Models 8640A, 8640B

 SIGNAL GENERATORS

## Features <br> 8640A <br> Wide frequency and power range <br> Low broadband and close-in noise <br> Calibrated, metered AM and FM <br> $10 \mathrm{pprn} / 10$ minutes stability <br> 8640B (all 8640A features plus) <br> Internal pushbutton synchronizer <br> External counter to 550 MHz <br> Six digit LED display <br> Applications <br> Precision receiver testing <br> High stability $C W$ source <br> Laboratory test instrument <br> Description

The 8640 signal generator covers the frequency range 500 kHz to 512 MHz ( 450 kHz to 550 MHz with band overrange) and can be extended to 1100 MHz with an external doubler. An optional audio oscillator is also available to extend the CW output range of the generator down to 20 Hz . This broad coverage, together with calibrated cutput and modulation, provides for complete RF and IF performance tests on virtually any type of HF, VHF, and UHF receivers.

Both solid state generators 8640A and B have an output level range of +19 to $-145 \mathrm{dBm}(2 \mathrm{~V}$ to $0.013 \mu \mathrm{~V}$ ) which is calibrated, merered, and leveled to within $\pm 0.5$ $d B$ across the full frequency range of the instroment.

The $8640 \mathrm{~A} / \mathrm{B}$ generators provide AM, FM, and pulse modulation for a wide range of receiver test applications. This modulation is calibrated and metered for direct readout under all operating conditions.

Other significant features of the $8640 \mathrm{~A} / \mathrm{B}$ signal generators include: extremely lorv noise, built-in phase lock and counter ( $B$ version only) and front panel controls designed for operating convenience and fexibility.

Spectrally pure output signals
Noise performance of the 8640 is state-of-the-ant for a solid-state generator. The high. $Q$ cavity oscillator has been optimized with use of a low-noise microwave transistor for spectrally pure output signals.

At 20 kHz ofisets from 230 to 450 MHz , SSB phase noise is $>130 \mathrm{~dB} / \mathrm{Hz}$ below the carrier level and rises to $122 \mathrm{~dB} / \mathrm{Hz}$ at 550 MHz . This signal to noise ratio increases by approximately 6 dB for each division of the output frequency down to the broadband noise floor of better than $140 \mathrm{~dB} / \mathrm{Hz}$. This exceptional noise performance is also preserved ducing FM modulation and in the phase-locked mode of the 8640 B .

## Mechanical dial or buile-ln counter

There are two versions of the 8640 Signal Generators. One, the 8640 A , has an easy-to-read slide rule dial with scales for each of the 10 output frequency ranges. There is an additional scale, to provide direct readout of the output frequency even in the EXTERNAL DOUBLER band, 512 . 1024 MHz .
The 8640 B has the same performance features as the 8640 A , but incorporates a built-in 550 MHz frequency counter and phase lock synchronizer.
The built-in 6 -digit counter displays the output frequencr and can also be used to count external input signals from 20 Hz to 550 MHz . This eliminates the need for a separate frequency counter in many measurement systems.

Internal pushbutton synchronizer
At the push of a button, the 8640 B built-in phase lock synchronizer locks the RF output frequency to the crystal time base used in the counter. In this locked mode, the output stability is better than $5 \times 10^{-9} / \mathrm{hr}$ and the specteal purity and FM capability of the unlocked mode are preserved. For higher stability, it is possible to lock to an externally applied 5 MHz standard. Two 8640B's can also be locked together for various 2 -tone measurements.

## FM while phase locked

When phase locked, full FM capability is preserved down to modulation rates of $<50 \mathrm{~Hz}$. The nasrow baodwidth of the phase lock loop ( $<5 \mathrm{~Hz}$ ) provides for FM modulation up to 250 kHz rates and assures no degradation in noise from the unlocked mode. This crystal stability, coupled with the precision modulation and low noise, makes the 8640B ideal for testing narrowband FM or crystal-controlled receivers.

# 8640A/B Partial Specifications <br> (See Technical Data Sheet for Complete Specifications) <br> All specifications apply over the nominal Frequency Bands and over the top 10 dB <br> of the output level vernier range unless otberwise specified. 

## Frequency characteristics

Range: 500 kHz to 512 MHz in 10 octave bands (to 1024 MHz with external frequency doubler).
Bands and band overlap: bands extend $10 \%$ below and $7 \%$ above the nominal frequency bands shown below.

## Frequency bands (MHz)

$0.5-1$	$8-16$	$128-256$
$1-2$	$16-32$	$256-512$
$2-4$	$32-64$	Ext Doubler Band: $512-1024$
$4-8$	$64-128$	

Fine tunlig:
8640A and 8640B unlocked: $>200 \mathrm{ppm}$ total range.
8640 B locked mode: $> \pm 20 \mathrm{ppm}$ by varying internal time base vernier.

Counter resolution (96408):

Fraqueney Bands   (MHz)	Normal   Mods	Expand   $\times 10$	Expand   $\times 100$
$0.5-1$	10 Hz	1 Hz	0.1 Hz
$1-16$	100 Hz	10 Hz   $16-128$   $128-1024$	1 kHz
10 kHz	1 Hz	10 Hz	
10 kHz	100 Hz		

## Accuracy:

8640 A , mechanical dial; accuracy better than $0.5 \%$, resettabilisy better than $0.14 \%$.
 accuracy depends on internal or external reference used.
$\left[\begin{array}{l}\text { Total } \\ \left.\begin{array}{l}\text { Count } \\ \text { Accuracy }\end{array}\right]=\left[\begin{array}{l}\text { Counter } \\ \text { Resolution } \\ ( \pm 1 \text { count })\end{array}\right]+\left[\begin{array}{l}\text { Reference } \\ \text { Error } \\ \text { (INT or EXT })\end{array}\right]+\left[\begin{array}{l}\text { Reference } \\ \text { Aging } \\ \text { Error }\end{array}\right]\end{array}\right]$ Internal reference error ( $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ ): $< \pm 1 \mathrm{ppm}$. Internal crystal aglng rate: <2 ppm/year.
Stabillty (after 2 -hrwarm-up):
Normal: < $10 \mathrm{ppm} / 10 \mathrm{~min}$.
Lacked: (8640B) $<0.05 \mathrm{ppm} / \mathrm{hr}$.
Restabilization time after frequency change:
Normal: < 15 min .
Locked (8640B) : none after relocking.


Measured SSB Noise vs. Offset from Carrier. Markers indicate speeiffed limits.

## Output characteristics

Range: continuously selectable from +19 to -145 dBm ( 2 V to $0.013 \mu \mathrm{~V}$ ) into $50 \Omega$.
Level accuracy: (worst case as indicated on level meter) +19 to $-7 \mathrm{dBm}, \pm 1.5 \mathrm{~dB} ;-7$ to $-47 \mathrm{dBm}, \pm 2.0 \mathrm{~dB} ;-47$ to $-137 \mathrm{dBm}, \pm 2.5 \mathrm{~dB} ;-137$ to $-145 \mathrm{dBm}, \pm 3.0 \mathrm{~dB}$.
Level flatness: $< \pm 0.5 \mathrm{~dB}$ from 0.5 to 512 MHz referred to output at 50 MHz . (Flatness applies to 1 V output range and below and for top 10 dB of vernier range.)
Impedance: son, VSWR $<2.0$ on 2 V and I V output ranges. VSWR <1.3 on all other ranges.
Auxllary output: rear panel BNC output is $>-5 \mathrm{dBm}$ into SOR, source impedance is approximarely 500 .
Leakage (with all unused outputs terminated properly): leakage limits are below those specified in MIL-1.G181D. Furthermore, less than $3 \mu \mathrm{~V}$ is induced in a 2 -rurn, I -inch diameter loop 1 inch away from any surface and measured into a son receiven, and less than $1 \mu \mathrm{~V}, 2$ inches away. This permits receiver sensitivity measurements to at least $<0.03 \mu \mathrm{~V}$ in a shielded system.

## Spectral purity

Harmonics: (at 1 voit ( +13 dBm ) ourput range and below) $>35 \mathrm{~dB}$ below fundamental of 0.5 to 128 MHz .
$>30 \mathrm{~dB}$ below fundamental of 128 to 512 MHz .
Subharmonics and nonharmonic spurlous: (excluding linerelated sidebands)
8640A: none derectable; 8640B: $>100 \mathrm{~dB}$ below carrier.
Noise: averaged RMS noise level below carrier stated in a 1 Hz bandwidth.

SSB phase noise at 20 kHz offset from carrier.
256 MHz to $512 \mathrm{MHz}:>130 \mathrm{~dB}$ down from 230 to 450 MHz increasing linearly to $>122 \mathrm{~dB}$ down at 550 MHz .
0.5 MHz to 256 MHz : decreases 6 dB for each divided frequency range until it reaches SSB broadband noise floor of $>140$ dB down.

Residuals	Post-deteoction Bandwidth	
	300 Hz to 3 kHz	20 Hz to 15 kHz
Residual AM:	$>85 \mathrm{~dB}$ down	$>78 \mathrm{~dB}$ down
Residual fM:		
CW and up to Y $\Delta F$		
max. peak dev. $(\Delta \mathrm{F})$	$<5 \mathrm{~Hz}$	$<15 \mathrm{~Hz}$



## 8640A/B Partial Specifications (cont'd)

## Modulation characteristics <br> Geners)

Types: Int AM and FM, Ext AM, FM and PULSE.
Internal modulation sources: (independently adjustable ourput is a vailable at (ront panel). Standard: 8640A or 8640B.

Frequency: fixed 400 Hz and $\mathfrak{l k H z}, \pm 2 \%$.
Output level: 10 mV to 1 V . Accuracy $\pm 20 \%$.
Optlonal: (internal variable audio oscillator Option 001, 8640A or 8640 B ).
Frequency: variable 20 Hz to $600 \mathrm{kHz} . \pm 10 \%$ plus fixed 400 Hz and $1 \mathrm{kHz} \pm 2 \%$.
Output level: 10 mV to 3 V . Accuracy $\pm 20 \%$.

## Ampilitude modulation

(AM specifications apply so the top 10 dB of output vernier range unless othervise sperified.)
Depth: 0 to $100 \%$ for output level range of +13 dBm and belor and for top 10 dB of vernier range.
AM rates: INT and EXT ac: 20 Hz to AM 3 dB bandwidth below. EXT dc ; dc to AM 3 dB bandwidth below.

## AM 3 dB bandwidth:

Freq. Bandz	0 to $50 \%$ AM	$70 \% \mathrm{AM}$	$90 \% \mathrm{AM}$
$0.5-2 \mathrm{MHz}$	25 kHz	$20 \mathrm{4Hz}$	12.5 kHz
$2-8 \mathrm{MHz}$	50 kHz	40 KHz	25 kHz
$8-512 \mathrm{MHz}$	100 kHz	80 kHz	50 kHz

AM distortion: (at 400 Hz and I kHz rates).

Freq. Bands	0 to $50 \%$ AM	$70 \%$ AM	$90 \%$ AM
0.5 to 512 MHz	$<1 \%$	$<3 \%$	$<5 \%$

External AM sensitivity: $0.1 \%$ AM per mV peak into $600 \Omega$ with AM vernier at full cw position; accuracy $\pm 5 \%$.
 meter) $=9 \%$ of meter reading.
Peak incidental PM: (ar $30 \%$ AM).
Less than 0.15 radians, 0.5 to 128 MHz .
Less than 0.3 radians, 128 to 512 MHz .
Peak incidental FM: equals PEAK INCIDENTAL PM $x$ MODULATION FREQUENCY.

Pulse Modulation:

Frequency Bands (MHz)	0.5-1	1.2	2.4	4.8	8-32	32-512
Rise and fall Times	$<9 \mu \mathrm{~S}$	$<4 \mu \mathrm{~s}$	$<2 \mu \mathrm{~S}$	$<1.5 \mu \mathrm{~s}$	$<0.5 \mu \mathrm{~s}$	$<0.5 \mu \mathrm{~s}$
Pulse Repetition Rale	$\begin{aligned} & 50 \mathrm{~Hz} 10 \\ & 50 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 50 \mathrm{~Hz} \text { to } \\ & 100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 50 \mathrm{~Hz} \mathrm{log} \\ & 250 \mathrm{kHz} \end{aligned}$	50 Hz to 500 kHz
Pulse Width Minimum ${ }^{1}$	$10 \mu \mathrm{~s}$		$5 \mu 5$		$2 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
ON/OFF ratio at versier	> 40 OB					
Peak input Required:	$>\operatorname{lV}(5 \mathrm{~V}$ max) Sinewave or Pulse return to zerointo $50 \Omega$					

[^33]
## Frequency modulation

Deviation: maximum allowable deviation equals $1 \%$ of lowest frequency in each nominal output irequency band.

## FM 3 dB bandwidth:

Internal and external ac; 20 Hz to 250 kHz .
External dc; dc to 250 kHz .
FM distortion: (at 400 Hz and I kHz rates)
$<1 \%$ for deviations up to $1 / 8$ maximum allowable. $<3 \%$ for maximum allowable deviation.
External FM sensitivity: I volt peak yields maximum deviation indicated on PEAK DEVIATION switch with FM vernier at full CW position; accuracy $\pm 5 \%$.
Indicated FM accuracy: (using internal meter) $\pm 9 \%$ of meter reading, above $10 \%$ of full scale.
Incidental AM: (at 400 Hz and 1 kHz rates) $<0.5 \%$ AM for PM up to $1 / 8$ max. allowable deviation. $<1 \%$ AM for FM at maximum allowable deviation.

## Counter characteristics (8640B)

## External RF input:

Frequency range: 20 Hz to 550 MHz .
Sensitivity: $\geq 100 \mathrm{mV}$ rms into $50 \Omega$.
Resolution: 6-digit LED DISPLAY

Mode	Normal	Expand X10	Expand X100
$0-10 \mathrm{MHz}$   $0-550 \mathrm{MHz}$	100 Hz   10 KHz	10 Hz   1 KHz	1 Hz   100 Hz

Internel reference characteristics: (after 2 -hr. warmup).
Accuracy: (after calibration at $25^{\circ} \mathrm{C}$ )
Better than $\pm 1 \mathrm{ppm}$ for $15^{\circ}$ to $35^{\circ} \mathrm{C}$.
Better than $\pm 3 \mathrm{ppm}$ for $0^{\circ}$ to $55^{\circ} \mathrm{C}$.
Dritt rate: (constant temperature and line voltage) <0.0s ppm over any hour period; <2 ppm per year.
Frequency tuning:
$> \pm 20 \mathrm{ppm}$ using internal time base vernier.
Rear output: $>0.5 \mathrm{~V}$ pk-pk into 500 m . This will drive another 8640B.
External reference input: s $\mathrm{MHz},>0.2 \mathrm{~V}$ (s V max.) into $1 \mathrm{k} \Omega$.

## General characteristics

Operating temperature range: 0 to $59^{\circ} \mathrm{C}$.
Power requirements: $100,120,220$, and 240 volts, $+9 \%$, $-10 \%$. 48 to $440 \mathrm{~Hz} ; 175 \mathrm{VA}$ maximum.

Weight: 8640 A and 8640 B : net, $45 \mathrm{lb}(20,5 \mathrm{~kg})$ : shipping, $53 \mathrm{lb}(24,1 \mathrm{~kg})$.
Dimensions: $51 / 4^{\prime \prime}$ high $\times 163 / 4^{\prime \prime}$ wide $\times 183 / 4^{\prime \prime}$ deep ( $13,4 \times$ $42.5 \times 47.6 \mathrm{~cm})$.
Price: 8640A, $\$ 3100$; 8640B, $\$ 4450$.
Option 001: (internal variable audio oscillator, 20 Hz to 600 kHz ) 8640 A or 8640 B , add $\$ 150$.


## Features

Frequency coverage to 1.3 GHz
1 Hz frequency resolution
-80 dB spurious
$3 \times 10^{-5} /$ day stability
Plug-in RF and modulation sections
Completely TTL programmable

## Applications

Programmable RF source for auromatic systems
Precision receiver resting
L.O. in high stability communication systems

Labozatory frequency standard
Swept testing of narrowiband devices
The $8660 \mathrm{~A} / \mathrm{B}$ family is a modular plug in system. Each complete system includes: 1) an all solid-state synthesized signal gencracor mainframe, 2) at least one RF section plug.in, and 3) either a modulation section or the 86631 B Auxiliary Section Plug-in.

## Mainframes

There are iwo different synthesized signal generator mainframes to choose from. Both feature complere TTL programming of frequency. output level, and modulation. Both mainframes can also be operated either from the internal 10 MHz crystal reference oscillator or an external frequency stan. dard at I $\mathrm{MHz}, 2 \mathrm{MHz}, 5 \mathrm{MHz}$, or 10 MHz .

The 8660 A Mainframe uses front panel thumbreheel switches to select CW output frequency with a resolution of 1 Hz . An optinnal version of the mainframe with 100 Hz resolution is also arailable. Wth the B6601A Option 001 RF Section and 86631B Auxiliary Section plug-ins installed, the 8660A is an ideal programmable RE source for automatic sysrems. Witla the standard 86601A RF Section and the 86632A AM/FM Modulation Section installed, the 8660A becomes a complete Synthesized Signal Generator.

The 86608 keyboard mainframe combines all the capability of the 8660A with a keyboard control panel. Added capabilities of the 8660 B include digital sweep. frequency stepping, synthe. sized scarch, and a ten digir numerical LED display.

Srept testing of very aarrowband devices such as crystal fileers is made possible by the 86608 's digital sweeping capa. bility. The selected sweep width is divided into either 100 or 1000 discrete steps depending on the sweep speed selected, and
the RF output is synthesized ar each step. The result is a very linear sweep with exuremely low residual FM .
For receiver rescing and similar applications which require frequency to be changed in uniform increments, a frequency stepping capability is provided on the 8660 B . For example, if a receiver with 50 kHz channel spacing is being tested, 30 kHz can be entered on the keyboard. Then the step 4 or step $\downarrow$ buttons will step the frequenc: to the next higher channel or lon'er channel respectively.
A unique synthesized search provides the dial tuning convenience of a signal generator while maincaining synthesizer signal quality. As the dial is rotated, the outpur frequency is tuned up or down in discrete synthesized steps which may be chosen as small as 1 Hz . When the 8660 B is used as a local oscillator in a manual communication receiver, the synthesized search dial is very helpful in quickly locating unknown signals while majntaining the full-spectral purity of the syothesizer.

The ten-digit LED readout provides a continuous display of the selected CW or center frequency, with spring-loaded pushburtons to display sweep wideh, frequency step size, or a partially encered new command.

## Plug-in RF sections

Two RF sections are presently available for 8660 Main. frames. The 86601 A covers the 10 kHz ro 110 MHz frequency range with a calibrared ourput of +13 dBm to -146 dBm . The 86602A, used in conjunction with the 11661A Frequency Exrension Module, covers 1 MHz to 1300 MMz with a calibrated output of +10 to -146 dBm . Both RF sections have 1 Hz frequency resolution and in the remore mode outpur leve! can be programmed in 1 dB sreps over the full operacing range.

## Plug-in modulation sections

The 86632A Modulation Section provides AM and FM modulation capability. Internal modulation is provided at 400 Hz and 1 kHz . A switch selects ac or dc coupling of external modulation inputs. A modulation meter indicates AM percent or FM peak deviation. The 86632 A is completely programmable through the 8660 Mainframe

The 86631 B Auxiliary Section is an economical, non-programmable modulation plug-in which provides both external AM and pulse modulation capability. Providing necessary interconnections for mainframe operation, the 86631 B must be used when another modulation plugin is not insralled.

## 8660A/B Partial Specifications <br> (Refer to Technical Data Sheet for complete specifications)

8660A/B Synthesized Signal Generator Malnframes
Frequency accuracy and stability: CW frequency accuracy and long term stability are determined by reference oscillator in 8660A/B Mainframe (3 $\times 10^{-8} / 24$ hours) or by external reference if used.
Reference osclllator
Intemal: 10 MHz quartz oscillator. Aging rate less than $\pm 3$ parts in $10^{8}$ per 24 hours after 72 hr warmup. ( $\pm 3$ parts in $10^{9}$ per 24 hours optional, Option 001).
External: rear panel switch allows operation from any 1 $\mathrm{MHz}, 2 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}$, of 10 MHz signal at a level between 0.2 V and 2.0 V ims into 170 ohms.
Reference output: cear panel BNC connector provides output of reference signal selected ar a level of at least 0.5 V rms into 170 ohms.

## Rernote programming

Functions
8660A: all front panel frequency, outpur level, and modulation functions are programmable.
8660B: CW frequency, frequency stepping (STEPA, STEP $\downarrow$ ), outpur level, and modulation are programmable.
Switching time: less than 5 ms to be within 100 Hz of any new frequency selected. Less than 100 ms to be within 5 Hz of any new frequency selected.
Maximum stepping rate: 1 ms per step.
Programming input
Connector type: 36 -pin Cinch Type 57 (mating connector supplied).
Loglc; TTL compatible (negative true).
General
Operating temperature range: $0^{\circ}$ to $+55^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$. 50 to 60 Hz ; approx 200 W .
Size: $169 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $215 / /^{\prime \prime}$ deep ( $426 \times 184 \times 550$ mm ).
Welght: net, $49 \mathrm{lbs}(22,0 \mathrm{~kg})$; shipping, $63 \mathrm{lbs}(28,4 \mathrm{~kg})$.
Price: Model 8660A, \$4900; Model 8660B, $\$ 6000$.
Options for 8660A and 8660B
Option 001: $\pm 3 \times 10^{-9} / 24 \mathrm{hrs}$; internal reference oscillator; add $\$ 200$.
Option 002: no internal reference oscillator; less $\$ 350$.
Option 003: operation from 50 to 400 Hz line; add $\$ 150$.
Option 004: 100 Hz frequency resolution; less $\$ 500$.
Option 009 ( 8660 A only): LED Display indicates selected frequency in 1-2.4-8 BCD code; price: add $\$ 200$.
Option 100: 11661A factory installed; price: add $\$ 2,000$.

## 86601A RF Section

Frequency range: 0.01 to 110 MHz ; selectable in 1 Hz steps.
Output level: continuously calibrated from +13 to -146 dBm into 50 ohms; programmable in 1 dB steps.
Harmonics: $<-40 \mathrm{~dB}$.
Spurious: $<-80 \mathrm{~dB}$.
Amplitude modulation: (with 866318 or 86632 A ) 0 to $95 \%$; maximum rate, 50 kHz at output frequencies above 4 MHz .
Frequency modulation: (with 86632A) maximum rate, 1 MHz ; maximum deviation, 1 MHz .
Weight: net, $11 \mathrm{lbs}(5 \mathrm{~kg})$; shipping, $13 \mathrm{lbs}(5,9 \mathrm{~kg})$.
Price: Model 86601A, \$1975.

Opkions: Option 001: no RP output attenuator; output level adjustable from +13 to 0 dBm ; less $\$ 600$.


Typleal Phase Nolse Curves for 86601 A and 86602 A

## 86602A RF Section

Frequency range: 1 to 1300 MHz ; selectable in 1 Hz steps. Output level: continuously calibrated from +10 to -146 dBm into 50 ohras; programmable in 1 dB steps.
Harmonies: $<-30 \mathrm{~dB}$ at output levels below +3 dBm .
Spurious
Non-Hne related: below $700 \mathrm{MHz}-80 \mathrm{~dB}$; above 700 MHz -80 dB within 45 MHz of carrier, $-70 \mathrm{~dB}>45 \mathrm{MHz}$ from carrier.
Line related: -70 dB .
Amplitude modulation: (with 86631B or 86632A) 0 to $95 \%$ maximum rate, 50 kHz .
Frequency modulakion: (with 86632A) gnaxiroum rate, 200 kHz ; maximum deviation, 200 kHz .
Welght: net, approx 9 lbs ( $3,9 \mathrm{~kg}$ ); shipping, $11 \mathrm{lbs}(5,0 \mathrm{~kg})$.
Options: same as 86601A.
Price: Model 86602A, $\$ 2800$.

## 11661A Extension Module

Must be instalied in $8660 \mathrm{~A} / \mathrm{B}$ Mainframe to enable opera. tion of 86602 A RF Secrion.
Weight: net, approx $4 \mathrm{lbs}(1,8 \mathrm{~kg})$ : shipping, $3 \mathrm{lbs}(2,2 \mathrm{~kg})$.
Price: Model $11661 \mathrm{~A}, \$ 2000$.

## 86632A Modulation Section

Provides AM/FM capability as described above when used with 86601A or 86602 A RF Section. Includes modulation meter and 400 Hz and 1 kHz internal oscillators; completely pro. grammable.
Weight: net, $6 \mathrm{lbs}(2,5 \mathrm{~kg})$; shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: Model 86632A, $\$ 900$.

## 86631B Auxiliary Section

The 86631 B must be installed in an $8660 \mathrm{~A} / \mathrm{B}$ Mainframe when the modulation section is not used. A jack is provided on the front panel to allow external AM and pulse modulation. A PULSE LEVEL vernier is provided to continuously adjust peak pulse power.
WeIght: net, 2 lbs ( $0,9 \mathrm{~kg}$ ) ; shipping, $4 \mathrm{lbs}(1,8 \mathrm{~kg}$ ).
Price: Model $86631 \mathrm{~B}, \$ 90$.

The HP 32008 VHF Oscillator provides low cost, stable, 10 to 500 MHz RF for testing receivers and amplifiers, and driving bridges, slotted lines, antennas, and filter networks. Good pulse modulation sensitivity allows standard audio oscillators to be used to provide usable square-wave modulation; a 2.5 -volt sine wave will provide adequate drive for this type application. The 32008 can also serve as a local oscillator for heterodyne derector systems and as a marker source for swept systems. An optional accessory Frequency Doubler Probe, HP 13515A, provides additional frequency coverage from 500101000 MHz .

The 3200 B will typically recover specified stability in 30 minutes following a frequency band change. Long-term
warmup ( 24 hours) can reduce this time as much as $50 \%$. Following in-band frequency dial changes, the oscillator typically requires 10 minutes to recover specified stability. With the instrument in thermal equilibrium with its surroundings, (i.e., long-term warmup and constant temperature lab), stabilities of 0.0001 电 are typical at some frequencies, if sufficient settling time is allowed after a fre. quency change.

Effective RF shielding permits measurements at levels down to $1 \mu \mathrm{~V}$.

RF is read on an expanded slide-rule type scale. The oscillator may be precisely tuned by means of a mechanical vernier activated by the main tuning control.



13515A

## Specifications

Frequency range: 10 to 500 MHz in six bands: 10 to 18.8 $\mathrm{MHz} ; 18.5$ to $35 \mathrm{MHz} ; 35$ to $68 \mathrm{MHz} ; 68$ to 130 MHz ; 130 to $260 \mathrm{MHz} ; 260$ to 500 MHz .

Froquency accuracy: within $\pm 2 \%$ after $1 / 2$ hour warmup.
Frequency calibration: increments of less than $4 \%$.
Frequency stablity (after 4 -hour warmup under 0.2 mW load) : short term ( 5 minutes) $\pm 0.002 \%$; long cerm ( 1 hour) $\pm 0.02 \%$; line voltage ( 5 -volt change) $\pm 0.001 \%$.

RF output:
Maximum power (across $50-0 \mathrm{hm}$ external load): $>200$ mW ( 10 to 130 MHz ); $>150 \mathrm{~mW}$ ( 130 to 260 MHz ) ; $>25 \mathrm{~mW}$ ( 260 to 500 MHz ).*
Range: 0 to $>120 \mathrm{~dB}$ amenuation from maximum output. Load impedance: 50 ohms nominal.

RF leakage: sufficiently low to permit measurements at $\ell \mu \mathrm{V}$. RFI: meets requirements of MIL-I.6181D.

[^34]Amplitude modulation: externally modulated.
Range: 0 to $30 \%$.
Distortion: $<1 \%$ at $30 \%$ AM.
External requirements: approximately 20 volts rms into 600 ohms for $30 \% \mathrm{AM}, 200 \mathrm{~Hz}$ to 100 kHz .

Pulse modulation: externally modulated.
External requirements: 2.5 -volt negative pulse into 2000 ohms.

Power: 105 to 125 V or 210 to $250 \mathrm{~V}, 50$ to 400 Hz .30 W ,
Dimensions: $75 / 8^{\prime \prime}$ wide, $61 / 2^{\prime \prime}$ high. $131 / 8^{\prime \prime}$ deep ( $194 \times$ $165 \times 333 \mathrm{~mm}$ ).

Welght: net, $15 \mathrm{lbs}(6,8 \mathrm{~kg})$; shipping, $17 \mathrm{lbs}(7,7 \mathrm{~kg})$.
Accessorles available: 13515A Erequency Doubler Probe; 00501B, 00514B, 00517B Output Cables; 00502B, 00506B Patching Cables.

Price: HP 32008, \$595; HP 13515A, \$95.

# VHF SIGNAL GENERATOR Rugged solid-state generator $10-512 \mathrm{MHz}$ Model 8654A 

## Features

Calibrated output power
Automatic porer leveling
AM, FM internal, external, independent
Rugged, lighrweight, solid state
Compact size and shape

## Applications

Receiver sensitivity, S/N ratio
Antenna and filter characteristics
Field maintenance and servicing
Production and mobile rest stations
The HP 8654A Signal Generator is a portable, low-cost, solid state generator providing calibrated outpur and versatile modulation capabilities over the 10 to 512 MHz frequency range. The 8654 A provides stable RF signals for testing receivers, amplifiers, antennas and filter networks.

Its compactness and small size allow the 8654 A to fit easily into production, mobile, airborne and shipboard test locations. Its rugged, lightweight construction is also suitable for field maintenance and service applications.

Internal oscillators provide both amplitude modulation and frequency modulation at 400 Hz and 1000 Hz or external modulation can be accomplished using standard audio oscillarors. The front panel meter accurately indicates amplitude modulation percentage from $0.90 \%$ by using the AM meter mode switch.

Output power is automatically leveled to $\pm 1 \mathrm{~dB}$ over the entire frequency range of +10 dBm and below, and the power level is variable over more than a 120 dB dynamic range. The 10 dB -step attenuator and 13 dB vernier allow continuous
selection of power settings over the entire output range. The front panel meter displays the ourput power in dBm and volts and always indicates the calibrated level.
An auxiliary uncalibrated RF output is also available at the rear panel for use with a counter or other external equipment. Auxiliary output level is a minimum of -10 dBm

The 8654 A has a specified stability of $0.002 \%$ over a 5 minute operating period after a one-hour warmup. It will typically recover specified stability within 5 minutes following a frequency band change.

Effective RF shielding and output range permit receiver sensitivity measurements to be made down to power levels of $1.0 \mu \mathrm{~V}$.

Its compact size and shape combined with its stability and versatility make the HP 8654A a high-value VHP signal generator for economy-minded applications.


## Specifications, 8654A

Frequency characteristics
Range: $10-512 \mathrm{MHz}$ in 6 bands:

$$
\begin{array}{lll}
10.18 .8 \mathrm{MHz} & 18.8 .35 \mathrm{MHz} & 35.65 \mathrm{MHz} \\
65.125 \mathrm{MHz} & 125.250 \mathrm{MHz} & 240.512 \mathrm{MHz}
\end{array}
$$

Accuracy: $\pm 2 \%$ after 30 min warmup.
Stabillty: $002 \% / \mathrm{s}$ min after 1 hr warmup and 5 min after changing frequency bands; $.002 \% / 10 \%$ change in line volt. age.
Residual FM: $5 \times 10^{-7}$ peak.

## Output charactaristics

Maximum power (into $50 n$ ): $>+10 \mathrm{dBm}$ from 10 ro 512 MHz .
Attenuator range: 10 dB steps and a 13 dB vernier provide continuous power settings from maximum power output to -120 dBm . Output is absolutely calibrated in volts and dBm and is monitoced by the front panel output meter.
Level accuracy: $\pm 1.5 \mathrm{~dB}$ plus attenuator accuracy.
Attenuator accuracy: -7 to $-57 \mathrm{dBm}, \pm 0.5 \mathrm{~dB} ;-57$ to $-127 \mathrm{dBm}, \pm 1.5 \mathrm{~dB}$.
Level flatness: $\pm 1 \mathrm{~dB}$ from 10.512 MHz for output level 10 dBm and below.
Load impedance: son nominal, VSWR: 1.2.
RF leakage: permits receiver sensitivity measurements down to at least $1.0 \mu \mathrm{~V}$. (Conducted and radiated leakage limits are below those specified in MIL-I-6181D.)

## Modulałlon characteristics

(Specifications apply for carrier power level of +3 dBm and below and for the top 10 dB of the vernier range.)

Internal AM
Frequency: 400 Hz and $1 \mathrm{kHz} \pm 10 \%$ available at front panel.
Modulation level: 0 ro $90 \%$ AM continuously adjustable with the modulation "level" control.
Carrier envelope distortion: $<2 \%$ to $50 \% \mathrm{AM} ;<6 \%$ at $90 \%$ AM.
External AM
Frequency: dc to 10 kHz for $30 \% \mathrm{AM}$; dc to 5 kHz for $90 \%$ AM.
Input level required: nominal 1 volt peak at external AM input yields full modulation. Carrier voltage can be varied from 0 to $\pm 90 \%$ by an external de input of 0 to $\pm 1 \mathrm{~V}$ nominal.
Carrler envelope distortion: $<2 \%$ at $30 \%$ AM; $<6 \%$ at $90 \%$ AM.
Modulation meter accuracy: $\pm 5 \%$ of i.s. for $0.90 \%$ AM. Internal FM: 400 Hz and 1000 Hz intenal oscillator. $>0.1 \%$ peak deviation, 10 to $100 \mathrm{MHz} .>100 \mathrm{kHz}$ peak deviation, 100 to 512 MHz .
External FM: $D C$ to 2 kHz bandwidth from $600 \Omega$ source. $D C$ to 10 kHz bandwidth from sos source. Deviation same as internal FM.
input level required: Is volt peak for maximum peak deviation. General
Power: $100,120,220$, or $240 \mathrm{~V}+5 \%,-10 \%$, 48 to 440 Hz , approximarely 20 W .
Dimensions: $61 / 2^{\prime \prime} \times 101 / 2^{\prime \prime} \times 12^{\prime \prime} \operatorname{deep}(165 \times 266 \times 321 \mathrm{~mm}$ ).
Weight: $16 \mathrm{lbs}(7,4 \mathrm{~kg})$; shipping $22 \mathrm{lbs}(10 \mathrm{~kg})$.
Price: $\$ 1,135$.

# HF SIGNAL GENERATORS AND HF-VHF SYNCHRONIZER <br> Models 606A, 606B, 8708A 



The Hewlett-Packard 606B Signal Generator provides high quality operation in the 50 kHz to 63 MHz frequency range. Ourput signals are stable and accurately known. Ourput am. plitude can be precisely established over a +23 to - 120 dBm dynamic range with versatile modulation capabilities.

## Specifications, 606B

## Frequency and output characteristics

Range: 50 kHz to 65 MHz in 6 bands; accuracy: $\pm 1 \%$.
Drift: (l V output and below) less than 30 ppm (or 5 Hz , whichever is greater) per 10 min period after $2 \cdot$ hr warmup; less than 10 min to restabilize after changing frequency.
Stability when used with 8708A Synchronizer: $5 \times 10^{-5} / \mathrm{min}$, $2 \times 10^{-7} / 10 \mathrm{~min}, 2 \times 10^{-8} /$ day $; 2 \times 10^{-1} /{ }^{\circ} \mathrm{C}, 0^{\circ}$ to $55^{\circ} \mathrm{C}$; $2 \times 10 \% / 10 \%$ line voltage change.
$\Delta F$ control: better than 10 ppm setcability; range of $\Delta F$ control approx $0.1 \%$.
Resetability: better than $0.15 \%$ after watmup
Crystal callbrator: provides frequency checkpoints every 100 kHz and 1 MHz ; jack provided for audio frequency output; crystal frequency accuracy better than $0.01 \%$ from $0^{\circ} \cdot 30^{\circ} \mathrm{C}$.
Restolual FM: less than $\pm 1 \mathrm{ppm}$ or $\pm 20 \mathrm{~Hz}$ peak, whichever is geeater
Frequency control input: front panel input can be used with 8708A Synchronizer and external frequency control; limirs: 0 to $-50 \mathrm{~V}, 4 \mathrm{k}$ ? nominal inpur impedance.
Output level: continuously adjustable from $0.1 \mu \mathrm{~V}$ to 3 V inco so-ohm resistive load, calibrated in voltage and dBm .
Frequency response and output accuracy: as outpui below 1 V, output variation with frequency is less than 2 dB : output accuracy is better than $\pm 1 \mathrm{~dB}$ at any frequency.
Impedance: 50 ohms, SWR less than 1.2 on 0.3 V attenuaror range and belor.
RFI: meets all conditions specifed in MIL-I-6I8ID; permits receiver sensitivity measurements donin to at least $1.0 \mu \mathrm{~V}$.
Harmonlc output: at least 30 dB below the carrier.
Spurious AM: hum and noise sidebands are 70 dB below carrier dox'n to thermal level of 30 -ohm ourput system.
Auxiliary RF output: on front panel for use with HP 8708A Synchronizer or other external equipment. Minimum output: 100 mV rms into 50 ohms from 50 kHz to $19.2 \mathrm{MHz}, 200$ mV rms from 19 ro 65 MHz .

## Internal AM:

## Modulation characteristics

Frequency: 400 and $1000 \mathrm{~Hz} \pm 5 \%$.
Modulation level: 0 to $95 \%$ on 1 V altenuastor range and below; 0 to at least $30 \%$ on 3 V range.
Incidental FM (attenuator on 1 V range and below: $30 \%$ modulation) : less than $5 \times 10^{-6}+100 \mathrm{~Hz}$ peak.
Carrler envelope distortion: $<2 \%$ at $30 \%$ AM, $<3 \%$ at $70 \% \mathrm{AM}$ (attenuator on 1 V range and below).

External AM:
Frequency: ds to 20 kHz maximum, dependent on carrier frequency ( $\mathrm{f}_{0}$ ) and percent modulation as tabulated.
Maximum modulation frequency: $30 \%$ Mod: $70 \%$ Mod: Squarewave Mod: $0.06 \mathrm{f}_{\mathrm{c}} \quad 0.02 \mathrm{f}_{\mathrm{c}} \quad 0.003 \mathrm{f}_{\mathrm{c}}$ ( 3 kHz max.)
Modulation level: 0 to $95 \%$ on 1 V attenuator cange and below, 0 to at least $30 \%$ on 3 V range.
Input required: 4.5 V peak produces $99 \%$ modulation (maximum input 30 V peak); input impedance 1000 ohms.
Carrier envelope distortion: same as for internal AM.
Modulation meter accuracy: $\pm 5 \%$ of full scale, 0 to $90 \%$, for modulation frequencies to $10 \mathrm{kHz}, \pm 10 \%$ of full scale for frequencies from 10 kHz to 20 kHz .
Modulation level constancy (internal or external AM; atrenua. tor on 1 V range and below): modulation level srays constant within $\pm 1 / 2 \mathrm{~dB}$ regardless of carries frequency and output level changes.

## General

Power: 115 of $230 \mathrm{~V} \pm 10 \%, 50$ to $400 \mathrm{~Hz}, 135 \mathrm{~W}$.
Dímenslons: cabinet, $203 / 4^{\prime \prime}$ wide, $121 / 2^{\prime \prime}$ high, $143 / 4^{\prime \prime}$ deep. ( $527 \times 318 \times 370 \mathrm{~mm}$ ) : rack, $19^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $149 / 8^{\prime \prime}$ deep behind panel, ( $483 \times 266 \times 367$ ).
Weight cabinet, net, $55 \mathrm{lb}(24,8 \mathrm{~kg})$; shipping $65 \mathrm{lb}(29,3 \mathrm{~kg})$; rack, net, $50 \mathrm{lb}(22,5 \mathrm{~kg})$; shipping $63 \mathrm{lb}(28,4 \mathrm{~kg})$.
Accessories avallable (See Page 356):
11507A Outpur Termination, provides 3 positions: 50 ohms, 5 ohms and IEEE Standard Dummy Antenna.
11509 A Fuseholder, protection for 606 B transceiver rests.
10534A Mixer, for use as a nanosecond pulse modulator.
Price: HP 606B (cibinet), $\$ 1730$; HP 606BR (rack). $\$ 171 \mathrm{~s}$.

## Model 606A

The Model 606A covers the same frequency range as the 606 B but does not include an auxiliary uncalibrated RP outpur or the frequency control fearure with the 8708 A .606 B specifications apply to the 606 A except: harmonic output is less than $3 \%$ output power level frequency response is $\pm 1 \mathrm{~dB}$.
Price: HP 606A (cabinet). $\$ 1680$; HP 606AR (rack), $\$ 1665$.


## 8708A Synchronizer

The 9708A Synchronizer is a phase-lock frequency srabilizer that provides crystal-oscillator frequency stabiliry in the 606B (and 608 F ) signal generators to 430 MHz . The outstanding AM and output level control capabilities of the signal generators are retained. Phase-locking eliminates microphonics and drift, resulting in a frequency stability of $2 \times 10^{-7}$ per 10 min utes, an increase by a factor of 250 .

## Specifications, 8708A

Frequency range: 50 kHz to 430 MHz ; phase locks 606 B and 608 F signal generator, with $2 \times 10^{-7}$ settability.
Weight: net, $27 \mathrm{lb}(12,2 \mathrm{~kg})$; shipping $31 \mathrm{lb}(14 \mathrm{~kg})$.
Price: Model 8708A, \$2050.

# VHF SIGNAL GENERATORS Versatility and value, $10-480 \mathrm{MHz}$ <br> Madels 608E, 608F 

SIGNAL GENERATORS

Models 608E and 608 F provide high-quality, versatile performance with distinctive ease of operation. The 608 E provides an adjustable, calibrated output of $0.1 \mu \mathrm{~V}$ to 1 V rms from 10 to 480 MHz . The 608 F is calibrated from $0.1 \mu \mathrm{~V}$ to 0.5 V rms over the 10.455 MHz írequency range and can be phaselocked wirh the 8708A Synchronizer for greater stability. An auxifiary RF output is available with both models.

## Specifications, 608E and 608F Frequency characteristics

Range: $608 \mathrm{E}: 10 \cdot 480 \mathrm{MHz}: 608 \mathrm{~F}: 10-45 \mathrm{~S} \mathrm{MHz}$ in 5 bands.
Accuracy: 608E: $\pm 0.5 \% ; 608 \mathrm{~F}: \pm 1 \%$.
Dilft: $608 \mathrm{E} / \mathrm{F}$ : less than $50 \times 10^{-8} / 10 \mathrm{~min}$ atter one hr warmup. 608 F : stabilicy when used with 8708A Syachronizer: 5 x $10^{-8} / \mathrm{min} ; 2 \times 10^{-\pi} / 10 \mathrm{~min} ; 2 \times 10^{-6} / \mathrm{day} ; 2 \times 10^{-7} /{ }^{\circ} \mathrm{C}\left(0^{2}\right.$ to $\left.55^{\circ} \mathrm{C}\right) ; 2 \times 10^{-}: 10 \%$ line voltage change.
Frequency control input (608F only): front panel input can be used with 8708A Synchronizer and external frequency conrrol: limits 0 to $-50 \mathrm{~V}, 4 \mathrm{~K} \Omega$ nominal input impedance.
Resettabillty: better than $\pm 0.1 \%$ after initial riarmup; fine-frequency-adjust provides approx 25 kHz settability at 480 MHz (608E).
Crystal calibrator: provides frequency check points every 1 MHz up to 270 MHz or every 5 MHz over cotal range; jack provided for audio iccquency output; crystal frequency ac. curacy betcer than $0.01 \%$ at room temperatures.
Restdual $F M$ : less than $上 5$ parts in $10^{-}$peak.
Harmonic output: at least 35 dB belon the carricr for harmonic frequencies belon: 500 MHz .

## Output characteristics

Output level: continuously adjustable from $0.1 \mu \mathrm{~V}$ to 1.0 V ( 608 E ) and $0.1 \mu \mathrm{~V}$ to 0.5 V ( 608 F ) into a 50 -ohm resistive load; output calibraced in voles and dBm.
Accuracy: within $\pm 1 \mathrm{~dB}$ of attenuator dial reading at any frequency when RF output meter indicates "ATTENUA. TOR CALIBRATED."
Impedance: son with a maximum SWR of 1.2 for attenuator setting below -7 dBm .
RFI: mcets all conditions specified in MIL-I-6181D: permits receiver sensitivity measurements down to at least $0.1 \mu \mathrm{~V}$.
Auxiliary RF output: 608 E : at least 180 mV rms into $50 \Omega$ provided as front panel.
608F: front panel output for use with HP 8708A Synchron. izer or other external equipment. Power Jevels into 508 are: 10 to $215 \mathrm{MHz},-1.8$ to $+7 \mathrm{dBm}: 215$ to 400 MHz . +2.0 to $+7 \mathrm{dBm} ; 400$ to $430 \mathrm{MHz}+1.0$ to +7 dBm .

## Modulation characteristics

Internal AM
Frequency: 400 and $1000 \mathrm{~Hz}, \pm 10 \%$
Modulation level: 0 to $95 \%$ modulation at carrier levels 0.5 V and below $(608 \mathrm{E})$ and $.224 \mathrm{~V}(1 \mathrm{~mW})$ or below (608F)
Carrier envelope distortion: less than $2 \%$ at $30 \%$ AM, less than $5 \%$ at $70 \%$ AM.
External AM
Frequency: 20 Hz to 20 kHz .
Modulation level: 0 to $95 \%$ modulation at carrier levels of 0.5 V and below ( 608 E ) and at $.244 \mathrm{~V}(1 \mathrm{~mW})$ or below (608F): continuously adjuscable with front panel MOD LEVEL control; input required, 1110 V rms ( $1000 \Omega$ input impedance).


Carrier envelope distortion: less than $2 \%$ at $30 \%$ AM, less than $5 \%$ at $70 \%$ AM, (modulation source distortion less than $0.5 \%$ ).
Modulation meter accuracy: $\pm 5 \%$ of full scale 0 to $80 \%$, $\pm 10 \%$ from $80 \%$ to $95 \%$ (for INT AM or 20 Hz to 20 kHz EXT AM).
Incldental FM (at 400 and 1000 Hz modulation): less than 1000 Hz peak ar $50 \%$ AM for frequencies above 100 MHz ; belorv 100 MHz , less than $0.001 \%$ at $30 \%$ AM.

## External pulse modulation

Rise and decay time: from 40 MHz to 220 MHz , combined rise and decay time less than $4 \mu$; above 220 MHz com. bined rise and decay time less than $2.5 \mu \mathrm{~s}$.
On-off ratio: at least 20 dB for pulsed carrier levels of 0.5 V and above.
input requirad: positive pulse, $10-50 \mathrm{~V}$ peak, input imped. ance 2000 2 .

## General

Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 ro 400 Hz : approx: 220 W .
Dimensions: cabinct: $131 / 4^{\prime \prime}$ wide, $163 / 8^{\prime \prime}$ high, 21 " deep ( 337 x $4106 \times 533 \mathrm{~mm}$ ); rack rount: $19^{\prime \prime}$ wide, 13-31/32" high, $183 / 8^{\prime \prime}$ deep behind panel ( $483 \times 335 \times 467 \mathrm{~mm}$ ).
Weight: cabinet mount: net, $62 \mathrm{lbs}(28 \mathrm{~kg}$ ); shipping, 7f lbs ( $33,4 \mathrm{~kg}$ ): rack mount: net, 62 lbs ( 28 kg ); shipping, 83 lbs ( $37,4 \mathrm{~kg}$ ).
Accessories available: (see page 356 ).
11508 A Output Cable for high impedance circuits.
il509A Fuse Holder: protection for transceiver tests. 1051-1 A Mixer for use as nanosecond pulse modulator.
Price: Model 608E (cabinet), \$1930: Mode! 608ER (rack mount), $\$ 1975$; Model 608F (cabinet), $\$ 2090$; Model 608FR (rack mount), $\$ 2130$.

202H, 202J
The HP 202H EM.AM Signal Generator covers the fre. quency range 5410216 MHz and is designed for the testing and calibration of PM receiving systems in the areas of broadcast FM, VHP. TV. mobile and general communications.

The HP 202J FM.AM Signal Generator covers the frequency range from 195 to 270 MHz and is designed for the testing and calibration of FM velemetering receiving systems in the 215 to 260 MHz band.


202H

Specifications, 202H, 202J
Radio frequency characteristles
RF range: $202 \mathrm{H}, 54$ to 216 MHz ; 202J $195-270 \mathrm{MHz}$.
RF accuracy (after 1 hr warm-up): main dial, $\pm 0.5 \%$; elec. tronic vernier, $\pm(10 \%+1 \mathrm{kHz})$.
RF stabllity: $202 \mathrm{H}:<0.01 \% / \mathrm{hr} ; 202$ I: $<0.02 \% / \mathrm{hr}$, after 2. hour warm-up.
RF output: cange $0.1 \mu^{V}$ to 0.2 V (across external $50-0 \mathrm{hm}$ load at panel jack); accuracy: $\pm 10 \% \cdot 0.1 \mu \mathrm{~V}$ to 50 mV ; $=20 \%, 50 \mathrm{mV}$ to 0.2 V ; auro level set: holds RF monitor meter to "red line" over band; impedance: 50 ohms; VSWR: <1.2; spurious output: all spurious RF output voltages are ar leass $25 \mathrm{~dB}(202 \mathrm{~J})$ and $30 \mathrm{~dB}(202 \mathrm{H})$ below desired frequency.
RF leakage: sufficiently low to permit measurements at $0.1 \mu \mathrm{~V}$.

## Amplitude modulation characterlstics

AM range: internal, 0 ro $50 \%$; external, 0 to $100 \%$.
AM accuracy: $\pm 10 \%$ of reading at 400 Hz at $30 \%$ and $50 \%$. AM calibration: $30,50,100 \%$.
AM distortion: $<5 \%$ at $30 \%,<8 \%$ at $30 \%,<20 \%$ ar $90 \%$.
AM fidelity: $\pm 1 \mathrm{~dB}, 30 \mathrm{~Hz}$ to 200 kHz .

## Frequency modulation characteristics

FM devlation range: internal or external, 0 to 250 kHz in 4 canges ( 202 H ) : 0 to 300 kHz (202J).
FM deviation accuracy: $\pm 5 \%$ of full-scale (for 400 Hz sine wave).

FM distortion ( 202 H only): $<0.5 \%$ at $75 \mathrm{kHz}(100 \mathrm{MHz}$ ), $<1 \%$ at 75 kHz ( 54 to 216 MHz ), $<10 \%$ at 250 kHz ( 54 10216 MHz ); at 400 Hz modulation frequency.
FM non-Ilnearity ( 202 J only) : $<1.5 \%$ at $150 \mathrm{~Hz},<5 \%$ at 300 kHz ("least squares" deparrure from straighr line passing through origin).
FM fidelity 202H: $\pm 1 \mathrm{~dB}$. 5 Hz to 200 kHz .
202J: $\pm 1 \mathrm{~dB}, 5 \mathrm{~Hz}$ to $500 \mathrm{kHz}: \pm 3 \mathrm{~dB}, 3 \mathrm{~Hz}$ to 1 MHz .
Pulse modulation characterlstics
Source: external: rise time: $202 \mathrm{H} \leq 0.6 \mu \mathrm{~s}: 202 \mathrm{~J}<0.25 \mu \mathrm{~s}$; fall time: < $0.8 \mu \mathrm{~s}$.

## Modulatlon oscillator characterist|cs

Osc frequency 202H: $50 \mathrm{~Hz}, 400 \mathrm{~Hz}, 1000 \mathrm{~Hz}, 3000 \mathrm{~Hz}, 7.9$ $\mathrm{kHz}, 10 \mathrm{kHz}, 15 \mathrm{kHz}, 67 \mathrm{kHz}$; 202J: $50 \mathrm{~Hz}, 400 \mathrm{~Hz}, 1700$ $\mathrm{Hz}, 3900 \mathrm{~Hz}, 10.5 \mathrm{kHz} .30 \mathrm{kHz}, 70 \mathrm{kHz} .100 \mathrm{kHz}$.
Ose accuracy: $\pm 5 \%$.
Osc distortion: $<0.5 \%$, except $<1.0 \%$ at 67 kHz for 202 H .

## General

Dimensions: $16^{3 / 4} / 4^{\prime \prime}$ wide, $10^{1 / 4 " ~ h i g h, ~} 183 / 8^{\prime \prime}$ deep ( $425 \times 260 \times$ 467 mm ).
Weight: act, $47 \mathrm{lbs}(20,3 \mathrm{~kg}$ ) ; shipping. $66 \mathrm{lbs}(29,7 \mathrm{~kg}$ ) for 202 H .
Power: 105 to 125 or 210 to $250 \mathrm{~V}, 50$ to $400 \mathrm{~Hz}, 100 \mathrm{~W}$.
Accessory furnished: 00502B patching cable.
Price: HP 202H, $\$ 1750$; HP 202J, $\$ 1875$.
Option 001: Aux. RF output $>50 \mathrm{mV}$, (202J only). add $\$ 150$.

## 207H

The HP 207H Univerter is a frequency converter with unity gain designed for use with the HP 202H and 202J Signal Gen. erators to provide additional frequency coverage from 100 kHz to 55 MHz . The 207 H duplicates AM \& FM of the 202 H and 202 J with no appreciable distortion for input levels less than 50 mV .


Major Specifications, 207H
(When used with 202 H and 202 J Signal Generators.)
RF range: 100 kHz to 55 MHz (with 199.9 to 145 MHz inpur from $202 \mathrm{H} ; 200.1$ to 253 MHz input (rom 202 J ).
RF outout: $1 \mu \mathrm{~V}$ to 0.1 V and $0.01 \mu \mathrm{~V}$ to 1 mV across extemal so-ohm load at panel jack; $>1 \mathrm{~V}$ with 0.1 V input and $300 \cdot 0 \mathrm{hm}$ output load.
Power: 105 to 125 V or 210 to $250 \mathrm{~V}, 50$ to 400 Hz , 50 W . Price: HP 207H \$650.

# UHF SIGNAL GENERATOR All-purpose UHF signal generator, 450 to 1230 MHz <br> Model 612A 

 SIGNAL GENERATORSHere is an all-purpose, precision signal genecator particularly designed for utmost convenience and applicability throughout the important UHF.TV frequency band. It is ideally suited For measurements in UHF.eelevision broadcasting, srudiotransmitter links, citizen's radio and public service communications systems. The HP 612A also covers the important frequencies used in aircraft navigation aids such as DME, TACAN and airborne transponders. Accessory modulators, available from many of the manufacturers of these navigational aids, enable the 612 A to provide the complex modulation patterns required for testing and aligning these systems. In the laboratory, the 612 A is a convenient power source for driving bridges, sloted lines, antennas and filter networks. In addition, the HP 8731 PIN Modulators can be used with the 612A to obrain RF pulses with 30 ns rise time and $0.1 \mu \mathrm{~s}$ minimum duration-with on-off ratios approaching 80 dB .

## MOPA circuit

The master oscillator-power amplifier circuit in the HP 612A provides 0.5 volt into 50 ohms over the full frequency range of 450 to 1230 MHz . There is very low incidental FM (less than $0.002 \%$ at $30 \% \mathrm{AM}$ ) and excellent amplitude modulation capabilities by all frequencies from 20 Hz to 5 MHz . The degree of modulation is easily read from the large percent modulation merer. The instrument can be amplitude-modulated (either internally or externally), and provision is made for external pulse modulation as well. Pulse modulation can be applied to the amplifer or directly to the oscillator when high on.off signal zatios are required (signal may be completely cut off between pulses). Modulation can be up or down from a preser level to simulate TV modulation characteristics accurately.

## Advanced design

The oscillator-amplifer circuit in the 612A employs highfrequency pencil triodes in a cavity-tuned circuit for precise
tracking over the entice band. Noncontacting cavity plungers are die-cast to precise tolerances, then injection-molded with a plastic filles for optimum Q . The frequency drive is a direct screw-operated mechanism, free from backlash. A waveguide-beyond-cutoff piston attenuator and crystal monitor circuit are used to ensure accurate, reliable output down to $0.1 \mu \mathrm{~V}$. The attenuator is calibrated over a range of 131 dB and has been carefully designed to provide a constant impedance-versus. frequency characteristic. The SWR of the 50 -ohm output system is less than 1.2 over the complete frequency range.


## Specifications

Frequency range: 450 to 1230 MHz in one band; scale length approximately 15 " ( 381 mm ).
Callbration accuracy: within $\pm 1 \%$; resetrability better than 5 MHz ar high frequencies.
Output voltage: $0.1 \mu \mathrm{~V}$ to 0.5 V into 50.0 hm load; calibrated in V and $\mathrm{dBm}(0 \mathrm{dBm}=1 \mathrm{~mW})$.
Output accuracy: $\pm 1 \mathrm{~dB}, 0$ to -127 dBm over entire frequency range.
Output Impedance: 50 ohms; maximum reflection coefficient, 0.091 ( $1.2 \mathrm{SWR}, 20.8 \mathrm{~dB}$ return loss) for attenuaror settings of 0 dBm and below
Amplitude modulation: above $170 \mathrm{MHz}, 0$ to $90 \%$ at audio frequencies, indicated by panel meter; accuracy $\pm 10 \%$ of full scale. 30 to $90 \%$ modulation.
Incidental FM: less than $0.002 \%$ for $30 \%$ AM.
Internal modulation: 400 and $1000 \mathrm{~Hz} \pm 10 \%$; envelope distortion less than $3 \%$ at $30 \%$ modulation.
External modulation: 20 Hz to 5 MHz ; above $470 \mathrm{MHz}, 2 \mathrm{~V}$ rms produces $85 \%$ AM at modulating frequencies up to 500 kHz , at least $40 \% \mathrm{AM}$ at 5 MHz : modulation may be up or down from the carrier level or symmetrical about the car. rier level; positive or negative pulses may be applied to in. crease or decrease RF outpur from the carrier level.

Pulse 1 (pulse applied to amplifler): positive or negative pulses, 4 to 10 V peak produce an RF on-ofi ratio of at least 20 dB ; minimum RF output pulse length, $1.0 \mu \mathrm{~s}$.
Pulse 2 (pulse applied to oscillator): positive or negative pulses, 4 to 40 V peak; no RF output during off time; minimum $R F$ output pulse length, $1.0 \mu \mathrm{~s}$.
RFI: conducted and radiated leakage limits are below those specified in MIL-I.6181D; permits receiver sensitivity measurements down to $1 \mu \mathrm{~V}$.
Power: 115 or 230 volts $\pm 10 \%, 50$ to $400 \mathrm{~Hz}, 215$ wates
Dimensions: cabinet: $131 / 2^{\prime \prime}$ ide, $161 / 2^{\prime \prime}$ high, $211 / 2^{\prime \prime}$ deep ( $333 \times 419 \times 546 \mathrm{~mm}$ ); rack mount: $19^{\prime \prime}$ wide, $13.31 / 32^{\prime \prime}$ high, $201 / 4$ " deep behind panel ( $483 \times 355 \times 514 \mathrm{~mm}$ ).
Weight: net, $96 \mathrm{lbs}(25.2 \mathrm{~kg})$; shipping. $68 \mathrm{lbs}(30,6 \mathrm{~kg})$ (cabinet) ; net, $96 \mathrm{lbs}(25,2 \mathrm{~kg}$ ); shipping, $77 \mathrm{lbs}(34,6 \mathrm{~kg})$ (rack mount).
Accessories available: 11500A RF Cable Assembly; 10503 A Video Cable Assembly; 360B Low-Pass Filrer (may be used where harmonic output must be reduced to a minimum, as in slorted line measurements).
Price: HP 612A, $\$ 1950$ (cabinet); HP 612AR, $\$ 1990$ (rack mount).


## HP 8614A, 8616A Signal Generators

The HP 8614A and 8616A Signal Generators provide stable, accurate signals from 800 to 2400 MHz ( 8614 A ) and from 1800 to 4900 MHz ( 8616 A ). Both frequency and attenuation are ser on direcr-reading digital dials, while selectable functions include CWW, leveled output, square.wiave modulation, and ex. ternal AM, FM and pulse modulation. Modulation can be accomplished simultaneously with or without leveling.
Tro RF porer ourputs are simulcancously available from separate front-panel connectors. One provides at least 10 mW ( 2 mW above 3000 MHz ) or a leveled outpur from 0 to - 127 dBm . The other is at least 0.5 mW across the band and is independent of atrenuator setting. This signal can be used for phase-locking the signal generators for extreme stability, or it can be monitored with a frequency counter for extreme frequency resolurion withous adversely affecting the primary output.
A unique PIN diode modulator permits amplitude modula. tion from do to 1 MHz or furnishes RF pulses arith a $2 \mu \mathrm{~s}$ rise time. This broad modulation bandridth permits remote control of output level or precise leveling using external equip. ment. The internal leveling is also obrained by using a PIN modulator.

## HP 8614B, 8616B Signal Sources

The HP $8614 B$ and 8616 B rerain the convenience of the " $A$ " models. Although the signal sources do nor have power monitors or incernal PIN diode modulation, relative porer measure. ments can be made. using the precision attenuator. Modulation capabilities include internal square-wave modulation, plus excernal pulse and frequency modulation. A friction clutch arrangement permits setting the atterluator dial to any suitable reference while output power is held conscant. Thus, the attenuator can be calibrated direcrly in dBm or insertion loss.

## Specifications

Frequency range: 8614 A and $8614 \mathrm{~B}, 800$ to $2400 \mathrm{MHz} ; 8616 \mathrm{~A}$ and $8616 \mathrm{~B}, 1800$ to 4500 MHz .

Leveled output: constant within $\pm 0.75 \mathrm{~dB}$ ( 8614 A ) and $\pm 1.0$ dB (8616A) across entire frequency range at any atrenuator setting below 0 dB . Not available with 8614 B and 8616 B
Frequency calibratlon accuracy: $8614 \mathrm{~A}, \pm 9 \mathrm{MHz} ; 8614 \mathrm{~B}, \pm 5$ MHz or $\pm 0.5 \%$, whichever is greater; $8616 \mathrm{~A}, \pm 10 \mathrm{MHz}$; $8616 \mathrm{~B}, \pm 10 \mathrm{MHz}$ or $\pm 0.5 \%$, whichever is greater,
Versier: $\Delta \mathrm{F}$ control has a minimum range of 1.5 MHz for fine tuning ( 1.0 MHz for $8614 \mathrm{~B}, 8616 \mathrm{~B}$ ).

## Frequency stability

Whth temperature: approximately $0.005 \% /{ }^{\circ} \mathrm{C}$ change in antbient temperature.
With line voltage: less than $0.003 \%$ change for line voltage vatiation of $=10 \%$.
Residual FM: 8614A and 8616A, less than 2500 Hz pak; 8614 B , less than $0.0003 \%$ peak: 8616 B , less than 6 kHz peak.
RF output power
8614A: $+10 \mathrm{dBm}(10 \mathrm{~mW})$ to $-127 \mathrm{dBm}(0.1 \mu \mathrm{~V})$ into a 50 -ohm load; output attenuator dial directly calibrated in dBm from 0 to -127 dBm .
8614B: at least 15 mW max, concrolled by attenuator.
8616A: +10 dBm to -127 dBm into a 50 ohm load, 1800 to 3000 MHz : +3 dBm to -127 dBm into a 50 -ohm load. 3000 to 4500 MHz ; output attenuator directly calibrated in dBm from 0 to -127 dBm .
8616B: at least 1 smW maximum, 1800103000 MHz ; at least 3 mW maximum, 3000 to +500 MHz ; controlled by zttenuator.
Output impedance: 50 ohms nominal.
Roflection coefficlent
8614A, 8616A: less than 0.33.
8614B: less than 0.2 .
8616B: less than 0.26.

## Modulation

Internal square wave: 950 to 1050 Hz . can be synchconized with a +1 to +10 volt input signal.
External AM (8614A, 8616A only): ds to 1 MHz .
Incldental FM (8614A, 8616A only): negligible for porer levels belor -10 dBm .
External pulsa 8614A and 8616A: 50 Hz to $50 \mathrm{kHz}, 2 \mu$ s rise time, +20 vo +100 volts inpur. $8614 \mathrm{~B}, 8616 \mathrm{~B}$ (below 4000 MHz ): 50 Hz to 500 kHz ; +25 to +50 volts peak input; minimum RF pulse width, 300 ns: RF rise time, typically 200 ns.
External FM: (a) front-panel connector capacitively coupled to klystron repeller; input impedance, 220 k § shunted by approx 300 pF ; (b) rear-panel connector is de-coupled to the klystron repeller.
Power: 115 or 230 volts $\pm 10 \%, 50$ to 60 Hz , approx 123 walls.
Dimensions: $163 / 4^{\prime \prime}$ wide, $31 / 2^{\prime \prime}$ high, $183 / 8^{\prime \prime} \operatorname{deep}(426 \times 141 \times$ 467 mm ) : hardware furnished for conversion to rack mount 19" wide, $5.7 / 32^{\prime \prime}$ ligh, $163 / 8^{\prime \prime}$ deep behind panel ( 483 x $133 \times 416 \mathrm{~mm}$ ).
Weight: 8614 A and 8616 A : net, 44 lbs ( $19,8 \mathrm{~kg}$ ): shipping, 48 lbs ( 22.0 kg ), $8614 \mathrm{~B}, 8616 \mathrm{~B}$ : net, $38 \mathrm{lbs}(17,1 \mathrm{~kg})$; shipping, $44 \mathrm{lbs}(19.4 \mathrm{~kg})$.
Price: HP 8614A or 8616A, $\$ 2570$ : HP 8614B or 8616B. $\$ 1980$. Option 001: external modulation input connectors on rear panel in parallel with front-panel connectors; RF connectors on reas pancl only. add $\$ 2 \mathrm{~s}$.

# UHF SIGNAL GENERATORS Direct-reading, direct control, 800 to 4200 MHz Models 614A, 616B 

 SIGNAL GENERATORSEase of operation, direct-reading one dial frequency con. trol, high stability and accuracy and broad frequency coverage are all advantages of these widely used signal generators.

The 614A covers frequencies from 800 to 2100 MHz , has constant output impedance with less than 1.6 SWR, and output accuracy of $\pm 1.5 \mathrm{~dB}$ over the range of -10 dBm to -127 dBm . The 616 B gives complete coverage of frequencies from 1.8 to 4.2 GHz , has constant output imped. ance with less than 1.8 SWR, and output accuracy of $\pm 1.5$ dB from -7 dBm to -127 dBm .

On both instruments, operation is extremely simple. Carrier frequency is set and read directly on the large tuning dial. No voltage adjustments are necessary during operation because of the coupling device which causes oscillator repeller voltage to track frequency changes automatically. Oscillator output is set and read directly on a simplified dial. Output may be continuous or pulsed, or frequency. modulated at power line frequency. Pulse modulation may be provided externally or internally. Internal pulsing may be synchronized with either positive or negative external pulses, or sine waves.

The oscillator portion of both the 614A and 616B consists of a reflex klystron in an external coaxial resonator. Frequency of oscillation is determined by a movable plenger which varies the resonant frequency of the resonator. Oscillator output is monitored by a temperature-compensated thermistor bridge circuit which is virtually unaffected by ambient temperature conditions. Voltage output is read directly. A logging scale on the frequency dial provides a resettability of $0.1 \%$.

## Specifications

Frequency range: $614 \mathrm{~A}, 800$ to $2100 \mathrm{MHz} ; 616 \mathrm{~B}, 1.8$ to 4.2 GHz .
Frequency accuracy: $\pm 1 \%$.
Frequency stabillty: $0.005 \% /{ }^{\circ} \mathrm{C}$ change in ambient tempera. ture; line voltage changes of $\pm 10 \%$ cause $0.01 \%$ frequency change.
Output power range (into $50-0 \mathrm{hm}$ load): $614 \mathrm{~A}, 0.5 \mathrm{~mW}$ or 0.158 V to $0.1 \mu \mathrm{~V}(-3$ to $-127 \mathrm{dBm})$ from 800 to $900 \mathrm{MHz}, \mathrm{l} \mathrm{mW}$ or 0.224 V to $0.1 \mu \mathrm{~V}$ (0 to -127 dBm ) from 900 to 2100 MHz ; 616 B .1 mW or 0.224 V to $0.1 \mu \mathrm{~V}$ (0 to -127 dBm )
Power accuracy (at the end of 6.ft output cable, terminated in 50.0 hm load): 614 A , within $\pm 1.5 \mathrm{~dB}$ from -10 to $-127 \mathrm{dBm} ; 616 \mathrm{~B}$, within $\pm 1.5 \mathrm{~dB}$ from -7 to -127 dBm.
Output impedance: $614 \mathrm{~A}, 50 \mathrm{ohms}$, reflection coefficient less than 0.23 ( $1.6 \mathrm{SW}, 12.7 \mathrm{~dB}$ return loss); 616 B .50 ohms, reflection coefficient less than 0.285 (1.8 SWR, 10.9 dB return loss)

Modulation: internal oc external pulse or FM.
Internal pulse modulation: pulse repetition rate variable from 40 to 4000 per sec; pulse length variable from 1 to 10

$\mu s ;$ delay variable from 3 to $300 \mu s$ between synchronizing signal and RF pulse.
External pulse modulation: ext -: -40 to $-70 \mathrm{~V}, 1$ to $2500 \mu \mathrm{~s}$ wide, ext $+:+40$ to $+70 \mathrm{~V}, 1$ to $400 \mu \mathrm{~s}$ wide, square wave: $\pm 40$ to $\pm 70 \mathrm{~V}$ p-p, 40 to 4000 Hz .
Trigger pulses out: (1) simultaneous with RF pulse; (2) in advance of RE pulse, variable from 3 to $300 \mu$ s (both approximately $1 \mu$ s rise time, amplitude +10 to +50 volts).
External synchronization: pulses, $\pm 10$ to $\pm 50 \mathrm{~V}$, i to 20 $\mu s$ wide; may also be synchronized with sine waves.
Frequency modulation: oscillator sweeps at power line feequency; deviation and phase adjustable; maximum deviation approx 3 MHz p-p.
RFi: conducted and radiated leakage limits are below those specified in MIL-I-6181D.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz , approx 160 W .
Dlmensions: cabinet: $171 / 4^{\prime \prime}$ wide, $135 / 8^{\prime \prime}$ high, $131 / 2^{\prime \prime}$ deep ( $438 \times 346 \times 343 \mathrm{~mm}$ ) ; rack mount: $19^{\prime \prime}$ wide, 13 31/32" high, $121 / 8^{\prime \prime}$ deep behind panel ( $483 \times 355 \mathrm{x}$ 308 mm ).
Weight: net, $58 \mathrm{lbs}(26,4 \mathrm{~kg})$; shipping. $66 \mathrm{lbs}(30,0 \mathrm{~kg})$. Accessory furnished: 11500 A RF Cable Assembly.
Accessorles available: 614A: 360C Low Pass Filter, $f_{c}=$ 2200 MHz ; 10503 A Video Cable Assembly; 616B: S281A Waveguide-to-Coax Adapter, 2.6 to 3.95 GHz ; G281 A Waveguide-to-Coax Adapter, 3.95 to $5.85 \mathrm{GHz} ; 360 \mathrm{D}$ Low. Pass Filter, $f_{c}=4.1 \mathrm{GHz}$.
Price: HP 614A or HP 616B, $\$ 2700$ (cabinet): HP 614AR or $616 \mathrm{BR}, \$ 2740$ (rack mount).

# SHF SIGNAL GENERATORS <br> Multiple-purpose instruments, 3.8 to 11 GHz <br> Models 618C, 620 B 

The Models 618 C and 620 B SHF Signal Generators pro. vide versatility, accuracy, and stability in the range from 3.8 to 11 GHz . Frequency is set on a large, direct-reading

dial. A $\triangle \mathrm{F}$ vernier control provides ultra-fine tuning capability. There is also a provision for remote fine tuning.
A calibrated output from 0 to -127 dBm ( 0.224 volts to 0.1 microvolt) is also set on a large, direct-reading dial. The dial is calibrated in both dBm and volts. An auxiliary output of at least 0.3 milliwatt is available and is independent of attenuator setting. Thus, it can be used for phaselocking the signal generator when crystal-oscillator stability is required, or it can be monitored with a frequency counter for extreme frequency resolution.

The 618C and 620B Generators boch feature oscillators of the reflex klystron type, with external resonant cavity. Oscillator frequency is determined by a movable plunger which varies the length of the cavity. Oscillator output is monitored by a temperature-compensated detector circait. This circuit operates vistually unaffected by ambient temperature conditions.
Modulation includes internal pulse, square wave, and frequency modulation plus external pulse and frequency modulation.

## Specifications

## Output

Frequency range: $618 \mathrm{C}: 3,800$ to $7,600 \mathrm{MHz}$ covered in a single band; 620B: 7 to 11 GHz covered in a single band; repeller voltage automatically tracked and proper mode automatically selected.
Callbration: direct reading; frequency calibcation accuracy better than $\pm 1 \%$.
Frequency stability: with temperature: less than $0.006 \% /{ }^{\circ} \mathrm{C}$ change in ambient temperature; with line voltage less than $0.02 \%$ change for line voltage variation of $\pm 10 \%$; residual FM: $<15 \mathrm{kHz}$ peak.
Output range: 1 milliwatt or 0.224 volt to 0.1 microvolt ( 0 dBm to -127 dBm ) into 50 ohms; directly calibrated in microvolts and $d B$; coaxial type $N$ connector.
Output accuracy: within $\pm 2 \mathrm{~dB}$ from -7 to -127 dBm , within $\pm 3 \mathrm{~dB}$ from 0 to -7 dBm , terminated in 50.0 hm load.
Source Impedance: 50 ohms nominal; reflection coefficient less than 0.33 .

## Modulation

Modulation: internal or external pulse, FM , and square wave. Internal pulse modulation: repetition rate variable from 40 to $4,000 \mathrm{pps}$, pulse width variable $1 / 2$ to 10 mic roseconds.
Sync out signals: simultaneous with RF pulse, positive; in advance of RF pulse, positive, variable 3 to 300 microseconds (better than 1 microsecond rise time and 25 to I00 volts amplitude into 1,000 -ohm load).
External synchromization: sine wave: 40 to $4,000 \mathrm{~Hz}, 5$ to 50 V rms; pulse: 40 to $4,000 \mathrm{pps}, 20$ to 70 V peak, positive or negative, 0.5 to $S \mu \mathrm{~s}$ wide, 0.1 to $1 \mu \mathrm{~s}$ rise time.

Internal square-wave modulation: variable 40 to $4,000 \mathrm{~Hz}$, Internal FM: sawtooth sweep rate adjustable 40 to $4,000 \mathrm{~Hz}$; frequency deviation to 5 MHz peak-to-peak over most of the frequency range.
External pulse modulation: pulse requirements: amplitude from 20 to 70 volts positive or negarive, width 0.5 to 2,500 microseconds.
External FM: frequency deviation approximately 5 MHz peak-to-peak over most of the band; sensitivity approximately $20 \mathrm{~V} / \mathrm{MHz}$ at front-panel connector, approximately $10 \mathrm{~V} / \mathrm{MHz}$ at reac-pancl connector (mating connector supplied); front-panel connector is capacitively coupled to klystron repeller; rear-panel connector is dccoupled to klystron repeller and is suitable for phase-lock control input.

## General

RFI: conducted and radiated leakage limits ace below those specified in MIL-I-6181D.
Power source: 115 or 230 volts $\pm 10 \%, 50$ to 60 Hz 230 W.
Dimenslons: cabinet, $171 / 2^{\prime \prime}$ wide, $137 / 8^{\prime \prime}$ high, $203 / 8^{\prime \prime}$ deep behind panel ( $445 \times 353 \times 518 \mathrm{~mm}$ ); rack mount, $19^{\prime \prime}$ wide, 13-31/32" high, $19^{\prime \prime}$ deep behind panel (483 x $355 \times 483 \mathrm{~mm}$ ).
Weight: net, $67 \mathrm{lbs}(30,4 \mathrm{~kg})$; shipping, $75 \mathrm{Ibs}(34,1 \mathrm{~kg})$.
Accessory furmishad: 11500 A Cable Assembly, 6 feet (1830 mm ) of RG-214A/U 50-0hm coax, terminated on each end by type N male connectors.
Price; Model 618C or 620B (cabinet mount), $\$ 2700$. Model 618 CR or 620 BR (rack mount), $\$ 2740$.

# SHF GENERATORS/DOUBLERS Generate stable signals, 10 to 40 GHz 

626A, 628A
The 626A covers frequencies 10 to 15.5 GHz , and the 628A covers frequencies 15 to 21 GHz . In design and operation, the instruments are similar to Hewletr-Packard generators for loner frequency ranges. Carrier frequency is set and read directly on the large runing dial. No voltage adjustment is necessary during luning because repeller voltage is tracked with frequency changes automatically. Oscillator outpue also is set and read directly. and no frequency correction is necessary throughout operating range. A frequency logging scale permits frequency to be reset within $0.1 \%$.
Both the $626 A$ and $628 A$ offer internal and exrernal pulse. square-pave and frequency modulation. The pulse generators may be synchronized with an external sine wave and positive or negative pulse signals.
The high porer output of these signal generators makes thern ideally suited for driving HP 938A and 940A Frequency Doubler sets. These doubler sets retain the modulation and stability of the driving source and have accurace power moni. tors and attenuators.

## Specifications, 626A, 628A

Frequency range: 626A, 10 to $15.3 \mathrm{GHz} ; 628 \mathrm{~A}, 15$ to 21 GHz .
Frequency calibration: dial direct-reading in GHz , uccuracy beter than $\pm 1 \%$.
Output range: 10 mW to $1 \mathrm{ply}(\div 10 \mathrm{dBm}$ to $-90 \mathrm{dBm} .0 \mathrm{dBm}=$ 1 mW ) : atenuator dial calibrated in oulpur $\delta 8 \mathrm{~m}$.
Source impedance: 50 ohms nominal, reßection coefficient: 626A. less than $0.43 \mathrm{at}+10 \mathrm{dBm}, 0.15$ at 0 dBm and below: 628 A , less than 0.43 at $+10 \mathrm{dBm}, 0.091$ at 0 dBm and below.
Output monitor accuracy: better than $\pm 1 \mathrm{~dB}$ : temperature-compensated thermistor bridge circuit minntors RF oscillator power jevel.
Output connector: 626A: $0.850 \times 0.475$ inch wateguide, WR75. fla cover flange: $628 \mathrm{~A}: 0.590 \times 0.335$ inch wareguide. WRSI, fat cover flange.
Output attenuator accuracy: better than $\pm 2 \%$ of attenuation in dB introduced by output atenuator.
Modulation: inzemal or external pulse, FM, or squarenate.
Internal pulse modulatlon: repectition raee variable from 40 ta 4000 pps: pulse width vaciable $0.51010 \mu \mathrm{~s}$.
Internal square-wave modulation: variable 40 to 4000 Hz controlled by "pulsc rate" control.
Internal frequency modulation: power line frequency, deviation up to $10 \mathrm{MHzp-p}$.
External pulse modulation: pulse requirements: amplitude is in 70 volts peak positive or negative; width 1 to $2500 \mu \mathrm{~s}$.
External frequency modulation: provided by capacitice coupling to the klystron repeller: maximum der iation approx $10 \mathrm{MHz} p \mathrm{p}$.
Sync out slgnals: positice 20 to 50 V peak into 1000 .ohm lad: better than $1 \mu \mathrm{~s}$ rise time: 1) simultaneous with RF pulbe, posttise; 2) in advance of RF pulse, pesitive, variable 5 to $300 \mu \mathrm{~s}$.
External synchronization: 1) sine wave, 40 w 4000 Hz , ampli. 'tude 5 to 50 V rms; 2) pulse signal's 0 to $4000 \mathrm{pps}, 5$ to 50 V amplitude, positive or negalive; pulse width 0.5 to $\mathrm{S} \mu \mathrm{s}$; rise time 0.$) 101 / 15$.

Power: 115 or 230 voles $\pm 10 \%$, so so 60 Hz, approx 200 watts.
Dlmenslons: cabinti: $17^{\prime \prime}$ wide, $14^{\prime \prime}$ high, $15^{\prime \prime}$ deep ( 432 x $356 \times 381 \mathrm{~mm}$ ): rack mount: $19^{\prime \prime}$ wide, $14^{\prime \prime}$ high. $12.13 / 16^{\prime \prime}$ deep behind pancl ( $483 \times 356 \times 313 \mathrm{~mm}$ ).
Weight: $626 \mathrm{~A}, \mathrm{AR}$ : net, $59 \mathrm{lbs}(26,8 \mathrm{~kg}$ ); shioping. $68 \mathrm{lbs}(31,3$ kg ) ; 628A, AR : net, $56 \mathrm{lbs}(25,4 \mathrm{~kg})$; shij; ;ing 65 'ibs ( $29,5 \mathrm{~kg}$ ).
Accessories furnished: 626A, M1 292B and MP 292B Waceguide Adapters: 628A, NP 292A and NK 292A Wavegurde Adapters.
Accessories available: 10503 A Video Cable Assembly for 626 A : M362A low-pass filter.


Price: HP 626A or 628A, (cabiner) 84500 ; HP 626AR or 628AR, (rack mount), sis 40

## Frequency doubler sets

Model 938A supplies power from 18 to 26.5 GHz and Model 940 A from 26.5 to 40 GHz when driven by 9 to 13.25 GHz and 13.25 to 20 GHz sources respectively. For a swepr output, use a swept-frequency source such as Model 8690 B or Model $8620 \mathrm{~A} / \mathrm{B}$ series with appropriate RF unies.

Specifications, 938A, 940A
Frequency range: 938A, 18 to $26.5 \mathrm{GHz} ; 940 \mathrm{~A}, 26.5$ to 40 GHz . Conversion toss: less than 18 dB af 10 mW input.
Output power: approximately 0.5 .1 mW when used with typical 626A, 628A signal generators; input power: 100 mW maximum. Output attenuator: accuracy, $\pm 2 \%$ of reading or $\pm 0.2 \mathrm{~dB}$, which. ever is greater; range, 100 dB .
Output reflection coefficient: approx 0.33 at foll outpur; less than 0.2 with attenuator set to 10 dB or greater.
Input flange: 938A, M-band hat cover flange for WR.7s waveguide; 940A. N.band har cover fiange for WR. 51 wareguide.
Output flange: 938A K.band fisi corer flange for WR-f2 wave. guide: 940 A R.band flat flange for WR. 28 wat $\in$ guide.
Dimensions: $191 / 4^{\prime \prime}$ wide, $53 / 8^{\prime \prime}$ high, $18^{\prime \prime} \operatorname{deep}(489 \times 137 \times 157$ mos).
Weight: net, 20 Ibs ( 9 kg ): shipping, 26 Ibs ( 11.8 kg ).
Price: HP 938A or HP 940 A, $\$ 2800$.

SIGNAL GENERATORS


SPECIAL SIGNAL GENERATORS
Avionics and telemetry test equipment
Models 3205A, 211A, 232A, 8925A


## HP 3205A

The Model 3205A FM Signal Genecator is a self-contained, completely solid-state instrument designed for use in the measurement and calibration of FM relemerry receivers in the 1439 to 1340 MHz and 2200 to 2300 MHz frequency bands. The generator has its own deviation meter calibration system thar does not require external instrumentarion. Calibrated RF output levei, adjustable from -10 dBm to -127 dBm is also included. An inrernal modulation oscillator permits selection of channels 1 through 21 of the standard IRIG (Jnter-range Instrumentation Group) subcarrier frequencies used for relens. etry systems.
Frequency range: band 1,1430 to 1540 MHz ; band 2,21 so to 2310 MHz .
Price: $\$ 6250$
Option 001: all fiont panel conncctors moved to rear panel, add $\$ 50$.

## HP 232A

The FAA Instrument Landing Syscem for aircraft includes a glide slope receiver for indicating the proper sate of descent. The HP 232A Glide Slope Signal Generator was designed for use in testing and calibrating these glide-slope receivers.
Frequency range: RF, 329.3 to 335 MHz in increments of 0.3 MHz ; IF, 20.7 MHz ; other frequencies between 15 and 30 MHz available on special order.
Price: HP 232A, $\$ 3200$.

## HP 8925A

The HP 8925A DME/ATC Test Set is specifically designed for testing and calibrating DME (Distance Measuring Equip. ment) and ATC (Air Traffic Control) rransponder aircraft equipment. When used with suitable modulators, the test set will also simulate some TACAN and IFF signals. Completely self-contained (except for video modulators), the system consists of a conrinuously tureable signal generator (HP 8614A Option H01). direct-reading frequency counter (HP 5245 L ), solid state modulator (HP 8403A Option HO1), frequency converter (HP 5254A), riavemeter (HP 8905A), peak power measuring system (HP 8900B). and all necessary circuitry for intertonnection to the radio set under rest (HP 13505A).
Frequency range: 962 to 1213 MHz .
Price: HP 892sA, $\$ 14,080$.
Options: (specify by option number).
001: less $5245 \mathrm{~L} / \mathrm{s} 25+\mathrm{A}$ Counter, $510,505$.
002: less cabinet, $\$ 13,280$.
003: dual porier range ( 10 to $200 / 100$ to 2000 W ), add $\$ 130$.
004: HP 5246L Counter instead of HP 5245L, \$13.450.

## HP 211 A

The HP 211A Crysta)-Monitored Signal Generator is specifi. cally designed for the testing and calibrating of aircraft VOR and RS localizer radio receiving equipment operating within the frequency range from 88 to 140 MHz . It also may be used for laboratory and development work where a precision-type amplitude-modulated RF signal source is required.
Frequency range: master oscillator: 88 to 140 MHz in one range; crystal oscillaror: 110.1 and 114.9 MHz .
Price: HP 211A, 211 API Power Supply, $\$ 2900$.


## 8730 PIN Modulators

With HP 8730 series PIN Modulators, signal sources, including klystrons, can be pulse-modulated, leveled or amplitudemodulated with sinusoidal and complex waveforms. Fast risetimes, low incidental FM and a nearly constant impedance match to source and load are typical of these absorption type modulators.


## 8403A Modulator

The Model 8403A provides complete control of the PIN modulators, supplying the appropriate modulation wave shapes and bias levels for fass rise times, rated on/off ratios and amplitude modulation. An internal square-wave and pulse modulator with PRF of 50 Hz to 50 kHz and adjustable pulse widrh and delay also provides square wave and pulses for general pulse applications. For applications requiring an ab-sorption-type modularor plus controls in a single unit, a PIN modulator can be installed in the Model 8403A.

## Specifications, 8403A

Output characteristics (available separately at front parel) For driving 8730 PIN Modulators: AM and pulse ourput specially shaped for optimum RF rise and decay times.
For general pulse applications: posicive do-coupled pulse 25 to

30 volts in amplitude, approximately symmerrical about 0 volt; no AM signal.

## Modulation

Internal square wave
Frequency: variable from 50 Hz to 50 kHz .
Symmetry: better than $45 / 55 \%$.
Internal pulse
Repetition rate: variable from 50 Hz to 50 kHz .
Delay: variable from $0.1 \mu s$ to $100 \mu \mathrm{~s}$, between sync our pulse and RF output pulse.
Width: rariable from $0.1 \mu \mathrm{~s}$ to $100 \mu \mathrm{~s}$.
External syme
Signal: $S$ to 20 volis peak, + or - pulse or sine wave.
Input Impedance: approx 2000 ohms , dc-coupled.
Trigger out
Syne out: simultaneous with or 0.1 to $100 \mu \mathrm{~s}$ in advance of RF pulse, as set by delay control.
Delayed sync out: simultaneous rith ourput pulse.
Amplitude: approximately -2 volts.
Source impetance: approximately 330 ohms.
External pulse input
Amplitude and polarity; 5 volts to 20 volts peak, + or -
Repetition rate: maximum average PRF, 500 kHz .
Input impedance: approximately 2000 ohms, dc-coupled.
Width: minimum $0.1 \mu \mathrm{~s}$; maximum $\frac{1}{\mathrm{PRF}}-0.4 \mu \mathrm{~s}$.
Continuous ampitude modusation (with 8730 series)
Frequency response: $d c$ to approximately $10 \mathrm{MHz}(3 \mathrm{~dB}$ ).
Sansitivity: approx 10 dB /volt with HP 8730A series: approx $20 \mathrm{~dB} /$ volt with HP 8730 B series.
Input impedance: approximately 100 ohms.

## General

Power: 115 or 230 volts $\pm 10 \%$, 50 to 400 Hz , approx 10 watts. Dimensions: $163 / 4$ " wide, $33 / 4$ " high, $183 / \mathrm{g}^{\prime \prime}$ deep ( $425 \times 96 \mathrm{x}$ 467 mm ) ; hardware fumished for rack mount $19^{\prime \prime}$ wide, $3.15 / 32^{\prime \prime}$ high. $163 / 8^{\prime \prime}$ deep behind panel ( $483 \times 89 \times 416 \mathrm{~mm}$ ).
Weight: net, $17 \mathrm{lbs}(7,7 \mathrm{~kg})$; shipping 20 lbs $(9.5 \mathrm{~kg}$ ).
Price: HP 8403A, $\$ 900$.
Options: PIN Modulators installed

001	HP 8731A, add 5525	002	HP 8731B, add \$775
003	HP 8732A, add \$525	004	HP 8732B, add 5775
005	HP 8733A, add 5525	006	HP 8733B, add \$775
007	HP 8734A, add 55 5	008	HP 8734B, add \$775
009	inpur and outpur con	re	panel, add \$25.

Specifications, 8730 Series

HP Moda)	17314	87318	87824	17321	87*3A	1888	8784A	1784日	873EA	82858	H10.87818
Frequency range (GHz) Dynamic range (dB)	$\begin{gathered} 0.8-2.4 \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 0.8-2.4 \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 1.8-4.5 \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 1.8-4.5 \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 3.7 .8 .3 \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 3.7 .8 .3 \\ 80 \end{gathered}$	$\begin{gathered} 7.0-12.4 \\ 35 \end{gathered}$	$\begin{gathered} 7.0-12.4 \\ 80 \end{gathered}$	${ }_{35}^{8.2 \cdot 12.4}$	$\begin{gathered} 8.2-12.4 \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 0.4-0.9 \\ 35 \end{gathered}$
Max. residual atten. (dB)'	$<1.5$	<2.0	$<2.0$	$<3.51$	$<2.0$	<3.0	$<4.0$	< 5.0	$<4.0$	$<5.0$	$<2.0$
Typleal rise lime (ns)'	40	30	40	30	30	30	30	30	10	30	40
Typical decay time (ns)3	30	20	30	20	20	20	20	20	20	20	30
SWR. min. allenualian	1.5	1.6	1.5	$1.6{ }^{4}$	1.8	2.0	1.8	2.0	1.7	2.0	1.25
SWR, max, altensation	1.8	20	1.8	2.0	2.0	2.2	2.0	2.2	2.0	2.2	1.57
Forward blas ingut resislance (ohms)	300	100	300	100	300	100	300	100	300	100	300
Rf cornectortype	N	N	N	N	N	N	N	N	W/'G ${ }^{\text {a }}$	W/G ${ }^{\text {d }}$	N
Weight, det lb (kg)	3(1,4)	$6(2,7)$	3 (1,A)	$8(2,7)$	3 (1,4)	3(1.4)	3(1,4)	3(1,4)	3(1,4)	3 ( 1,4 )	$6(2,7)$
Shipping to (kg)	$4(1,8)$	$9(4,1)$	$4(1,8)$	$9(4,1)$	4 (1,8)	5 (2.3)	4(1.8)	$5(2,3)$	4 (1.8)	$5(2,3)$	9 (4.1)
$\begin{aligned} & \text { Dimenslons } \\ & \text { Langlh, in (mm) } \end{aligned}$	111/8 (283)	11312 (289)	111/8(283)	11\% (289)	8\%/8 (213)	121/2 (311)	$82 \%$ (213)	123:311)	624 (171)	101/3 (267)	113/4 (289)
Whdth. in (mm)	31/2 (83)	4\% (124)	$31 / 6$ (83)	4/1/(124)	$34 / 283)$	31/4 (83)	$31 / 4$ (83)	$31 / 4$ (83)	$31 / 2$ (83)	31/4 (83)	4\% (124)
Height. in (mm)	21/4 (57)	21/4 (57)	214 (57)	21/2 (57)	21/6 (57)	21/9 (57)	2¢ (57)	21/2 [57)	21/2 (57)	244 (57)	21/4 (57)
Price	\$450	\$700	\$450	5700	\$450	5700	\$450	\$700	\$450	\$700	\$700

Maximum ratings: maximum lnput power, peak or GW: 1 W ; blas IImits: - 20 V , $-10 \mathrm{~V}$.
gias polarity: negative voliage increases attenuation.
RFI: radiated leakage limits are below those specifled in mIL.J-81810 at input evels less than 1 mW ; at ali input levels ratlated interference is sufficlently low to oblain rated attenuatlon,
with -5 V bias.
$24 \mathrm{~dB}, 4$ to 4.5 GHz
Driven by HP 8403 A Modulator.
2.0 SWr, 4 to 4.5 GHz .
${ }^{3}$ fits $1 \times 4 / 4 \mathrm{In}$. (WR 90) wavagulda.
-Externsi high-pass filters requlred.
jexciuding high-pass fllters.

SIGNAL GENERATOR ACCESSORIES
Additional capabilities for signal generation Models 10511A, 10515A, 10514A, 10534A, 11507A-11509A


## 10511A Spectrum Generator

Extends the useful frequency range of signal generators, sources and frequency synthesizers by providing a spectrum of harmonics up 101 GHz from sine-wave inputs between 10 and 75 MHz . A $50 \Omega$ bandpass filter can then be cascaded with the 10511 A to extract the desired harmonic. The harmonic porver available is at least -19 dBm for harmonics 1 thru 10 . Input requirements: 1 to 3 volts rms into $50 \Omega, 10$ to 75 MHz . Price: $\$ 200$; shipping weight: $1 / 2 \mathrm{lb}(0,23 \mathrm{~kg})$


## 10514A, 10534A Double Balanced Mixers

Used with signal generators in a variety of mixing as well as AM, pulse and square-wave modulation applications. The careful balancing of the hot carrier diodes in the losif and 10534 Mixers provides excellent suppression of the local oscillator and input frequencies at the output port. Frequency range of the 10514 is $0.2-500 \mathrm{MHz}$ and the 10534 is 0.5 .150 MHz . Borh feature low conversion loss, low internal interference and good balance. "A" models are equipped with BNC female connectors.
Shipping waight; 7 oz ( 198 g ).
Price: HP $105 \mathrm{IAA}, 590$; HP 10534A, $\$ 70$.

## 11508A Output Cable

Provides $50 \Omega$ termination and standard binding posrs at the end of a 24 -inch ( 610 mm ) length of cable. Allows direct connection of the signal generator to high impedance circuirs.
Price: $\$ 18$; shipping weight: $1 \mathrm{lb}(0,45 \mathrm{~kg})$.


Extends the usable frequency range of signal generators, frequency synthesizers or other signal sources. Operating on input frequencies of 0.5 MHz to 500 MHz it provides a doubled output in the range of 1 MH 2 to 1 GHz . The frequency response of this $90 \Omega$ device is very flat ( $< \pm 2 \mathrm{~dB}$ typically) over the entire frequency range and undesired harmonics are well suppressed.
Price: $\$ 150$ : shipping weight: $1 / 2 \mathrm{lb}(0,23 \mathrm{~kg})$.


## 11507A Output Termination

A multi-purpose remination which enhances the usefulness of the 606 A or 606 B by providing the following:

1. A matched 50 -ohm termination to permit use into high impedance circuits.
2. A $20 \cdot \mathrm{~dB}(10: 1)$ terminated voltage driver which reduces the source impedance to 5 ohms.
3. A dummy antenna having the IEEE standard characteristics for receiver measurements (driven from $10: 1$ divider).
Frequency range: 50 kHz to 65 MHz on 0 to 20 dB positions,
540 kHz to 23 MHz on dummy antenna.
Price: s>0; shipping weight. $11 \mathrm{oz}(311 \mathrm{~g})$.


## 11509A Fuseholder

Prevents accidental burnout of attenuators in HP 606 and 608 Signal Generators during transceiver testing by introducing a fuse element between the signal generator and the transceiver. Several watts of RF power could otherwise be applied to the sigoal generator attenuator should the transceiver accidentally be switched to "Transmit," While the fuseholder provides prorection, it in no piay limits the usable output from the signal generators.
Accessaries furnished: 10 exira fuses.
Price: $\$ 10$; shipping weight: 13 oz ( 370 g ).

## Swept measurement

Swept frequency measurement is a method of characterizing magnitude and phase parameters as a function of fre. quency for an unknown device, compo nent or system. A complete swept fre. quency measurement system has three basic elements: 1) a sweeper which is the signal source, 2) the unknown to be characterized and 3) the detector and display with which to interpret measurement results. Swept frequency measurements evolved as a fast, convenient and accurate method of phase and mag. nitude characterization replacing the labosious point by point measurement rechniques.

The sweeper or signal source in a sorept frequency system is a controlled oscillator which is made to vary in frequency between two limits in a prescribed manner, usually linear frequency change with time. The output porver of the siveeper should be constant over the range of frequencies swept. Leveled poner enables detection and displays to be presented accurately and directly without need for correction due to generator level change during sweep. Accurate frequency identifications depends on the sweeper's frequency accuracy, sweep widrl accuracy, sweep linearity and frequency stability with changes in temperature, load and line. Frequency accuracy is of prime importance in making narrow band measurements accurately and quickly using swept fre. quency techniques. Dynamic displays permit on-line adjustment and rapid testing of devices.

The output from the unknown must be derected and displayed in a manner which facilitates easy and accurate identification of soreep frequencies as well as magnitude and phase information. Sev. eral types of detectors-displays are available depending on application require. ments.

For fast, inexpensive magnitude oniy measurements, the sweeper can be used in conjunction with the $8755 \mathrm{~L} / \mathrm{M}$ Fre. quency Response Test Set. When accur. acy and phase information are needed, the more sophisticated racking derector or netmork analyzer is used with CRT displays. Hewletr-Packard CRT displays are available in two configurations: polar or magnitude-phase.

## Sweep oscillators

The sweeper is a multipurpose test instrument used in the design, manufacture and maintenance of devices, components and systems. Hewlett-Packard sweepers cover the entire RF frequency spectrum from de to 40 GHz in four broad instru. ment lines. These instruments feature solid state components to 18 GHz and plug.in versatility for a choice of band. Herlent-Packard solid state and backmard wave oscillator sweepers have superior frequency stability. high power outpur, external or internal modulation, analog and digical programming capa. bility and syseems compatibility.

## Sweep oscillator features

## Sweep range selection

The sweep frequency limits of the instrument may be set by selecting one of several different sweep modes. Start Srop. Marker, Video, or Full sweep modes begin sweeping at one indepen. dently abjuskable calibrated frequency and stop sweeping at a second independently adjustable calibrated frequency. With symmeterical or $\triangle F$ sweep, the center of the sweep range is first inde. pendently selected and then the cali. brated sreep wridtli is chosen. Manual sweep allows the suresper to function with operator front panel control, a real convenience for calibration of display de. vices such as X.Y recorders.

Another valuable feature of today's solid scate oscillators is self-concained, multiband capability in one compact instrument This is the ability to select swept coverage from over six octave ranges. (i.e., from 100 MHz to 6.5 GHz ) by simply pressing one band select lever, without expensive extraneous equipment.

## Power output and leveling

Porver out is adjustable at the front panel. To obtain constant power output and a good source march at microwave frequencies, an automatic leveling loop is cmployed. The basic external leveling confguration is shown in Figure 1 (internal leveling available as an option, if not standard, on all Hewlett-Packard sweep oscillators).
Leveling has roo advantages: ) I leveled porver ourput allow's simplified detection and display and 2) the source match at the leveled output is markedly improved.

flgure 1. Basic closed.loop leveling system.

## Modulation

Modularion capabilities further extend the sweepers usefulness both as a sweeper and as a signal generator for signal simulations. AM modulation is available both internally or externally on most Hewlett. Packard sweepers. AM modula. tion is useful for testing communication equipment and making microwave mea. surements ( 1 kHz modulation is required to drive the $415 E$ SWR Meter). FM modulation allows remote analog programming of frequency (for example, for production testing) along with excellent FM signal simulacion (for example, in communications).

## Sweep control

Variable sweep cares are available from 0.01 to 3000 seconds to match claracteristic detecror-display responses. Sweep may be initiated with automatic trigger, external reigger on manual trigger. Frequency changes linearily with sureep time until reaching the end sweep frequency. Blanking and pen lift signals are available at rear output connectors during flyback time when the RF is off.

## Digital Sweepling Synthesizers

Digitally Sreeping Synthesizers are the latest additions to Hewlett-Packard's Srieeper Product line. The 8660 B and the $3330 \mathrm{~A} / \mathrm{B}$ combine the precision frequency accuracy and stability of a synthesizer with the time saving convenience of a sweeper. Parameters such as center frequency, frequency step, time per step number of steps and sweep width are entered through a convenient key board and are then executed by pressing a single button. Many of the 3330 srveep parameters can be changed which the
instrument is sweeping. An additional feature provided by the 3330 B is amplitude sweeping in steps as small as 01 dB . The amplitude can be stepped at the end of each frequency sweep cycle to produce a family of curves.

The major applications area for the 3330 lies in the stimulation of narrow band devices.

## Sweeper applications

Swept frequency systems are used to characterize an unknown's phase and magnitude characteristics as a function of frequency. Tro basic types of measurements are made: transmission characteristics and reflection characteristics. For many transmission type measurements, it is only necessary to know amplitude response and establish that the phase response is linear, thereby causing no phase distortion. Reflection measurements are used to optimize device for impedance matching in order to obtain maximum power transfer. Sruept frequency techniques can give complete sys.
tem characterization with S-parameter techniques for ransistors, devices, components or systems.

For high porrer applications such as RFi-susceptibility test and high attenua. tion measurements, Hewlett-Packard of. fers TWT amplifers which will provide better than 750 mW from $1 \cdot 12.4$ GHz . By phaselocking Hewlett. Pack. ard's sweep oscillators, excellent microwave signal purity can be achieved for application such as microwave spectroscopy and high-Q swept frequency cavity measurements.
For achieving broadband sweep capa. bility (more than one octave), HewlettPackard offers the HP 8707A RF Unit Holder and 8706A Control Unit. The 8706A Control Unit is placed in the sweeper and the RF plug-ins placed in the 8707A RF Unit Holder. Control of up to seven RF plug.ins is possible. With Hewletr-Packard's new solid state micro. wave sweepers, the 8620 senies, this mul. tiband capability is built-in and thus can operate as a value packed standalone instrument.

Complete amplitude and phase de. scription of microwave devices is a pow. erful tool for component and systems design and test. Hewlett-Packard sweeper/network analyzer systems provide metered or CRT type (polar or magnitude and phase) real time display of this information. Active microwa ve com. ponents in a variery of packages, in. cluding can and stripline, can be ac. curately characterized and tested to 12.4 GHz .
Several Hervlett-Packard application notes such as the following describe numerous swept frequency measure. ments:
AN65. "Swept Frequency Techniques"
AN95, "S-Parameters . . . Circuit Analysis and Design"
AN117-1 "Microwave Network Anal. ysis Applications"
AN117-2 "Stripline Component Measurements", etc.
All of these nores and others are avail. able from your local Hewlett-Packard sales office.

Hewlett-Packard Sweep Oscillator-Summary Chart


## VALUE FAMILY OF SWEEP OSCILLATORS <br> \author{ Models 8620A/B, 8621 A, 86200 Series, 86300 Series 

}A Solid State Sweeper System with Outstanding Performance, Extreme Flexibility of Configurations, and Attractive Economies . . . All Made Possible by Modular Construction and Development of Superior Microelectronlc Components.

The Mainframes:


The RF Plug-ins:


The 8620 family of sweep oscillators offers a choice of two solid state mainframes. Both are completely compatible with all RF plug-ins and offer as a standard feature multiband capability. The two mainframes differ in the number of operating modes and price.


The 8620 B is the more economical of the two mainframes but has all the features normally needed for swept-frequency measurements. It has highly' linear sweeps, wide and narrow, and a stable CW. Yet it is priced much lower than any similar sweeper on the market.
Dimensions: $51 / 4^{\prime \prime}$ ( 133 mm ) high, $131 / 4^{\prime \prime}(337 \mathrm{~mm}$ ) deep, $163 / 4^{\prime \prime}(425 \mathrm{~mm})$ wide.

Weight: net, $24 \mathrm{lbs}(11,1 \mathrm{~kg})$; shipping, $30 \mathrm{lbs}(13,4 \mathrm{~kg})$.
Price: \$1025.
$\Delta F$ Contral sets a continuously calibrated sweep centered about the CW control set. ting. The expand switch allows frequency calibration from elther $01010 \%$ or $1 \%$ of full frequency band.

Independent CW Control serves as an amplltude or intensity marker when sweeping in the start.stop mode.

CW Vornior gives Detter frequency resolution than would be available on a $20 \cdot \mathrm{inch}$ dial scale. This allows pracise settings of CW frequencies or $\Delta f$ center frequencies.


The 8620A offers all that the 8620 B offers, and in addition has many other features that are highly useful in more stringent applications. Push-button convenience provides great latitude of control along with exceptional frequency resolution and settability. This mainframe can also be a complecely programmable source (Option 001). Yet this mainframe is priced surprisingly low.
Dimenslons: $51 / 4^{\prime \prime}(133 \mathrm{~mm})$ high, $131 / 4^{\prime \prime}(337 \mathrm{~mm})$ deep, $163 / 4^{\prime \prime}(425 \mathrm{~mm})$ wide.
Weight: net, 24 los ( $11,1 \mathrm{~kg}$ ); shipping, $30 \mathrm{lbs}(13,4 \mathrm{~kg}$ ).
Price: $\$ 1500$.
Option 001: add $\$ 500$.

## SINGLE BAND Plug-ins

- High Performance - Low Cost


86200 Series RF Plug.ins

The 86200 series single-band plug-ins make extensive use of microelectronics for superior performance and high reliability at an extremely low price. Fundamental oscillators are either YIG-tuned tenasistor or bulk-effect circuits. YIG tuning results in exceptional tuning linearity and assures low noise and low spurious content. YIG tuning also provides low distortion frequency modulation capability at sevecal MHz deviations and several MHz cates. Microcircuit PIN modulators in the plug-ins provide RF level control and amplitude modulation with virtually no frequency pulling.

The 86200 series plug-ins are completely compatible with either the 8620 A or 8620 B mainframe. Standard plug-ins are listed below. Special frequency bands and higher power outpucs are available on request.

## 86200 Seribs Options

Oprion 001 internal leveling, nor available on 86260 A , add \$375.
Option 002: 70 dB attenuator in 10 dB steps available in 86210A and 86220 A , add $\$ 150$.
Option 004 rear RF output, add $\$ 75$.
Option 005: APC-7 RF output connector available on 86260A, add $\$ 35$.

Гтедиепоу सаппя (aHz)	Maximum Lovelad Pwr (dBm)	Spurlous: Harmonias/ Nonhapmonlos ( -dB )	Residual FM kHz peak)	Model Numbar	Prke
0.003-0.35	13	30/70	$<5$	86210A'	51,375
0.01-1.3	10	25/40	<	$86220 \mathrm{~A}^{1}$	1,775
2.0-4.0	7	16/60	$<7$	86230A	1,500
1.8-4.2	10	20/60	<7	862308	1,900
3.2-6.5	4	20/60	$<7$	86241A	1,575
5.9-9.0	8	30/60	$<15$	86242A	1,805
8.0-12.4	5	30/60	$<15$	86250A	1,775
8.0-12.4	8	30/60	$<15$	86250 B	2,100
12.4-18.9	7	25/50	<25	86260A	2,950

Dimensions: 5" (127 mm) high, 11s/8" (295 mm) deep, $6^{\prime \prime}$ ( 152 mm ) wide.
Weight: net, $s$ lbs $(2,3 \mathrm{~kg})$; shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.

## MULTIBAND Plug-ins

- Modular Construction - Self-contained


8621B RF Drawer

86300 Series RF Modules

Frequenoy Range (GHz)	Maximum Leveled Pwr (d9m)	Spurious: Harmonlos/ Nonharmonles $(-d B)$	Resldual   FM kHz paak	Model Number	Price
0.1-2*	+13	30/30	<15	86320 A	i1,750
1.8-4.2	$\pm 10$	20/60	$<1$	86330A	1,850
1.7-4.3	+8	20/80	<1	86331 A	2,100
3.2-6.5	$+10$	20/60	$<7$	863418	1.850
5.9-9.0	+7	30/60	$<15$	86342A	2,000
8.0-12.4	-6	30/60	$<15$	86350A	2,000
8.5-10.5	$+10$	30/60	$<15$	86352A	1,850
10.7-11.7	$+10$	30/60	$<15$	86351A	1,750

L86320A neterodyne module must only be used with 86330A or 86331A, I
cannot be used alone or with any other modules.
8621 B RF Drawer, price: S42s.
Option 100-Multiband capability, add $\$ 400$.
Option $010-70 \mathrm{~dB}$ attenuator, add $\$ 650$.
Option 004-Rear RF output, add $\$ 75$.
Dimensions: 5" ( 127 mm ) high, $11 \mathrm{~s} / 8^{\prime \prime}$ ( 295 mm ) deep, $6^{\prime \prime}$ ( 152 mm ) ride.
Weight: net, 3 bs ( $1,4 \mathrm{~kg}$ ) : shipping. $5 \mathrm{bs}(2,3 \mathrm{~kg}$ ).

## 86300 Series Options

Option 030 includes 8690 B dial scale, no charge
Option 001 internal leveling, add approximately $\$ 250$.
Dimensions: 4" (103 rom) high, $33 / 4^{\prime \prime}\left(95 \mathrm{~mm}\right.$ ) deep, $35 / \mathrm{m}^{\prime \prime}$ ( 92 mm ) wide.
Weight: net. 3 lbs ( $1,4 \mathrm{~kg}$ ) , shipping, 4 bs ( $1,8 \mathrm{~kg}$ ).

With a multiband plug-in, changing frequency bands is as simple as pressing a front panel lever. Modular construc. tion of a multiband plug-in allows a choice of any two fundamental RF modules and a heterodyne module. For example, 0.1 to 6.5 GHz can be covered in one self-contained plugin. All switching necessay' to multiplex the desired frequency band to a single output port is included in the plug.in.
The multiband plug-ins consist of two basic parts: the 86300 series RF Modules and the 8621 B RF Drawer.

The 86300 series RF Modules contain all of the micro. electronic components that determine frequency range and power output. These microcircuits, in addition to giving the high performance and reliability that is nomally expected of solid state components, are small enough so that a complete source module occupies only about four inch cube. These same modules can be used in conjunction with the 8700A RF Drawer to provide solid state plug-ins for the 8690 A and 8690 B mainframes.

The $8621 B$ RF Drawer houses the 86300 series RF Modules. The standard drawer will accept one fundamental oscillator module. However, with the 1.8 to 4.2 GHz fundamental oscillator module, the standard drawer also accepts the 0.1 to 2 GHz heterodyne module to give 0.1 to 4.2 GHz coverage. The 8621 B Option 100 will accept two fundamental oscillator modules and the heterodyne module. An optional 70 dB attenuator is also available along with a choice of either front or rear RF output.

## SOLID STATE RF MODULES ...FOR 8690 SWEEPER SERIES



86300 Series RF Module. Same solid state modules as used in 8620 family of Sweep Oscillators.

8700A RF Drawer
Dimensions: 41/2" wide, $71 / 4^{\prime \prime}$ high, $171 / 2^{\prime \prime}$ deep ( $115 \mathrm{~mm} \times 185 \mathrm{~mm} \times$ 445 mm ).
Weight: net, 9 lbs ( $4,1 \mathrm{~kg}$ ); shipping, 12 lbs ( $5,5 \mathrm{~kg}$ ).
Price: $\$ 425$.


The familiar 8690 BWO Sweaper product line now has reliable solid state plug.ins up to 12.4 GHz . The 8700 A RF Drawer in conjunction with any one of the 86300 series RF modules makes a complete RF plug-in for the 8690A or 8690 m mainframe. Expensive and annoying BWO replace. ments are no longer necessary. In fact, the low price of these solid state plug-ins makes it more economical in the long run to buy an 8700A plus an RF module rather than replacing an expired BWO.
A complete solid state plug-in is specified by ordering an 8700 A and one of the RF modules listed on page 363.

# BWO RF PLUG-INS For high power and high frequency applications 8690 Series <br> <br> ST SWEEP OSCILLATORS 

 <br> <br> ST SWEEP OSCILLATORS}


## Grid Leveled BWO RF Plug-ins

Grid leveled BWO's achieve power and leveling control by changing bias on the grid of the BWO. Grid leveling provides the highest RF power plug-ins since no additional components such as PIN modulators are necessary for power control.

Frequenoy Range (GHz)	Maylmum   Leveled Power	Spuelous: Harmonlos/ Nonharmontos $(-d B)$	Residual FM (kHz peak)	Model Number	Prise
${ }_{1}^{1.0-2.0} 1$	$\begin{aligned} & >100 \mathrm{~mW} \mathrm{\prime} \\ & >100 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & 20 / 40 \\ & 20 / 40 \end{aligned}$	$\begin{aligned} & <30 \\ & <30 \end{aligned}$	8691A 8691A/ Opt. 200	$\begin{gathered} \$ 2,295 \\ 2,545 \end{gathered}$
$\begin{aligned} & 2.0-4.0 \\ & 3.5-6.75 \end{aligned}$	$>70 \mathrm{~mW}$   $>40 \mathrm{~mW}$	$\begin{aligned} & 20 / 40 \\ & 20 / 40 \end{aligned}$	$\begin{aligned} & <30 \\ & <50 \end{aligned}$	8692A 8693A/ Opt. 20:	$\begin{aligned} & 2,105 \\ & 2,475 \end{aligned}$
$\begin{aligned} & 4.0-8.0 \\ & 7.0-11.0 \end{aligned}$	$\begin{aligned} & >25 \mathrm{mwl} \\ & >25 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & 20 / 40 \\ & 20 / 40 \end{aligned}$	$\begin{aligned} & <50 \\ & <60 \\ & <60 \end{aligned}$	$\begin{aligned} & 8693 \mathrm{~A} \\ & 8694 \mathrm{~A} / \\ & 0 \mathrm{pt.} 200 \end{aligned}$	$\begin{aligned} & 1,850 \\ & 1,900 \end{aligned}$
7.0-12.4	$>25 \mathrm{~mW}^{1}$	20/40	$<60$	$\begin{aligned} & 8694 \mathrm{~A} / \\ & 0 \mathrm{pt} .100 \end{aligned}$	2,150
$\begin{array}{r} 8.0-12.4 \\ 10.0-15.5 \end{array}$	$\begin{aligned} & >50 \mathrm{~mW} \\ > & 25 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & 20 / 40 \\ & 20 / 40 \end{aligned}$	$\begin{aligned} & <60 \\ & <150 \end{aligned}$	8694A 8695A Opt 100	$\begin{aligned} & 1,850 \\ & 3,075 \end{aligned}$
$\begin{aligned} & 12.4-18 \\ & 18-26.5 \\ & 26.5-40 \end{aligned}$	$\begin{aligned} & >40 \mathrm{~mW} \\ & >10 \mathrm{~mW} \end{aligned}$ $>5 \mathrm{mw}$	$\begin{aligned} & 20 / 40 \\ & 20 / 40 \\ & 20 / 40 \end{aligned}$	$\begin{aligned} & <150 \\ & <200 \\ & <350 \\ & <350 \end{aligned}$	8695A   8696A   8697A	1.975 2,750 4,500

I. Option 001 internal leveling available.

Option 004, rear RF oulout evailable except on 8695A opt. 100

PIN Leveled BWO RF Plug-ins
PIN leveled BWO's achieve -power and leveling control with a PIN modulator placed between the BWO and the front panel RF output. With constant bias and load impedance, the BWO provides a signal with low residual FM and frequency pulling with changes in power levels or load.

Fraquency Range (OHz)	Maximum Lavelad Power	Spurtous: Harmanios/ Nonharmonlos (-d8)	$\begin{aligned} & \text { Resldual } \\ & \text { FM } \\ & \text { (kHx p\#ak) } \end{aligned}$	Model Number	Prioo
0.0004-0.11	20 mW	30/35	$<5$	$8698 B^{2}$	\$1,625
0.1-4.0	6.5 mW	25/30	$<15$	86998 ${ }^{\text {² }}$	3,750
1.0-2.0	$>70 \mathrm{~mW}$	20/40	$<10$	8691B	2,670
1.7-4.2	$>15 \mathrm{~mW}$	20/40	$<20$	$\begin{aligned} & 8692 \mathrm{~B} / \\ & 0 \mathrm{pt} .100 \end{aligned}$	2,805
2.0-4.0	$>40 \mathrm{~mW}$	20/40	$<15$	86928	2,455
3.7-8.3	$>5 \mathrm{~mW}$	20/40	$<20$	$\begin{aligned} & 8693 \mathrm{~B} / \\ & 0 \mathrm{pt} .100 \end{aligned}$	2,550
4.0-8.0	$>15 \mathrm{~mW} \mathrm{\prime}$	20/40	$<15$	8693B	2,225
7.0-11.0	$>15 \mathrm{~mW}$	20/40	$<20$	86948/   Opt. 200	2,300
7.0-12.4	$>15 \mathrm{~mW} \mathrm{\prime}$	20/40	$<20$	$8694 \mathrm{~B} / \mathrm{L}$   ODt. 100	2,550
8.0-12.5	$>30 \mathrm{~mW}$	20/40	$<15$	8694B	2,250
12.4-18	$>15 \mathrm{~mW}$	20/40	$<40$	8695B	2.475

1. Option 001 internal leveling available.
2. Solid state plug-in. Option De4, rear if output avallable on all models

## ACCESSORIES

## Applications and systems



8690 B with 8706 A
Control Unit

8707A RF Unit Holder with 86908 RF Units

8705A Signal Multiplexer

## Multiband systems

Broadband sweep capability, 400 kHz to 40 GHz , with pushbutton control of frequency tange is available with the 8706A Control Unit and the 8707A RF Unit Holder. The 8706A Control Unit plugs into the 8690 B in place of the normal 8690B RF plug-in and the 8707A RF Unit Holder accepts the 8690 B RF plug ins which are to be controlled. It is possible to have pushbutton control of from two to seven 8690 B RF plug-ins with an 8706 A Control Unit and from one to three 8707A Unit Hoiders.

The 8705A Signal Multiplexer switches RF signals up to 12.4 GHz from three 8690 B series RF units to either of two RF ports. To provide leveled power at the 8705 A RF output ports, a detector operating from a wideband coupler in the 8705 A provides an ALC signal for the 8690 B Sweep Oscillator leveling circuits.

## Specitications, 8705A

Frequency range: dc to 12.4 GHz . Output port reflection coefficient $\leq 0.25$ (VSWR $\leq 1.67$ ). Input port reflection coefficient $\leq 0.15$ (VSWR $\leq 1.35$ ).
Insertion loss: 3 dB .
Weight: net, $17 \mathrm{lbs}(7,8 \mathrm{~kg}$ ) ; shipping, $22 \mathrm{lbs}(10 \mathrm{~kg}$ ).
Price: Model 8705A, \$2075.

## Specifications, 8706A

Compatibility: the 8706A controls up to three 8707A RF Unit Holders; Option H26 for remote band switching of 8699B.
Weight: net, $16 \mathrm{lbs}(7,3 \mathrm{~kg})$; shipping, $25 \mathrm{lbs}(11,4 \mathrm{~kg})$.
Price: Model 8706A, $\$ 650$.

## Specifications, 8707A

Capability: accepts up to three 8690 B RF units.
Frequancy range: 400 kHz to 40 GHz .
Sweep functions
Normal: permits all 8690 B sweep functions.
Preset: provides start-stop sweep determined by preset adjustments on the 8707 A . Sweep end points can be set independently for each RF unit.
Weight: net, $30 \mathrm{lbs}(13,6 \mathrm{~kg}$ ); shipping. $37 \mathrm{lbs}(16,8 \mathrm{~kg})$. Price: Model 8707A, \$1525.


## 8701A Sequential Sweep Control

The 8701A Sequential Sweep Control makes passible wideband sweeping by sequentially triggering and controlling two, three, or four $8690 \mathrm{~A} / \mathrm{B}$ or $690 \mathrm{C} / \mathrm{D}$ Sweeper Mainframes.

When the sweepers are connected to the 8701 A , they maintain all of their sweep functions (i.e., START/STOP, $\triangle F$, and MARKER SWEEP) and capabilities (sweep time and band tuning). Thus, a set of sweeper mainframes can operate in the START/STOP function to provide wideband sweeping, or one or more sweepers can operate in $\triangle F$ or MARKER SWEEP function to provide narrowband sweeping. Switching from wideband to narrowband sweeping is accomplished with the ease of pushing a button, Fucthermore, by setting band ends for each sweeper mainframe independently, one can sweep any special band of interest such as commonications and ECM bands which are nor normally available in one RF plug.in oscillator.

## Specifications, 8701A

Frequency coverage: $1-12.4 \mathrm{GHz} ; 1-18 \mathrm{GHz}$ (8701A Option 001 ).
Leveling: $< \pm 1.5 \mathrm{~dB}(1-2 \mathrm{GHz}) ;< \pm 1.25 \mathrm{~dB}(2-12.4$ $\mathrm{GHz}) ;< \pm 2 \mathrm{~dB}(12.4-18 \mathrm{GHz})$.
Weight: net, $16 \mathrm{lbs}(7,3 \mathrm{~kg})$; shipping, $20 \mathrm{lbs}(9,1 \mathrm{~kg})$.
Dimensions: $163 / 4^{\prime \prime}$ wide, $3-25 / 32^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ( 425 x $96 \times 467 \mathrm{~mm}$ ).
Price: $8701 \mathrm{~A}, \$ 3850$; Option 001, add $\$ 200$.

## 8404A Power Meter Leveling Amplifier

The 8404A Leveling Amplifier is used to level the 8690 B Sweeper when a power meter is used as the RF detector. When the recorder output of the power meter ( $431 \mathrm{~B} / \mathrm{C}$ or $432 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ ) is connected to the 8404 A Leveling Amplifer and the output of the 8404 A is connected to the external AM input of the $8690 \mathrm{~B}, \pm 0.05 \mathrm{~dB}$ or less variation in leveled output can be expected.
Price: Model 8404A, \$395.


## Leveled High-Power Sweep Oscillators

The E15-8690A/B Series leveled high-power sweep oscil. lator systems provide 750 mW broadband or 1 watt narrow band in four bands from 1 GHz to 12.4 GHz . Flatness is $\pm 0.3 \mathrm{~dB}$ from 1.0 to 8.0 GHz and $\pm 1.0 \mathrm{~dB}$ from 8.0 to 12.4 GHz . These systems are complete with solid state or BWO sweeper, Hewlett-Packard traveling wave amplifier, band-pass filter (8430A Series), directional detector (780 Series) and needed cables.


## 8320A, 8321A, and 8324A Stabilized Sweep Oscillator Systems

Stabilized Sweep Oscillator Systems are phase-locked systems which increase the frequency stability of the microwave sweeper for more sophisticated microwave applications such as narrow-band receiver or filter tests, parametric amplifier pumps or Doppler system sources. Other applications include reflectometers, microwave spectroscopy and radio astronomy. CW stabilized systems are available from . 1 to 40 GHz .

Complete specifications or data on these systems is available on request from Hewlett-Packard. Stabilized swept systems are arailable on special order.

## Selected Specifications

Stablized mode: CW only.
Frequency range: $0.5-12.4 \mathrm{GHz}$ ( 8320 A ); 12.4 -40 GHz Waveguide ( 8321 A ) ; 0.5.12.4 GHz (8324A).
Stablity: $\leq 5 \times 10^{-8} / \mathrm{hc}$.
Residual FM: $\leq 2 \times 10^{-7}$ in $20 \mathrm{~Hz}-15 \mathrm{kHz}$ audio bandwidth. Dimensions: $15^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $18^{\prime \prime}$ deep (approximately).
Price: $\$ 7,500$ to $\$ 16,000$ depending on band.


## 11531A Test Unit

The Model 11s31A Test Unit facilitates 8690B Sweep Oscillator calibration. The unit plugs into the 8690 B like an RF unit. Calibration voltages for sweep range amplitude and end points (all sweep modes) as well as marker calibration, BWO calibration, Blanking and Pen lift are sampled and made arailable at the Model 11531 A front panel output for fast, accurate calibration.
Price: Model 11531 A, $\$ 400$.


8457A Microwave Synthesizer, 8.40 GHz
The 8457A Programmable Microwave Synthesizer System offers today's user the utmost in frequency stability, operating simplicity and systems compatibility. Typical areas of application include automatic test systems, CW/Doppler radar, telecommunications, secure communications, narrowband filter and receiver testing, anechoic chamber evaluations, radio and radar astronomy, MRR and EPR analytical spectroscopy. Complete specifications and options arailable on request.
Price: Model $8457 \mathrm{~A}, \$ 26,300$ to $\$ 32,300$ depending on frequency range and options ordered.

## 8709A Synchronizer

The 8709A Synchronizer features automatic synchronization and side-band cancellition; the lock points are spaced by the reference oscillator frequency ( 240.400 MHz ). This eliminates ambiguities in achieving phase-lock and identifying harmonic lock numbers.

## 8709A Specifications

Input frequency: 20 MHz .
Sensitivity: -65 dBm .
Minimum output voltage
HIgh level: +12.0 to -12.0 V dc .
Low level: +0.8 to -0.8 V dc .
Weight: net, 12 lbs ( $5,4 \mathrm{~kg}$ ); shipping, $15 \mathrm{lbs}(6,8 \mathrm{~kg}$ ).
Price: HP 8709A, \$995.


Covering 100 KHz to 110 MHz , the Model 8601A Gen. erator/Sweeper combines the high linearity and flatness of a precision sweeper with a signal generator's frequency accuracy and wide range of calibrated power levels. Though it's small and lightweight, it does the work of two instruments easily and conveniently.

## Specifications, 8601A

Frequency range: low range, $0.1-11 \mathrm{MHz}$; high range, 1-110 MHz .
Frequency accuracy: approximately $\pm 1 \%$ of frequency.
Power output: +20 to $-110 \mathrm{dBm} ; 10-\mathrm{dB}$ steps and $13-\mathrm{dB}$ vernier provide continuous sertings over entire range. Meter monitors output in dBm and ems volts into $50 \Omega$.

Power accuracy: $\pm 1 \mathrm{~dB}$ accuracy for any output level from +13 dBm to -110 dBm .
Flatness: $\pm 0.25 \mathrm{~dB}$ over full range, $\pm 0.1 \mathrm{~dB}$ over any 10 MHz portion ( +10 dBm step or below).
Impedance: $50 \Omega$, SWR $<1.2$ on 0 dBm step and belon.
Harmonics and spurious signals: ( CW above 250 kHz , output levels below +10 dBm ) harmonics at least 35 dB below carrier. Spurious at least 40 dB below carrier.
Residual FM: noise in a 10 kHz bandwidth including line related components (dominant component of residual FM is noise).
CW: less than 50 Hz rms, low range; 50 Hz rms high range.
SYM 0 , sweep: less than 100 Hz rms , low range; ] kHz rms, high range.
Residual AM: AM noise modulation index ( $\mathrm{rms}, 10 \mathrm{kHz}$ bandwidth) is $<-50 \mathrm{~dB}$; (typically -60 dB at $25^{\circ} \mathrm{C}$ ).
Crystal calibrator: internal $5 \cdot \mathrm{MHz}$ crystal allows \{requency calibration to $\pm 10 \%$ at any multiple of S M Hz .
Sweep modes: full, video, and symmetrical.
Internal AM: fixed $30 \% \pm 5 \%$ at 1 kHz .
External AM: 0 to $50 \%$, dc to $400 \mathrm{~Hz} ; 0$ to $30 \%$, up to 1 kHz .
internal FM: 1 kHz rate, fixed $75 \mathrm{kHz} \pm 5 \%$ deviation, high range; $7.5 \mathrm{kHz} \pm 5 \%$ deviation, low range; $<3 \%$ distortion.
External FM: sensitivity, 5 MHz per volt $\pm 5 \%$, high range; 0.5 MHz per volt $\pm 5 \%$, low range; negative polarity; FM rates to 10 kHz .
Weight: net, $21 \mathrm{lb}(9,5 \mathrm{~kg})$; shipping $27 \mathrm{lb}(12,3 \mathrm{~kg})$.
Dimensions: $725 / 32^{\prime \prime}$ wide, $63 / 32^{\prime \prime}$ high. $163 / 8^{\prime \prime}$ deep ( $190 \times 155 \times 416 \mathrm{~mm}$ ).
Price: Model 8601A, \$2250.


The Model 8600A Digital Marker provides five independent, continuously variable frequency markers over the range $0.1 \cdot 110 \mathrm{MHz}$ when used with the HP 8601 A or 8690B/8698B Generator/Sweeper.

The high resolution controls and 6.digit readout permit $0.05 \%$ frequency settability. The frequency of any marker may be read while sweeping, simply by pushing a button within the marker control. The marker selected is bighter than the others and points in the opposite direction, ensur. ing positive marker identification.

## Specifications, 8600A

Marker accuracy: any marker may be placed at a desired fiequency $\pm(0.05 \%$ of sweep width +8601 A sweeper stability).
Weight: net, $13 \mathrm{lbs}(5,9 \mathrm{~kg}$ ) ; shipping, $18 \mathrm{lbs}(8,2 \mathrm{~kg})$.
Dimensions: $37 / 8^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $131 / 4^{\prime \prime}$ long ( $99 \times 413$ $\times 337 \mathrm{~mm}$ ).
Price: Model 8600A, \$1100.
Option 001: includes modif, kit for $8690 \mathrm{~B} / 8698 \mathrm{~B}$; no additional charge.

## POWER MEASUREMENTS



## POWER \& NOISE FIGURE METERS

## Power measurements

At microwave frequencies, power is the basic measure of signal ampliade. Unlike voltage and current, microwave power remains constant along a lossless transmission line. Thermacouple and thermistor power meters are the most common rype of instruments used to measure microwave porer.

## Thermocouple power maters

The use of thermocouples as a sensing clement is the most recent development in microwave power measurement. Wide range, low drift, and simple operation are the major adrantages of thermocouples over other derectors.
A thermocouple measurement system consists of a power sensor which produces a de output voltage proportional to the power dissipated in it and a power measurement circuir which measures the de voltage and displays it in unirs of poner.

The power sensor provides an impedance match berween the thermocouple element and the micron'ave transmission line. In the Hewlett-Packard 8481A Power Sensor, input power is dissipated in silicon-tantalum nitride thermocouple elements. The dissipated porier causes the junction temperatures to rise above the ambient temperature of the sensor substrate. This remperature differentia! and resulting thermocouple voltage are proportional to the applied power. The snall physical size of the element and careful design of the structure assure :hat changes in ambient temperature affect all junctions equally, thus making the system relatively insensitive to zero drift.
The de output voltage is amplified by an FET, chopper-scabilized amplifier in the power sensor and delivered to the porer meter.


Figure 1.

With thermocouple type porver meters, accuracy is fundamentally dependent on the instrument's gain being marched to
the power sensor sensitivity. Since thermocouple sensitivity is subject to change with variations in temperature, overload, and aging, a convenient means of calibration is vital.


The Herlen.Packard 435A Porer Meter provides an accurate, built-in power reference for use in calibrating the merer-power sensor combination. In this way, long rerm accuracy is assured. With the gibia Poner Sensor, the meter measures power from $0.3 \mu W$ to 100 mW at frequencies from 5 MHz to 18 GHz .

## Thermistor power maters

Thermistors offer an alternative means to measure microxave power. A thermistor is a resistive element whose re. sistance decreases with increasing tem. perature. In a thermistor type instrument. the sensor elements are contained in a mount and form one leg of a Wheatstone bridge through a bias connection to the power meter. $D C$ or ac excitation biases the thermistor elements to balance the bridge. When microwave power is applied to the sensor elements, the result. ing cemperature rise causes the thermistor resistance to fall, unbalancing the bridge.

Withdrawing an equal amounc of bias power from the thermistors rebalances the bridge. The change in bias power is then measured and displayed on a meter.

## Automatic thermistor bridges

There ate a number of thermistor bridge designs which provide various degrees of accuracy, speed, and convenience.

The Hexlett-Packard +32 -series of Power Meters use a temperaturecompensated, aucomatically balanced bridge of versatile design. Operating with any of the Hewlett-Packard temperaturecompensated thermistor mounts, the meter automatically maintains bridge balance and reads substituted bias porier over ranges of 10 microwatts to 10 milliwatus (full scale).

Since thermistor elements are tempera-sure-sensing devices, they are unable to distinguish berween applied power level changes and environmental temperature changes. As thermistor bridge sensitivity is increased, even minute temperature rariations can unbalance the bridge. This results, if uncompensated, in "zero drift" of the poner meter and ertoneous power measurements.

A dual bridge arrangement, as shown in Figure 3, is used in the 432 -series to compensate for variations in temperature at the thermistor mount. The thermistor mounts used have two thermistor ele. ments. The tro are in close thermal proximity and are affected equally by changes in ambient temperature. Thus $\mathrm{R}_{\mathrm{n}}$ responds to boch ambient temperature and applied RE poner; $\mathrm{R}_{\mathrm{c}}$, isolated from the RF porer, responds only to ambient remperarure. Each element is connected to its own bridge circuit in the power meter which atiomatically conerols bias


Flgure 3. Block diagram of HP 432 A Power Meter. Dual bidge provides proger blas to thermistor maunt to correct for emperature varlation and reduce zepo drift.
power. This arrangement compensates for temperature changes, thus reducing zero drift by a factor of 100 over uncompensated thermistor meters. Another advantage of this design is that when zeroed on the most sensitive range. the meter may be switched to any other pow'er range without rezeroing (zeroearryover is within $\pm 0.5 \%$ on all ranges). A de output proportional to the meter deflection is available for recording purposes or control of external circuits such as power meter levelling of micro. wave sweep oscillators and signal generators.
Compensated thermistor mounts available for the 432 -series of porver meters include the 478 A ( 10 MHz to 10 GHz ) and the 8.178 B ( 10 MHz to 18 GHz ) coaxial mounts. The f86A Waveguide Series collectively cover the waveguide bands from 2.6 to 10 GHz . All mounts have low SWR over their frequency ranges without tuning.

## Peak power measurement

A frequent requirement in microwave work is the measurement of peak porer in a periodic pulse. This may be done by various indisect techniques using thermocouples or thermistors. HewlettPackard produces a versatile instrament that conveniently measures peak porer directly in the 50 MHz to 2 GHz fre. quency range. This instrument (the model 8900 B ) utilizes a video comparator technique to bring a known de voltage, supplied by the instrument, in a known impedance to a level which is equal to the pulse being measured. This allows simple measurement of peak pulse power with a basic accuracy of 1.5 dB even when the roveform is not rectangular. A custom calibration charr increases accuracy to 0.6 dB for critical applications.

## Applications

Information on virtually all aspects of microwave power measurement, including derailed descriptions and illusreations of instruments, measurement rechniques, error analysis, and applica. tions, is contained in Application Note 64. Sources of measurement error and systematic methods for error reduction allow selection of the best procedure for specific applications. Application Note 64, entitled "Micronave Power Measure-
ment", is available on request through your Hewletr-Packard Sales Office.

## Steps toward better accuracy

The fundamental standards of microwave porver lie in de or low-frequency ac voltage and resistance standards which may be accurately meassured and used for comparison or substitution. Other factors, such as impedance match. ing and efficiency of the sensing device, also play an important cole in overall measurement accuracy.

The basic accuracy of Hewlett-Pack. ard power measuring equipment satisfies the requirements of most applications without complicated serups requiring extensive manual operations and calculation. Should greater accuracy be required, the versatility and stability of HewlettPackard equipment allows easy enhancement of its basic accuracy in a step.by. step manner until the degree of accuracy needed is achieved.

## Effective Efficiency and Calibration Factor

A power meter can only be responsive to the power which is acrually dissipated within its sensor elements. Power which is dissipated elsewhere in the sensor or refecred by it will not be indicated. Furthermore, the spatial distribution of current and resistance within the sensor elements differs for power at microwave frequencies and the dc or audio pourer used for reference or substitution. The effects of these sources of error are measured at a number of frequencies for all Healett-Packard power sensors and tem. perature-compensated thermistor mounts and presented on the nameplate as Effective Efficiency and Calibration Factor.

For thermistor mounts, Effective Eff. ciency is the ratio of substituted bias porer in the porier meter to the micto. wave power absorbed by the mount. Effective Efficiency accounes for all losses except the reflection due to impedance mismatch. Calibration Factor is the ratio of substicuted bias power in the meter to the microwave power incident on the mount. Calibration Factor, therefore, accounts for all losses. Although direct traceability so the National Bureau of Standards is not yet available in certain bands, the extensive tests and crosschecks conducted by Hewlett-Packard on lit.
erally thousands of mounts assure a high level of confidence in the calibration of all mounts. In addition, the mounts are swept-frequency tested to reveal any "holes" in their response.

For the thermocouple powes sensor, the same concepts apply. However, to simplify operation, the data is presented as a Calibration Factor which normalizes the data to the value at 50 MHz . In this way, the Calibration Factor at 50 MHz (the frequency of the internal Power Reference) is always $100 \%$ and calibration is simplified for the user. Effective Efficiency data is not displayed since the extremely low SWR of the power sensor means it varies only slightly from the Calibration Factor.

## Tuners

In most applications it is sufficiene to correct for the various losses associated with the sensor by using Calibration Factor data. Source mismatch (SWR) is also a factor in any power measurement, and the combination of source and load SWR can result in serious mismatch errors. Uncertainty can be reduced by using an HP 870A Slidescren' Tuner, ahead of the sensor. When a tuner is used, only correction for Effective Eff. ciency is necessary. Of course, the lower the sensor SWR, the smaller the effect of mismarch will be; maximum accuracy is always obtained from the lowest SWR. In the case of the model 8481A Power Sensor, the reflection coefficient in both magnitude and phare is supplied for 17 frequencies from 2-18 GHz. By making the same measurement on the source under test, you can calculate the effect of mismatch and eliminate this source of error.

## instrumentation

Maximum instrumentation uncertainty of the model 435A Power Meter is $\pm 1 \%$ of full-scale on all ranges. This uncertainty can be reduced by directly measur. ing the voltage at the recorder output. A digital voltmeter, such as the HewlettPackard 3480A, may be used.
The 432 -series of Power Meters provides instrumentation accuracy of $\pm 1 \%$ ( $\pm 0.5 \%$ with the digital readout of the 432 B and 432 C ) in measuring the sub. stitured power to the thermistor. Rear panel connectors allow direct measurement of the bridge voltages and computation of substituted dc power to with. in $\pm 0.2 \% \pm 0.5 \mu \mathrm{~W}$.


## Accurate power measurements

The 435A Power Meter and 8481A Power Sensor represent a significant advance in microwave power measurement. The power measurement circuit consists of a thermocouple sensing element which delivers a do output voltage proportiona! to inpur power, a chopper stabilized amplifier, and a calibrated meter circuit.

Overall neeasurement accuracy is dependent on careful consideration of all sources of error. Instrumentation uncertainty. mismarch uncertainty, and sensor calibration must all be considered to arrive at a final accuracy figure.

Mismatcin is usually the largest single source of error in power measurement. The VSWR of the sensor must be reduced to an extremely low level to obtain high measurement accuracy.

The accuracy of any power measurement in a thermocouple power meter depends on the accuracy of the thermocouple sensitivity. Therefore, some method must be provided to allow matching the sensor to a particular meter and accounting for physical changes in the sensing element.

## 8481A Power Sensor

Wide frequency and amplitude range
Measure power from $0.3 \mu \mathrm{~W}$ to 100 mW over a frequency range from s MHz to 18 GHz with a single Power Sensor.

## Low VSWR reduces measurement uncertainty

A silicon monolithic thermocouple is used as the sensing element and its small physical size allows reduction of VSWR to $<1.18$ over the range to 10 GHz and $<1.28$ to 18 GHz . This assures low mismatch encertainty, usually the largest single source of error in power measurement.

## Individually calibrated

Each sensor is individually calibrated, traceable to the Na. tional Bureau of Standards, and a Cal Facror control on the meter compensates for Ponier Sensor efficiency at any frequency. In addition, computer calibration at 17 frequencies for Cal Factor and reflection coefficient in magnitude and phase is supplied. This means you can eliminate mismatch uncertaincy by calculating the mismatch error.


- $0.3 \mu \mathrm{~W}$ to 100 mW
- 5 MHz to 18 GHz
- VSWR <1.18 to 10 GHz


## 435A Power Meter

Inproved overall measurement accuracy
Low instrumentation uncertainty ( $< \pm 1 \%$ ) and a built-in power reference concribute to the overall measurement accuracy. The power refercoce assures that the meter is properly matched to the thermocouple sensitivity, a prerequisite to highest accuracy and confidence in the measurement.

## Low dift-auto zero

Even on the lowest range, drift and noise are less than $1.5 \%$. In those cases where occasional zeroing of the meter is required, this may be accomplished by merely depressing a front panel switch.

## Battery operation-long cables

An FET chopper amplifier in the Power Sensor provides a relatively high output level with low power consumption. Thus, long cables (up to 200 feet) can be used in the Power Sensor circuit to allow remote power monitoring. Also, an optional internal battery allows truly portable operation.

## Recorder output

Long-term power monitoring and leveling of sweep oscillators may be accomplished by utilizing the recorder output.

## Speciflcations 435A and 8481A

Frequency range: 5 MHz to 18 MHz .
Power range: 55 dB with 10 full-scale ranges of $3,10, \hat{3} 0$, 100 , and $300 \mu \mathrm{~W} ; 1,3,10,30$, and 100 mW ; also cali. brated in dB from -25 dBm to +20 dBm full scale in $5 d B$ steps.
System accuracy:
Instrumentation Uncertainty: $\pm 1 \%$ of full scale on all ranges ( $0^{\circ}$ to $55^{\circ} \mathrm{C}$ ).
Zero carryover: $\pm 0.5 \%$ of full scale when zeroed on the most sensitive range.
Reference osclilator accuracy: $\pm 0.70 \%$ ( 1 mW at 50 MHz , traceable to National Bureau of Standards).
Noise and dritt: $<1,5 \%$ of full-scale peak on $3 \mu \mathrm{~W}$ range, less on higher ranges (Typical, ar constant temperature).
Response time: 2 seconds on $3 \mu \mathrm{~W}$ range, 0.6 second on $10 \mu \mathrm{~W}$ range, 0.25 second on $30 \mu \mathrm{~W}$ range, and 100 msec on all other ranges. (Typical, time constant measured at recorder output.)

## 435A Power Meter

Ref Osc: Internal ascillator with Type N female connector on Front panel or rear panel (Option 003 only). Power output $1.00 \mathrm{~mW} \pm 0.70 \%$ at 50 MHz .
Stabillty: $\pm 0.02 \%{ }^{\circ} \mathrm{C}\left(0^{\circ}-55^{\circ} \mathrm{C}\right)$.
Zero: Automatic, operated by front panel switch.
Cal Factor: 16 -position switch normalizes meter reading to account for Calibration Factor or Effective Efficiency. Range $85 \%$ to $100 \%$ in $1 \%$ steps. $100 \%$ position corresponds to Calibration Factor at 50 MHz .
Recorder output: Proportional to indicated power with 1 volt corresponding to full scale; $1 \mathrm{k} \Omega$ output impedance, BNC connector.

RF blanking output: Provides a contact closure to ground when auto-zero mode is engaged.
Cal Adj: Front panel adjusment provides capability to adjust gain of meter to match power sensor in use.
Power: $100,120,220$, or $240 \mathrm{~V} \pm 5 \%,-10 \%, 48$ to 440 Hz , less than 10 watts.
Weight: Net, $5 \mathrm{lb}, 12 \mathrm{oz}(2,6 \mathrm{~kg})$. Shipping, $9 \mathrm{lb}, 3 \mathrm{oz}(4,2$ kg ).
Dimensions: $6.3 / 32 \mathrm{in}$. high, $51 / 8 \mathrm{in}$. wide, and 11 in . deep ( $155 \times 130 \times 279 \mathrm{~mm}$ ).
Accessories furnished: $5 \mathrm{ft}(1,52 \mathrm{~m}$ ) cable for 8481 A Power Sensor; $71 / 2 \mathrm{fr}(2,29 \mathrm{~m})$ power cable. Mains plug shipped to match destination requirements.

Accessorles available:
11683 A Range Calibrator. (To be announced.)
11076A Carrying Case.
5060.8762 Rack Adapter Frame (holds three instruments the size of the 435A).
Combining cases:
1051 A, $111 / 4 \mathrm{in} .(286 \mathrm{~mm}$ ) deep.
$1052 \mathrm{~A}, 163 / \mathrm{sin}$. ( 416 mm ) deep.
The combining cases accept the $1 / 3$-module Hewlett-Packard instruments for bench use or rack mounting. See 1051 A data sheet for details.

Options:
001: Rechargeable battery installed, provides up to 16 hours of continuous operation, add $\$ 100$.
002: Input connector placed on rear panel in parallel with front, add $\$ 25$.
003: Input connector and calibrator on reas panel only add $\$ 10$.
009: 10-foot ( $3,05 \mathrm{~m}$ ) cable for power sensor, add $\$ 30$.
010: 20 -foot ( $6,10 \mathrm{~m}$ ) cable for power sensor, add $\$ 50$.
011: 50 -foot ( $15,24 \mathrm{~m}$ ) cable for power sensor, add $\$ 100$.
012: $100 \cdot \mathrm{ft}(30,48 \mathrm{~m})$ cable for power sensor, add $\$ 150$.
013: 200 foot ( $60,96 \mathrm{~m}$ ) cable for power sensor, add $\$ 250$.
Price:
Model 435A, 8550.

## 8481A Power Sensor

RF impedance: 50 n nominal.
Reflection coefficient: $<0.092$ (SWR 1.18 ), 30 MHz to 10 $\mathrm{GHz},<0.15$ (SWR 1.28), 10 to $18 \mathrm{GHz},<0.25$ (SWR 1.7), 10 MHz to 30 MHz .
Maximum Average Power: 300 mW .
Maximum Peak Power: 100 W .
Maximum Energy per Pulse: $10 \mathrm{~W} \cdot \mu \mathrm{sec}$.
RF Connector: Type N male.
Power Sensor Calibration: Cal Factor data individually calibrated for each power sensor. Each sensoc also supplied with individual computer calibration at 17 frequencies for Cal Factor and phase and magnitude of refection.
Options:
003: Precision 7 mm (APC-7) connector, add $\$ 25$.
$003: 20 \mathrm{~dB}, 10 \mathrm{~W}$ Attenuaror included. Extends measurement range to 10 W . (To be announced.)
Weight: Net, 6 oz ( $0,2 \mathrm{~kg}$ ). Shipping, $1 \mathrm{lb}(0,5 \mathrm{~kg})$.
Dumensions: $1.3 / 16 \mathrm{in}$. wide, $11 / 2 \mathrm{in}$. high, and $41 / 8 \mathrm{in}$. long ( $30 \times 38 \times 105 \mathrm{~mm}$ ) (includes RF connector).
Price: $\$ 350$.

Automatle zerolng: Depress a front panel toggle switch and the 432 Power Meter automatically resets to zero in a fraction of a second.
DC bridge clrcuit: Using dc instead of the conventional 10 kHz bias current results in three benefits: 1) No signal emission from the mount to disturb sensitive circuits 2 ) meter zeroing is independent of the impedance connected to the RF input of the thermistor mount 3 ) the instrument is nor affected by capacitance changes caused by movement of the thermistor mount cable.
High accuracy—no thermoelectric error: High accuracy over a wide temperature range is featured on the 432 Power Meters. By measuring the output voltage of the thermistor bridges, and computing the corresponding porver, even higher accuracy of $\pm 0.2 \% \pm 0.5 \mu \mathrm{~W}$ can be obrsined.
Accuracy is maintained on even the most sensitive range because the error due to thermoelectric effect is reduced to a negligible level.
Recorder outputs-analog and digital: A rear panel connector provides an analog voltage proportional to the meter reading on all 432 Power Meters. In addition, the 432 B and 432 C Digital Power Meters feature BCD outpur of power read-ing-standard.

Long cable options: Thermistor mount cables up to 10 feet long can be used without special matching of the bridge circuit. Optional cables up to 200 feet long may be used if the cable is matched to the bridge circuit.
Callbrated mounts: Each thermistor mount is furnished with data stating the Calibration Factor* and Effective Efficiency* at various frequencies across the operating range. For easy and accurate power measurements, the front panel of the 432 contains a calibration factor control, calibrated in $1 \%$ steps from $88 \%$ to $100 \%$, that compensates for losses in the mount and eliminates the need for calculation.
Convenlent callbration: Verification of full-scale calibration on all ranges is provided by the 8477 A Power Meter Calibrator described on page 374.

## Specifications

Instrument type: automatic, self-balancing power meter for use with temperature-compensated thermistor mount.

## Power range

432A: seven ranges with full scale readings of $10,30,100$, and $300 \mu \mathrm{~W}, 1,3$. and 10 mW ; also calibeated in dBm from -20 dBm to +10 dBm fuill scale in S dB steps.
432B, 432C: four ranges with full scale readings of 10 and $100 \mu \mathrm{~W}$, and 1 and 10 mW .
Nolse: less than $0.25 \%$ of full scale peak.
Response tlme: at recorder output. 35 ms times constant (typical).
Flne zero: automatic, operated by front panel switch. Remote fine zero may be accomplished with 432 C .
Zero carryover less than $0.50 \%$ of full scale when zeroed on most sensitive range.
RFI: meets all conditions specified in MIL-1-6181D.

## Meter

432A: taut-band suspension, individually compured calibrated, mirrorbacked scales. Milliwatt scale more than 41/4" ( 108 mm ) long.

[^35]

432B, 432C: three digits with one digit overrange. $20 \%$ overrange capability on all ranges.
Calibratlon factor control: 13-position switch normalizes meter reading to account for thermistor mount calibration factor. Range $100 \%$ to $88 \%$ in $1 \%$ steps.
Thermistor mount: external remperature-compensated thermis. tor mounts required for operation (HP 478, 8478B, and 486 Series; mount resistance 100 or 200 ohms).
Recorder output: proportional to indicated power with 1 volt corresponding to (ull.scale. 1 k output impedance.
BCD output: 8, 4. 2, 1 code: " 1 " positive. TTL compatible logic. Operates with HP S055A Digital Recorder. "Print" and "Inhibit" lines available. ( 432 B and 432 C only.)
Brldge outputs ( $\mathrm{V}_{\mathrm{RF}}$ and $\mathrm{V}_{\text {conp }}$ ): direct connections to the thermistor bridges; used in instrument calibration and precision power measurements.
Model 432C control lines: (note: instrument is referenced to $+5 \mathrm{~V}, ~ " L o g i c ~ 0 "$ is equivalent to 0 V ).
Outputs
BCD ourput as described above.
Overrange: single bit indicates meter overrange.
Underrange: single bit indicates meter underrange
Range: two bit code indicates range selected.
Print: single bit indicates data is ready.
Inputs
Remote enable: single bit establishes control of instrument ranging and fine zero controls for remote programming. Remote fine zero may be accomplished in remote or local modes of operation.
Remote range: two-bit code selects instrument range.
Auto zero: contact closure to ground or TTL " 0 " zeros meter.
Inhlbit: single bit holds data and stops A/D converter.
External trigger: when in inhibit mode, single bit starks new data conversion. Data ready in 10 msec .
Inputs and outputs: comparible with s05sA Digital Re-
corder and 12566 A interface card for 2100 Series com-
purers.

## Power

432A: 115 or 230 V ac $\pm 10 \%$, 50 to $400 \mathrm{~Hz}, 21 / 2$ wasts.
Optional rechargeable bartery provides up to 24 hours continuous operation. Automaric battery recharge.
432B: 115 or $230 \mathrm{~V} \mathrm{ac} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 10$ watts.
432G: 115 or 230 V ac $\pm 10 \%$, 50 to 400 Hz .16 watts.
Weight
432A: net, 6 lbs 14 oz ( $3,1 \mathrm{~kg}$ ); shipping, 10 lbs 5 oz ( 4,7 kg ).
432B: net, 6 lbs 14 oz ( 3.1 kg ): shipping, 10 lbs 5 oz (4,7 kg).
432C: net, $17 \mathrm{lbs}(3,2 \mathrm{~kg})$ : shipping. $10 \mathrm{lbs} 7 \mathrm{oz}(4,8 \mathrm{~kg})$.

## THERMISTOR MOUNTS, CALIBRATOR <br> Broad Frequency coverage <br> Models 478A, 8478B, 486 Series, 8477A

## (cominued from pyevious page)

Dlmensions: $51 / 8^{\prime \prime}$ wide, $6.3 / 32^{\prime \prime}$ high, $11^{\prime \prime}$ deep ( $130 \times 155 \times$ 279 mm ).
Accessories \{urnished: $s \mathrm{ft}(1,52 \mathrm{~m}$ ) cable for HewlettPackard temperature-compensated thermistor mounts; $71 / 2 \mathrm{ft}$ ( $2,29 \mathrm{~m}$ ) power cable. Main plugs shipped to match destination requirements.

## Options

001: rechargeable battery installed, provides up to 24 hours continuous operation (432A only), add $\$ 100$.
002: input connector placed on reas panel in paralle! with front, add $\$ 25$.
003: input connector on rear panel only, add $\$ 10$.
(Note: thermistor mount cable impedance is part of the 432 input bridge circuit. For cables over 10 feet long, the bridge is matched to specific cable options, so the various cables should not be interchanged.)
009: $10 \mathrm{ft}(3,05 \mathrm{~m})$ cable for 110.0 hm or 200 -ohm mount, add $\$ 30$.
010: $20 \mathrm{ft}(6,10 \mathrm{~m}$ ) cable for 100.0 hm or 200.0 hm mount. add $\$ 50$.
011: $50 \mathrm{ft}(15,24 \mathrm{~m})$ cable for 100 ohm or 200 -ohm mount, add $\$ 100$.
012: $100 \mathrm{ft}(30,48 \mathrm{~m})$ cable for $100 \cdot \mathrm{ohm}$ or 200 -ohm mount, add $\$ 150$.
013: $200 \mathrm{ft}(60,96 \mathrm{~m})$ cable for 100.0 hm or 200.0 hm mount. add $\$ 250$.
Price: Model 432A. \$575; Model 432B. \$975; Model 432C, \$13?5.


## Temperature-compensated Thermistor Mounts

High efficiency and good RF match are characteristic of the HP 478 A and 8478 B Coaxial and 486 A -Series Waveguide Thermistor mounts which, in conjunction with the 432 Power Meter, provide you with high accuracy even in routine power measurements. These thermistor mounts are temperature-compensated for low drift, even in the presence of thermal shocks, permitting measurement of mirrowave power as low as one microwatt. Each mount contains data showing Calibration Factor and Effective Efficiency at six frequencies, directly traceable to the National Bureau of Standards at those frequencies where NBS provides calibration service.

Specifications

HP Model 1	Frequenoy range, OHz	Max/mum SWR	Operating rasistanco (ohms)	Prles
478A	$\begin{gathered} 10 \mathrm{MHz} \mathrm{to} \\ 10 \mathrm{GHz} \end{gathered}$	$1.75,10$ to 25 MHz $1.3,25 \mathrm{MHz}_{2}$ to 7 GHZ $1.5,7$ to 10 GHz	200	\$195
8478B2	$\begin{aligned} & 10 \mathrm{MHZ} \text { to } \\ & 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.75,10 \text { to } 30 \mathrm{MHz} \\ & 1.35,30 \text { to } 100 \mathrm{MHz} \\ & 1.1,0.1 \text { to } 1 \mathrm{GHz} \\ & 1.35,1 \text { to } 12.4 \mathrm{GHz} \\ & 1.6,12.4 \text { to } 18 \mathrm{GHz} \end{aligned}$	$200$	\$3254
S486A	2.60 to 3.95	1.35	100	\$390
G486A	3.95 t0 5.85	1.5	100	\$275
J486A	5.30 to 8.20	1.5	100	\$275
H486A	7.05 to 10.0	1.5	100	\$275
X486A	8.20 to 12.4	1.5	100	\$190
M485A	10.0 to 15.0	1.5	100	\$335
P486A	12.4 to 18.0	1.5	100	$\$ 240$
K485A3	18.0 to 26.5	2.0	200	\$350
R486A3	26.51040 .0	2.0	200	\$395

'11.528A Adapter adapts mount to 430 Series Power Mater (thermistor circult unbalanced. no temperature compensation), $\$ 10$.
$=11527 \mathrm{~A}$ Adapter adapts 8478 B to $431 \mathrm{~A} / 8$ Power Melers (thermistor circult unbsianced), \$25.
${ }^{3}$ Circular flange adapters: $K$-band ( $\omega(G-425 / U)$ HP 11515A, $\$ 60$ each; R-band UG-381/U) HP $11516 \mathrm{~A}, \$ 50 \mathrm{each}$.

- Option 011, furnishad with APC. 7 RF connector, add $\$ 25$.


## 8477A Power Meter Calibrator

The 8477 A Calibrator is specifically designed for use with the 432 Power Meter. It allows you to verify full-scale meter readings on all ranges, and meter tracking. Simply connect three cables between the power meter and calibrator; no charts or additional instruments are required.


Specifications, 8477A
Callbration polnts: outputs corresponding to meter teadings of: $0.01,0.03,0.1,0.3,1.0,2.0,3.0$, and 10 nlW (for mount resistance switch settings of both 100 and 200 ohms).
Calibration uncertainty: $\pm 0.2 \%$ on the top five ranges, and $\pm 0.5 \%$ on the 0.01 and 0.03 mW ranges from $+20^{\circ}$ to $+30^{\circ} \mathrm{C}$.
RFi; meets all conditions specified in MIL-I-6181D.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50.400 Hz , approximately 2 W .
Weight: ner, $41 / 2 \mathrm{lbs}(2,0 \mathrm{~kg})$; shipping, $61 / \mathrm{lbs}(2,9 \mathrm{~kg})$.
Dimensions: $6.3 / 32^{\prime \prime}$ high, $51 / 8^{\prime \prime}$ wide, $8^{\prime \prime}$ deep (15S $\times 130 \times$ 203 mm ).
Price: Model 8477A, \$495.

## PEAK POWER CALIBRATOR <br> Measure independent of pulse width <br> Model 8900B

## Feadures:

Measures true peak power $\pm 0.6 \mathrm{~dB}$ absolute
Measurement completely independent of repetition rate and pulse width ( $>0.25 \mu \mathrm{sec}$ )
Readily standardized against external bolometer or calorimeter
Incorporates wide-band ( 7 MHz ) detector output for pulse monitoring
The HP 8900 B peak power calibrator provides a convenient means for measuring the peak RF power of pulses in the range from 50 to 2000 MHz , The power level is read out directly on the panel meter and is completely independent of repetition rate and pulse width ( $>0.25 \mu \mathrm{sec}$ ).

## Specifications

Radla frequency measurement characteristics
RF range: 90 to 2000 MHz .
RF power range: 200 mW peak full scale (may be readily increased through use of external attenuators or directional couplers).
RF power accuracy: $\pm 1.5 \mathrm{~dB}$ ( $\pm 0.6 \mathrm{~dB}$ with custom calibration curve furnished with instrument).
RF power precision: 0.1 dB .
RF pulse width: $>0.25 \mu \mathrm{~s}$.
RF repetition rate: 1.5 MHz maximum.
RF Impedance: 50 olms.
RF VSWR: <1.25.
Monitor output
Level: $>0.2$ volt for 20 mW input (nominal).


89008

Impedance: 150 ohms nominal.
Bandwidth: $>7 \mathrm{MHz}$.
Physlcal characteristics
Dlmensions: $73 / 4^{\prime \prime}$ wide, $61 / 8^{\prime \prime}$ high, $11^{\prime \prime}$ deep ( $197 \times 156 \times$ 279 mm ).
Weight: net, 10 !bs ( $4,5 \mathrm{~kg}$ ) : shipping, $13 \mathrm{lbs}(5,9 \mathrm{~kg}$ ).
Power: 105 to 125 or 210 to 250 volts, 50 to 60 Hz .

## Thermistor Mounts Models 477B, X487B, P487B

The Model 477B Thermistor Mount allows measurements from 10 MHz to 10 GHz , and the 487 -series waveguide mounts cover the $8.2-18.0 \mathrm{GHz}$ frequency range. These uncompensated thermistor mounts may be used with a variety of power meters such as the HP 430 -series. Approximately 13 mA bias current is required to obtain the nominal resistance of the thermistor.

Specifications, 477B thermistor mount
Frequency range: 10 MHz to 10 GHz .
Retlection coefficiont: full range, $<0.2$ (1.5 SWR, 14 AB return loss) ; 50 MHz to $7 \mathrm{GHz}_{1}<0.13$ (1.3 SWR, 17.7 dB return loss).
Power range: 0.01 to 10 mW (with HP 430 C ) 10 mW maximum average porer; 1 W maximum peak power.
Element; 200 -ohm, negative temperature coefficient themistor included; approximately 13 mA bias required.
RF connector: Type N male.
Prlce: HP 477B, \$135.
Speciflcations, 497 Tharmistor Mounts

HP   Madel	Maximum   SWR	Frequenoy   range*   GHz	Prfes
X487B	1.5	$8.2 \cdot 12.4$	$\$ 150$
P4878	1.5	$12.4 \cdot 18.0$	$\$ 175$

*Hp 486A Waveguide Thermistor Mounts are available in $s$. through p-band ( 2.6 to 40 GHz ): 11528 A Adspter requlred.



In microrave communications, radar, etc., the weakest signal that can be detected is usually determined by the amount of noise added by the receiving system. Thus, any decrease in the amount of noise generated in the receiving system will produce an increase in the output signal-to-noise ratio equivalent to a corresponding increase in received signal. From a performance stand. point, an increase in the signal-to-noise ratio by reducing the amount of noise in the receiver is more economical than increasing the power of the transmitter.

The quality of a receiver or ampli. fier is expressed in a figure of merit, or noise figure. Noise figure is the ratio, expressed in dB . of the actual output noise power of the device to the noise power which would be available if the device were perfect and merely amplifed the thermal noise of the input termination
rather than contributing any noise of its own.

The Hewlett-Packard system of automatic noise figure measurement depends upon the periodic insertion of a known excess noise power at the input of the device under test. Subsequent detection of noise power results in a pulse train


Figure 1. Automatic noise figure measure ment systern.
of two power levels. The power ratio of these two levels contains the desired noise figure information. Hewlett.Packard noise figure meters automatically measure and present this ratio directly in dB of noise figure.

Noise figure is discussed in detail in Hervett-Packard Application Nore 57, which is available from your local Hewiett. Packard freld office upon request. Application Note 57, "Noise Figure Primer," derives noise figure formulas, describes general noise figure measurements and discusses accuracy considerations. One of the measurement systems discussed in Application Note 57 is shown in Figure 1. The portion of the diagram within the dashed box is a simplified block diagram of the HP 340 B and 312A Noise Figure Meters, and the excess noise source could be any of the noise sources described on these pages.

## Advantages:

Reads noise figure directly in dB Completely automatic measurement Easily used by nontechnical personnel No periodic recalibration needed Fast response; ideal for recorder operation

## Uses:

Measure noise figure in microwave or radar receivers, RF and IF amplifiers
Compare unknown noise sources against known noise levels
Adjust parametric amplifiers for optimum noise figure

HP noise figure meters and noise sources offer time-saving and cost-reducing advantages. Their ease of operation and continuous, automatic metering of noise figure reduce the time required for alignment and adjustment and simplify measurements so that they can be done by nontechnical personnel. No periodic recalibration of the meters is needed, and accurate alignment is easy, so high-level, on-line performance is assured.

In operation, a noise source is connected to the input of the device under test. The IF output of the device is connected to the $340 B$ or 342 A . The noise fgure meter gates the noise source on and off. When the noise source is on: the noise level is that of the device plus the noise source. When the noise source is off, the noise level is that of the

device and its termination. The noise figure meter automatically compares the two conditions and displays noise figure directly in dB . Power to operate the noise source is supplied by the noise figure meter. Simply connect the noise source, adjust drive current using the controls and meter on the 340 B or 342 A , and the noise source is ready for operation.

## Noise figure meters

Model 340B Noise Figure Meter, when used with an HP noise source, automatically measures and continuously displays noise figure for frequencies of 30 and 60 MHz . On special order up to four custom frequencies between 10 and 70 MHz , and some frequencies outside this range, can be supplied,

Model 342A is similar to Model 3408, except that it operates on five frequencies: $60,70,105,200$, and the basic tuned-amplifier frequency of 30 MHz . Up to six custom frequencies between 10 and 200 MHz , including 21.4 MHz , are available on special order.

## Noise sources

Hewlett-Packard 343A VHF Noise Source: Specifcally for IF and RF amplifier noise measurement, a temperaturelimited diode source with broadband noise output from 10 to 600 MHz with 50 -ohm source impedance and low SWR.

Hervlett-Packard 345B IF Noise Source: Operates at either 30 or 60 MHz , as selected by a switch; another selector permits matching $50-100$-, 200-, and 400 -ohm impedances.

Hewlett-Packard 347A Waveguide Noise Source: Argon gas discharge tubes mounted in waveguide sections; for waveguide bands 3.95 through 18 GHz , they provide uniform noise throughout the range; maximum $S W R$ is 1.2 .

Hewlett-Packard 349A UHF Noise Source: Argon gas discharge tubes in Type $N$ coaxial configuration for automatic noise figure readings, 400 to 4000 MHz .

## Specifications, 340B and 342A

Nolse figure range: 5.2 dB noise source, 0 to is dB , indication to infnity; 15.2 dB noise source, 3 to 30 dB , indication to infinity.
Accuracy (excluding source accuracy): noise diode scale: $\pm 0.5$ $\mathrm{dB}, 0$ to 15 dB ; gas tube scale: $\pm 0.5 \mathrm{~dB}, 10$ to $25 \mathrm{~dB} ; \pm 1 \mathrm{~dB}$, 3 to 10 dB and 25 to 30 dB .
Input frequency: 340 B ; 30 or 60 MHz , selected by switch; 342 A : 30, $60,70,105$, and 200 MHz , selected by switch. Other frequencies available; prices and derails on request.
Bandwidth: I MHz minimum.
Input requirements: -60 to -10 dBm (noise source on): cor. responds to gain between noise source and iaput of approximately 50 to 100 dB for 5.2 dB noise source and 40 to 90 dB for 15.2 dB noise source.
Input Impedance: 50 ohms nominal.
AGC output: nominal o to - 6 V from rear binding posts.
Recorder output: 1 mA maximum into 2000 ohms maximum.
Power input: is or 230 volis $\pm 10 \%$, 50 to $60 \mathrm{~Hz}, 185$ co 435 watts, depending on noise source and line voltage.
Power output: sufficient to operate 343A, 34sB, 347A or 349 A Noise Sources.
Dimenslons: cabiner: $203 / 4^{\prime \prime}$ ride, $123 / 4^{\prime \prime}$ high, $141 / 2^{\prime \prime}$ deep ( 527 x $324 \times 368 \mathrm{~mm}$ ) ; rack mount: $19^{\prime \prime}$ wide, $10-15 / 32^{\prime \prime}$ high, $137 / 8^{\prime \prime}$ deep behind panel ( $483 \times 266 \times 353 \mathrm{~mm}$ ).

Welghts: net $43 \mathrm{lb}(19.4 \mathrm{~kg})$, shipping $53 \mathrm{lb}(23.9 \mathrm{~kg})$ (cab. inet) : net 36 lb ( 16.2 kg ), shipping 50 lb ( 22.5 kg ) (rack mount).
Accessory furnished: one 340A-16A Cable Assembly, connects noise figure meter to 347 A or 349 A Noise Source.
Price: HP 3408, $\$ 1075$ (cabinet): HP 340BR, $\$ 1060$ (rack mounr); HP 342A, \$118s (cabinet); HP 342AR, $\$ 1170$ (rack mount) ; not arailable in all countries.

## Specifications, 343A

Frequency range: 10 to 600 MHz .
Excess nolse ratio': 10 to $30 \mathrm{MHz}, 5.20 \mathrm{~dB} \pm 0,20 \mathrm{~dB} ; 100 \mathrm{MHz}$, $5.50 \mathrm{~dB} \pm 0.25 \mathrm{~dB} ; 200 \mathrm{MHz}, 5.80 \mathrm{~dB} \pm 0.30 \mathrm{~dB} ; 300 \mathrm{MHz}$, $6.05 \mathrm{~dB} \pm 0.30 \mathrm{~dB} ; 400 \mathrm{MHz}, 6.30 \mathrm{~dB} \pm 0.50 \mathrm{~dB}: 500 \mathrm{MHz}$, $6.50 \mathrm{db} \pm 0.50 \mathrm{~dB} ; 600 \mathrm{MHz}, 6.60 \mathrm{~dB} \pm 0.50 \mathrm{~dB}$.
Source impedance: 50 ohms.
Reflection coefficient: < 0.091 ( $1.2 \mathrm{SW} / \mathrm{R}$ ), 10 to 400 MHz ; $<0.13$ ( 1.3 SWR), 400 to 600 MHz .
Noise generator: temperature-limited diode.
Dlmensions: $23 / 4^{\prime \prime}$ wide, $21 / 2^{\prime \prime}$ high, $5^{\prime \prime}$ deep ( $70 \times 63 \times 127 \mathrm{~mm}$ ).
Weight: net $3 / 4 \mathrm{lb}(0,34 \mathrm{~kg})$; shipping $2 \mathrm{lbs}(0,9 \mathrm{~kg})$.
Price: GP 343A, $\$ 160$.
Option 001: spare noise diode(s) calibrated and supplied with instrument, add $\$ 40$ each.

## Specifications, 345B

(same weight and dimensions as 343A)
Spectrum center: 30 or 60 MHz , selected by switch.
Excess nolse ratio: 5.2 dB .
Source Impedance: $50,100,200$ or 400 ohms, $\pm 4 \%$, as selected by switch; less than $1 \mathrm{p} \overline{\mathrm{F}}$ shunt capacitance.
Nolse generator: temperature-limited diode.
Price: HP 345B, S215 (operation at any two freguencies between 10 and 60 MHz in liee of 30 and 60 MHz arailable on special order).

Specifications, 347A

$\underset{\text { Mode! }}{\substack{\text { Hod }}}$	Range (GHz)	Exoass nelso ratlol,2	Approx. length		Prles
			(in.)	(mm)	
G347A	3.95-5.85	$15.2=0.5$	19	483	\$485
J347A	$5.30-8.20$	$15.2 \pm 0.5$	19	483	\$485
H347A	7.05-10.0	$15.6 \pm 0.5$	16	406	\$490
X347A	8.20-12.4	$15.7 \pm 0.4$	141/4	375	\$405
P347A	12.4-18.0	$15.8 \pm 0.5$	143/4	375	\$430

Reflectlon coefficlent for all moctels, Hied or unfired, 0.091 (SWR 1.2) max. (source terminated in well-matched load).

## Specifications, 349A

Frequency range: 400 to 4000 MHz , wider with correction.
Excess nolse ratio': $15.6 \mathrm{~dB} \pm 0.6 \mathrm{~dB},{ }^{;} 400$ to $1000 \mathrm{MHz} ; 15.7 \mathrm{~dB}$ $\pm 0.5 \mathrm{~dB},{ }^{1} 1000$ to 4000 MHz .
SWR: <1.35 (fired), <1.55 (unfired) up to $2600 \mathrm{MHz} ;<1.55$ (fired or unfined), 2600 to $3000 \mathrm{MHz} ;<2.0$ (fired), $<3.0$ (unfired) 3000 to 4000 MHz .
Dimensions: $3^{\prime \prime}$ wide, $2^{\prime \prime}$ high, $15^{\prime \prime}$ long ( $76 \times 51 \times 381 \mathrm{~mm}$ ).
Weight: net $3 / 4 / 4(1,4 \mathrm{~kg})$; shipping $6 \mathrm{lb}(2,7 \mathrm{~kg})$.
Price: HP 349A, \$350.

[^36]
## Microwave measuring techniques

Hewlett-Packard offers a complere line of microwave test equipment from which systems can be assembled for making accurare reflections, uransmission and frequency measurements. Equipment ranges from inexpensive CW systems which measure a magnitude response to powerful network analyzers which furnish a dynamic CRT display of frequency swept magnitude and phase. Measurement techniques and equipment functions are discussed briefly in the following para. graphs. More detailed information is available in Application Notes 64, 65, and 84. complimentary copies are available from Herlett-Packard sales offices.

## Frequency measurements

There are two general classes of frequency measuring devices-ackive and passive types. Electronic counters, transfer oscillators, and frequency converters are examples of acrive types. HP manufactures a complete line of these instruments which measure frequency with accuracies of a few pacts in $10^{\text {s. }}$

Where the accuracy of active devices is not required, passive devices offer direct readout at a considerable saving in cost. Passive transmission-type frequency merers, such as the HP 532. 536A, and 537 A , are two port devices that absorb part of the input power in a tunable cavity. When the cavity is cuned to resonance, a dip occurs in the reansmitted power level. This dip can be observed on a meter or oscilloscope display of the detected RF voltage. Prequency is then read from a calibrated dial driven by the cavity tuning mechanism. The accuracy of cavity frequency meters depends upon the cavity $Q$. dial calibration, backlash, and effects of temperature and humidity variations. The frequency merers achieve accuracies of a few parts in $10^{3}$.

## Impedance measurements

Impedance-matching a load to its source is one of the most important con. siderations in microwave transmission systems. If the load and source are mismarched, part of the power is ceflecred back along the transmission line roward the source. This reflection not only limits maximum power uansfer, but also can be responsible for erroneous measure. ments of other parameters or even cause circuit damage in high-poner applications.

The signal reflected from the load in. renfers with the incident (forward) sig. nal, causing standing waves of voltage and current along the line. SWR, which is the ratio of standing ruave maxima to minima, is directly related to the impedance mismatch of the load. The standing wave ratio (SWR), therefore. provides a valuable means of determining impedance magnitude and mismatch. There are two common methods for mea. suring SWR; slotted line rechniques and reffectometer techniques. A slotted line measures the ratio of standing wave maxima to minima while a refectometer separates the incident and refected volt. age reaves and then measures their ratio.

## Slotted IIne techniques-single Prequency

Standing. wave ratio can be measured directly with a slotted line in a setup like the one shown in Figure 1. The slotted line probe is loosely coupled to the RF field in the line, thus sensing relative amplitudes of the standing- ba ave pattern as the probe is moved along the line. The ratio of maxima 10 minima (SWR) is displayed directly on the SWR meter.


Figure 1. Typleas selud for SWR measuraments In coax.

Slotred lines feature low sesidual SWR and have the capability of inexpensive phase measurements compared to reflectometer techniques. While these methods work well for single-frequency testing, they are time-consuming for broadband applications.

## The swept slotted line

A measuring system which combines the speed and convenience of swept-frequency messurements and the inherent accuracy of the slotred line can be built around the HP 817A Slotted Line System. The serup is identical to Figure 1 except that the soutce is replaced with a sneep oscillator, the slotted line is an 817d Option H03, and the diSE is re.
placed by the HP 8755A/181A. This system will operate throughout the frequency range from 1.8 to 18 GHz . The measurement results are displayed on a storage oscilloscope as an envelope of the SWR in dB. See Figure 2. At any given frequency, the ratio of the maximum and minimum amplitude of the


Figure 2. Multl-sweed slotted-llne measurement. verlleal scale $0.5 \mathrm{~dB} / \mathrm{cm}$.
envelope is the SWR. A plor of SWR can be generated in a feri seconds and retained on the CRT for evaluation or photography, Accuracy of slotred-line measurements is limited primarily by the residual SWR of the line itseif, 1.01 in waveguide and 1.02 to 1.06 in coax depending upon the frequency and type of connector.

## Reflectometer techniques

The reflection coefficient ( $\rho$ ) of a device or system is another useful term in establishing the impedance match of microwave devices. The following rela. tionships of $\rho$ and SW'R are frequently used in impedance work:

$$
\rho=\frac{\left|E_{\text {reflected }}\right|}{\bar{\xi} \text { incident }^{i}}=\frac{S W R-1}{S W R+1}
$$

Reflection coeffcient ( $\rho$ ) is a linear quan. tity varying between zero and one. The logarthmic expression of $p$ is known as return loss and defined as: $\mathrm{dB}=-20$ LOG $_{10} \grave{\mid}_{\boldsymbol{\rho}} \mid$. A refection coefficient of 1.0 (total reflection) therefore, corresponds to a return loss of 0 dB and a zero refection coeffeient corresponds to infinite dB return loss.

Refection coefficient is measured by separating the incident and reflected waves propagated in the transmission line connecring the source and load. The reflectometer uses either coaxial or wave-
guide couplers to accomplish this separation. Reflectometers permit dynamic oscilloscope displays or permanent X.X recordings of reflection coefficient or return loss across complete operating bands.
The waveguide reflectometer seiup shown in Eigure 3 is designed to hold the incident power constant by leveling. With automatic leveling, only the relative amplitude of the reflected wave need be measured to determine refiection coefficient.

To calibrate the reflectometer, a short circuit is placed at the outpur port, thus refecting all of the incident power (zero dB return loss). The detector in the re-verse-arm coupler samples the refected power and provides a proportional dc voltage for readour. By placing a calibrated attenuator ahead of the detector specific amounts of return loss may be pre-inserted for calibrating the recorder gain. The atrenuator is then returned to zero, the short removed, and the test device connected and measured on the precalibrated display. Measurements are also possible without the pre-insertion attenuator if the detector remains within its square law region.


Figure 3. Typical waveguide reflectometer.
The seflectometer technique described is an economical way for making swept measurements (see Hewlett-Packard Application Note 65 for more information). However, greater speed and convenience is possible with the HP 8755 Series Frequency Response Test Sets. Measured data can be either plotted on an X.Y recorder or read directly from a fully calibrated CRT display. See Figure $s$ and Hewletr-Packard Application Note 155.
Accuracy of reflectometer measurements is limited by directional coupler directivity. A residual 5WR of 1.02 ( 40 dB directivity) is common in waveguide and 1.02 to 1.1 in coax depending on the frequency range and connectors.

## Attenuation Measurements

Attenuation is defined as the decrease in power (at the load) caused by insert-
ing a device between a $Z_{0}$ source and load. Under this condition, the measured value is a property of the device alone. The term $Z_{0}$ is used to describe a unity SWR condition where the load and source impedances equal the transmission line impedance.
There are three common methads for measuring RF attenuation: 1) squarelan detection with audio substitution, 2) direct $R F$ substitution, and 3) linear detection with IF substitution.

## Square-law detection technique

Figure 4 shows a waveguide system for swept attenuation measurements of 25 to 30 dB . Source power is leveled using a 752 -series 10 dB directional coupler in the ALC loop. Using two 752 direcrional couplers improves the $\mathrm{Z}_{0}$ source and load matching requirements and improves the systems frequency response as well.


Figure 4. Swept attenuation system for measurements ud to 30 da .

With the 8620A sweeping the frequency range of interest, a zero- dB reference level is established on the $x-y$ recorder withour the test device in the system. The device is then inserted as indicated in Figure 4 and its attenuation versus frequency determined by the amplitude decrease from the reference level previously established.


Figure 5. Setup for simultangous swapt mea. surement of insertion gain and return loss.

A much improved square-lin detection technique uses the HP 8755L Frequency Response Test Ser. The setup diagram in Figures permits simultaneous
measurements of attenuation and return loss over a continuous 60 dB dynamic range. Readout is either on a CRT dis. play calibrated directly in dB or a X.Y recorder. The 8795A has a frequency range of 100 MHz to 18 GHz .

## RF substitution technique

Swept atrenuation measurements up to 45 to 50 dB can be made using the RF pre-insertion, X.Y secorder system shown in Figure 6. Coupler tracking and detector errors are eliminated by plotring a calibration grid on the X-Y recorder prior to the actual measurement. The grid is plotted by setting in specific values of attenuation on the 382A near the anticipared test device attenuarion. The 382 A is then set 100 dB and the test device inserted as shown in Figure 6. A final sweep plots attenuation of the test device over the calibration grid.

IF substitution technique
The IF substitution technique of atrenuation measurement involves conversion of the microviave frequency to a constant, much lower frequency for which very accurately calibrased attenuacors are available. Detection at a constant $1 F$ frequency improves the system sensitivity permitting measurements over a wide ( $>60 \mathrm{~dB}$ ) dynamic range.

The 8410A Network Analyzer is an instrument example where IF substitution is used thus alloring accurate mea. surements to be made over a frequency range of 110 MHz to 40 GHz . Compared to the other rechniques mentioned in this section the nerwork analyzers offer the latest in speed, measurement precision, and user convenience.


Figure 6. RF pre-lnsertion technique for swept attenuation measurements.

Hewlett-Packard now offers a 64 page comprehensive catalog of roaxial and waveguide measurement accessories. It contains complete information about our extensive selection of precision RF pas. sive instruments and accessories.

Sections include; Directional Cous. plers, Sloted Line Equipment, Attenuators, Frequency Meters, Detectors, Mix. ers, Filters, Modulators, Terminations.

A free copy may be obtained through your local Hewlett-Packard field office.

MICROWAVE TEST EQUIPMENT

COAXIAL INSTRUMENTATION
For coaxial systems operating to 18 GHz




[^37]COAXIAL ATTENUATORS
High performance, low cost, dc to 18 GHz
Models 8491A, B; 8492A; 8493A, B
MICROWAVE TEST EQUIPMENT


## 8491A/B, 8492A, 8493A/B Fixed Attenuators

Hewlett-Packard fixed coaxial attenuators provide precision attenuation, fat frequency response, and low VSWR over broad frequency ranges at low prices. Attenuators are available in nominal attenuations of $3-\mathrm{dB}, 6-\mathrm{dB}$ and $10 \cdot \mathrm{~dB}$ increments from 10 dB to 60 dB . These attenuators are swept-frequency tested to insure meeting specifications at all frequencies.

## 11581A, 11582A, 11583 A Attenuator Sets

A set of four Hewlett-Packard atrenuators, 3, 6, 10 and 20 dB are furnished in a handsome walnut accessory case. In addition to the calibration stamping on the bodies of the attenuators, the set includes a calibration report. The calibration report is certified traceable to the National Bureau of Standards. The calibration report also includes accuracy of both the attenuation and the reffection coefficients at selected frequencies.
11581A ( 8491 A 's): includes 3, 6, 10, 20 dB . Price: $\$ 250$
11582A (8491B's) : includes 3, 6, 10, 20 dB. Price: $\$ 330$
II583A (8492A's): includes 3, $6,10,20 \mathrm{~dB}$. Price: $\$ 615$

Specifications 8491A/B, 8492A, 8493A/B

	H4gra		84918			81824			493A		8433日		
Alionuatien ${ }^{1}$   (d者)	Opition: $3,8,10,20,30$, 40, 50,80		Option : 3, 8, 10, 20, 80, 60, 60, 80			O,ylost : 3, 8, 10, 20, 30, 10, 50, 80			Option: 3, 8, 10, 20, 10		Dptisn : 3, 8, 10, 20, 30		
Fiequancy	DC-12,4 EHz		DC - 10 QHz			DC. 78 CHz			DC. 2240 Hz		Do - 18 aHz		
8W9 ${ }^{\text {P }}$	$\mathrm{DC}_{1.2} \mathrm{OHz}$	$\begin{aligned} & 8.124 \\ & 8.3 \end{aligned}$	$\begin{gathered} 0 \mathrm{O} .8 \mathrm{OHz} \\ 1.2 \end{gathered}$	$\mathrm{O}-18.4 \mathrm{aHz}$	$\underset{\substack{12.5 \\ 18.5}}{\text { aHz }}$	$\underset{1.18}{\mathrm{DO}-\mathrm{E}} \mathrm{O}$	$1-12.4 \mathrm{aHz}_{1.28}$	$12.411 \mathrm{aHz}$	$\mathrm{DC} \cdot \mathrm{e} \mathrm{OHz}$	$8.324 \mathrm{aHz}$	$0 \mathrm{OE.8} \mathrm{OHz}$	$\mathrm{g} \cdot 124 \mathrm{GHz}$	$124 \cdot 110 \mathrm{OHI}$
Attenuation A0014 $50 y$ 3 dB	$\pm 0.3 \mathrm{~dB}$		$=0.3 \mathrm{~dB}$			$\pm 0.3 \mathrm{~dB}$			$=0.3$		$\pm 0.3 \mathrm{~dB}$		
6 dB	$\pm 0.3 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}^{3}$			$\pm 0.3 \mathrm{~dB}^{3}$			$=0.3 \mathrm{~dB}$		$\pm 0.38^{3}$		
10 dB	$=0.588$		$=0.5 \mathrm{~dB}$			$\pm 0.5 \mathrm{~dB}$			$\pm 0.5 \mathrm{~dB}$		$\pm 0.5 \mathrm{d8}$		
20 dB	$\pm 0.5$ d8		$=0.5 \mathrm{~dB}^{2}$			$\pm 0.5 \mathrm{~dB}^{4}$			$\pm 0.5 \mathrm{~dB}$		$\pm 0.5 \mathrm{~dB}$		
30 dB	$\pm 1 \mathrm{d8}$		$=1 \mathrm{~dB}$			$\pm 1 \mathrm{~dB}$			$=1 \mathrm{~dB}$		$\pm 188$		
40 dB	$\pm 1.5 \mathrm{~dB}$		$=1.5 \mathrm{~dB}$			$\pm 1.5 \mathrm{~dB}$			-		-		
50 dB	$\pm 1.5 \mathrm{d8}$		$\pm 1.5 \mathrm{~dB}$			$\pm 1.5 \mathrm{~dB}$			-		-		
60 dB	$\pm 2 \mathrm{~dB}$		$=2 \mathrm{~dB}$			$\pm 2 d B$			-		-		
Coinnector	$N$		N			APC. 7			SMA		SMA		
Dimensions	$\begin{aligned} & 2-7 / 16 \times 13 / 16 \\ & \text { inckes } \end{aligned}$		$\begin{aligned} & 2-7 / 16 \times 13 / 16 \\ & \text { inches } \end{aligned}$			$\begin{gathered} 23 / 4 \times 13 / 16 \\ \text { inches } \end{gathered}$			$\begin{gathered} -9 / 16 \times 1 / 2 \\ \text { inches } \end{gathered}$		$\begin{aligned} & 1-9 / 16 \times 1 / 2 \\ & \text { inches } \end{aligned}$		
Shipping WL.	602.		6 oz .			702.			402.		402.		
Price (Qly. 1-4)	$\begin{gathered} 3-30 \mathrm{~dB}, \$ 60 \mathrm{es} \\ 40-60 \mathrm{~dB}, \$ 85 \mathrm{ea} \end{gathered}$		$\begin{gathered} 3-30 \mathrm{~dB}, \$ 80 \mathrm{ea} \\ 40-60 \mathrm{~dB}, \$ 115 \mathrm{ea} \end{gathered}$			$\begin{gathered} 3-30 \mathrm{~dB}, \$ 150 \mathrm{ea} \\ 40-60 \mathrm{~dB}, \$ 185 \mathrm{ea} \end{gathered}$			$\begin{gathered} 3-20 \mathrm{~dB}, \$ 65 \mathrm{ea} \\ 30 \mathrm{~dB}, \$ 70 \mathrm{ea} \end{gathered}$		$\begin{gathered} 3.20 \mathrm{~dB}, \$ 80 \mathrm{ea} \\ 30 \mathrm{d8}, \$ 85 \mathrm{ea} \end{gathered}$		

[^38]2. Check data sheet for SWR sllght varlation of potions 003 and 006 with frequEncy bands.
3. 6 dB option accuracy is $=0.4 \mathrm{~dB}, 12.4-18 \mathrm{GHz}$.
4. 20 dB optlon accuracy is $\pm 1 \mathrm{~dB}, 12.4=18 \mathrm{GHz}$.

## MICROWAVE TEST EQUIPMENT

COAXIAL ATTENUATORS
Variable attenuators to 12.4 GHz
Models 354A, 355C-F, 393A, 394A, 33300 Series


With loads $A$ and $B$ in place the instrument is an attenuator. with load A only, the instrument is a varlable directlonal coupler.

## 354 A step attenuator, dc to 12.4 GHz

The Model 354A is a turrec-iype coaxial attenuator which provides 0 to 60 dB of attenuation in $10 \cdot \mathrm{~dB}$ sreps over the frequency range from dc to 12.4 GHz . Attenuation changes are made with a simple knob rotation: no pull-rurn-push se. quence is required. For bench use the attenuator is supplied with a base; honever, the base is removable for easy conversion to rack mount.

## 355C, D, E, F manual and programmable attenuators, dc to 1 GHz

These are precision attenuators from de-1 GHz . The 355 C and D are manual while the 355 E and F are programmable. $0-12 \mathrm{~dB}$ in $1-\mathrm{dB}$ steps are provided by the 355C and $E ; 0.120$ dB in 10 dB steps are provided by the 355D and F . Attenuator sections are inserted and removed by cam-driven microswitches. The programmable version uses a 7 -pin connector which allows remote control by BCD signals.

## 393A, 394 A attenuators, 500 MHz to 1 GHz and 1 GHz to 2 GHz

Each of these coaxial variable artenuators uses the principle of a directional coupler to achieve a wide range of attenuation over a full octave. The HP 393 A covers 5 to 120 dB from 500 to 1000 MHz ; HP 394A covers 6 to 120 dB from 1 to 2 GHz . With special high-power terminations they handle up to 200 natts average. Since these instruments are vasiable directional couplers, they are particularly useful for mixing signals while maintaining isolation.

## 33300/01/04/05 programmable step attenuators, dc to 18 GHz

These step attenuators provide a fast and precise means for electrically controlling the level of signal attenuation in automatic rest systems. They are available in four basic configurations: 0.70 dB in $10 . \mathrm{dB}$ steps ( 33300 ) 0.42 dB in $6 . \mathrm{dB}$ steps ( 33301 ), 0.11 dB in $1-\mathrm{dB}$ steps ( 33304 ) and $0-110 \mathrm{~dB}$ in $10 \cdot \mathrm{~dB}$ steps ( 33305 ). Magnetic latching solenoids ( 12 and 24 volts) are used to switch individual attenuation elements inco and out of contact with a so ohm transmission line, $A$ and $B$ are "no contacts" and C and D are "with contacts." Specinica. tions in the table below are for the 33300 only. Refer to data sheet for specifications of the $33301 / 04 / 05$, whose prices range from $\$ 650.5950$.

Specifications

Speolficatlons	354A	356C/E	3560/F	393A	3944	$33300 A, B, C, D$,
Mode of Operation:	Manual	355 C : Manual 355E: Programmable	355D: Manual 355F: Programmable	Manual	Manual	Programmable
Atlenuation:	$0-60$ in 10 dB steps	12 d 8 in 1-dB steps	120 dB in 10-dB steps	5-120 dB, variable	6-120 d9 variable	$\begin{aligned} & 0-70 \mathrm{dBm} 10 \mathrm{~dB} \\ & \text { steps } \end{aligned}$
Frequency range:	dc. 12.4 GHz	$\mathrm{dc}-1 \mathrm{GHz}$	dc .1 GHz	.5-1 GHz	1-2 GHz	dc .18 GHz
Accuracy:	$\pm 2 \mathrm{~dB}$	$\begin{aligned} & \pm 0.1 \mathrm{~dB} \text { at } 1000 \mathrm{~Hz} \\ & =0.25 \mathrm{~dB} \mathrm{dc} \text { to } 500 \mathrm{MHz} ; \\ & =0.35 \mathrm{~dB} \mathrm{dc} \mathrm{to} \mathrm{GHz} \end{aligned}$	$=0.3 \mathrm{~dB}$ to 120 dB at $1000 \mathrm{~Hz} ;=1.5 \mathrm{~dB}$ to 90 dB below $1 \mathrm{GHz} ;=3 \mathrm{~dB}$ to 120 dB below 1 GHz .	$\pm 1.25 \mathrm{~dB} \text { or } \pm 1.75 \%$ whichever is greater	$\pm 1.25 \mathrm{~dB} \text { or }=2.5 \%$ whichever is greater	$3 \% \text { de to } 12.4 \mathrm{GHz}$ $4 \% 12.4 \text { to } 18 \mathrm{GHz}$
Impedance:	50 chms	50 ohms		50 ohms		50 ohms
Power dissipation:	2 walts ave., 100 peak	0.5 walt average, 350 valts peak		Approximately 200 watt, max. rating of termination must be observed		$\begin{gathered} 2 \text { watt ave., } 500 \\ \text { watts peak } \end{gathered}$
Maximum SWR:	$\begin{aligned} & 1.5, \mathrm{dc}-8 \mathrm{GHz} \\ & 1.75,8-12.4 \mathrm{GHz} \end{aligned}$	1,2 below $250 \mathrm{MHz} ; 1.3$ below 500 MHz ; 1.5 below 1 GHz		$\begin{aligned} & 2.5,5 \text { to } 15 \mathrm{~dB} \\ & 1.5,15 \mathrm{do} 30 \mathrm{~dB} \\ & 1.4 .30 \text { to } 120 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 2.5,6 \text { to } 10 \mathrm{~dB} \\ & 1.8,10 \text { to } 15 \mathrm{~dB} \\ & 1.6 .15 \text { to } 120 \mathrm{~dB} \end{aligned}$	refer to data sheat
Maximum Inser. (ion Loss:	$<1.5 \mathrm{~dB}$	$\begin{gathered} 0.25 \mathrm{~dB} \text { at } 100 \mathrm{MHz} ; 0.75 \mathrm{~dB} \text { to } 500 \mathrm{MHz} ; \\ 1.5 \mathrm{~dB} \text { 10 } \mathrm{GHz} \end{gathered}$		-	-	$\begin{array}{\|l\|} \hline 0.8 \mathrm{\sigma B}, \mathrm{dc}-8 \mathrm{GHz} \\ 1.2 \mathrm{~dB}, 8-12.4 \mathrm{GHz} \\ 1.8 \mathrm{~dB}, 12.4 .18 \mathrm{GHz} \\ \hline \end{array}$
Dimensions (in.) :	4 long. 41/2 wide, $31 / \mathrm{a}$ in. high	6 long, $23 / 1$ wide, $21 / 8$ high ( $152 \times 70 \times 67 \mathrm{~mm}$ )		51/2 wide, 12 long, $29 / 4$ deep.$(140 \times 305 \times 70)$		$\begin{array}{\|l\|} \hline 7 \times 1.5 \times 1.25(178 \times \\ 38 \times 32) \end{array}$
Weight:	net $2 \mathrm{lb},(1,2 \mathrm{~kg})$, shipping $4 \mathrm{lb} .(1,8 \mathrm{~kg})$	net $2 \mathrm{lb},(0,9 \mathrm{~kg})$; shipping $3 \mathrm{lb},(1,4 \mathrm{~kg})$		net $6 \mathrm{lb},(2.7 \mathrm{~kg}$ ), shipping $9 \mathrm{lb} .(4.1 \mathrm{~kg})$		net $2 \mathrm{lb},(0,9 \mathrm{~kg})$, shipping 3lb. (1,4 kg)
	354A-\$390	$\begin{gathered} \text { 355C: } \$ 160 \text { Manual } \\ 355 \mathrm{E}: \$ 275 \text { Program. } \\ \text { mable } \end{gathered}$	355D 3160 Manual 355F: $\$ 275$ Program- mable	393A: \$725	394A: \$725	$33000 \mathrm{~A}: \$ 665$ $33000 \mathrm{~B}: \$ 685$ $33000 \mathrm{C}: \$ 690$ $33000 \mathrm{D}: \$ 690$

## Precision Variable Attenuators

Operation of these direct-reading, precision attenuators depends on a mathematical law, rather than on the resistivity of the attenuating material. Accurate attenuation from 0 to 50 dB ( 0 to 60 dB for S382C) is assured regardless of temperature and hemidity. The
instruments can handle considerable power and feature large, easily read dials. In addition, the S382C achieves both long electrical length and short physical dimensions through dielectric loading. The result is an $S$-band attenuator which is only $25 / 4$ inches long and yet is more accurate than previously available units.

HP Model	5882C	J382A	H342A	X3824	P382A	K382A	R382A)
Frequency range ( $\mathrm{CHz}_{2}$ ):	2.6-3.95	5.3.8.2	$7.05 \cdot 10.0$	8.2 -12.4	12.4 -18.0	18.0 26.5	26.5-40.0
Waveguide size $\begin{aligned} & \text { (in): } \\ & \text { (EIA): }\end{aligned}$	$3 \times 1 / 2$ WR284	$\begin{aligned} & \hline 11 / 2 \times 3 / 4 \\ & \text { WR137 } \end{aligned}$	$\begin{aligned} & 119 \times 5 / 8 / 8 \\ & \text { WR112 } \end{aligned}$	$\begin{aligned} & 1 \times 1 / 2 \\ & W R 90 \end{aligned}$	$\begin{gathered} .702 \times .391 \\ \text { WR } 52 \end{gathered}$	$\begin{aligned} & 1 / 2 x 1 / 4 \\ & \text { WR42 } \end{aligned}$	$\begin{gathered} .350 \times .220 \\ \text { W928 } \end{gathered}$
Power handling capacity, watts, average continuous duty:	10	10	10	10	5	2	1
Size length, in. $(\mathrm{mm})$ :   height,      depth, $i n$.   (mm) $(\mathrm{mm}):$  	$\begin{array}{cc} 251 / 4 & (641) \\ 6 & (152) \\ 8 & (203) \end{array}$	$\begin{array}{cc} 25 & (635) \\ 7 / 8 \\ 6 \cdot 3 / 16 & (200) \\ (157) \end{array}$	$\begin{array}{cc} 20 & (508) \\ 7-15 / 16 \\ 612 & (162) \\ \hline \end{array}$	$\begin{array}{cc} 155 / 8 & (397) \\ 75 / 8 & (194) \\ 4.11 / 16 & (119) \end{array}$	$\begin{array}{ll}  & \begin{array}{ll} 121 / 218) \\ 77 / 4 & (197) \\ 43 / 4 & (121) \end{array} \end{array}$	$75 / 8$ $(194)$   618 $(156)$   $43 / 4$ $(121)$	$63 / 8$ $(162)$   $61 / 3$ $(156)$   $43 / 4$ $(121)$
	$\begin{array}{ll} 18 & (8,1) \\ 22 & (9,9) \end{array}$	$\begin{array}{ll} \hline 13 & (5,9) \\ 17 & (7,7) \end{array}$	$\begin{array}{ll} \hline 11 & (5,0) \\ 15 & (6,8) \end{array}$	$\begin{array}{ll} \hline 6 & (2,7) \\ 8 & (3,6) \end{array}$	$\begin{array}{ll} \hline 5 & (2,3) \\ 8 & (3,6) \end{array}$	$\begin{array}{ll} \hline 3 & (1,4) \\ 6 & (2,7) \end{array}$	$\begin{array}{ll} \hline 3 & (1,4) \\ 6 & (2,7) \end{array}$
Price:	\$1800	\$700	\$675	\$425	\$500	\$725	\$800

## For all 382A Models

Incremental attenuation range; 0 to 50 dB .
Residual attenuation: less than 1 dB .
Reflection coefficient: less than 0.07 ( 1.15 SWR, 23.) dB return loss).
Accuracy: $\pm 2 \%$ of reading in dB , or 0.1 dB , whichever is greater. Includes calibration and frequency error.

## For Model S382C

Calibrated attenuation ranga: 0 ro 60 dB (above residual attenuation).

Residual attenuation: less than 1 dB .
Accuracy: $\pm 1 \%$ of reading in dB , or 0.1 dB , whichever is greater, from 0 to 50 dB ; $\pm 2 \%$ of reading above 50 dB ; includes calibre. tion and frequency error.

Reflectlon coefficlent: less than 0.091 ( $1.2 \mathrm{SWR}, 20.8 \mathrm{~dB}$ return loss), 2.6 to 3 GHz ; less than 0.07 (1.15 SWR, 23.1 dB return loss), 3 to 3.95 GHz .
Degree dial: 0 to $90^{\circ}$; calibrated in $0.01^{\circ}$ increments.
' Circular flange adapters: K-band (UG-425/U) 11515A, $\$ 60$ each: R-band (UG-381/U) 11516A, \$50 each.


## General-Purpose Attenuators

Variable flap attenuators provide a simple, convenient means of adjusting waveguide power level or isolating source and load. They consist of a slotted section in which a matched resistive strip is inserted. The degree of strip penetration determines altenuation. A dial shows average reading orer the frequency band, and a shielded dust cover reduces external radiation and eliminates hand capacity effects. Attenuation is variable from 0 to 20 dB . Dial calibration is accurate within $\pm 1 \mathrm{~dB}$ from 0 to $10 \mathrm{~dB}, \pm 2 \mathrm{~dB}$ from 10 to 20
dB. Maximum reflection coefficient is 0.07 ( 1.15 SW/R, 23.1 dB return loss).

Specifications, 375A

$\begin{gathered} \text { HP } \\ \text { Model } \end{gathered}$	$\begin{gathered} \text { Frequency } \\ (\mathrm{OHz}) \end{gathered}$	Powerdissjpation (watts)	Length		Fils wavagulda 8118 (In.)	Prlea
			( m.	(mm)		
X375A	8.2 -12.4	2.0	7-4/5	198	$1 \times 1 / 2$	\$225
P375A	12.4-18.0	1.0	7\%	184	. $702 \times .391$	\$250

## MICROWAVE TEST EQUIPMENT

## BROADBAND COAX COUPLERS <br> Multi-Octave coverage with high directivity 774D-778D




## 7740-777D Dual Directional Couplers

The economical 774D-777D couplers cover frequency spreads of more than two-to-one, each centered on one of the important VHF/UHF bands. With their high directivity, these couplers are ideal for reflectometer applications. Furthermore, the close tracking of the auxiliary amm makes these couplers particularly useful for refectometers driven by externally-leveled sweep oscillators such as HP8690B and $8620 \mathrm{~A} / \mathrm{B}$. The forward signal is detected and used to level the output of the sweep oscillator while the reflected signal, after detection is applied to a display device. Changes in the leveled power due to the coupling variation in the forward arm are virtually cancelled by a similar coupling variation in the reverse arm.

## 7781 Dual Directional Coupler

The HP778D is a $20-\mathrm{dB}$ dual directional coupler with a frequency range of 100 MHz to 2 GHz . High directivity
and close tracking (typically 0.7 dB and $4^{\circ}$ ) of the auxiliary arms make it ideal for reflectometer measurements of complex reflection coefficient. Maximum errors in such measurements are:

Freq. Range (QHz)	Maximum Magnitude Exror $\Delta \Gamma_{L}$	
	Swopt Frequenay	Flxed Frequency
0.1-1	$\pm\left\{0.015+0.02\left\|\Gamma_{L}\right\|+0.05\left\|\Gamma_{L}\right\| 2\right)$	$\pm\left(0.015+0.05:\left.\Gamma_{\llcorner }\right\|^{2}\right)$
1-2	$=\left(0.025+0.02\left\|\Gamma_{\llcorner }\right\|+0.05\left\|\Gamma_{L}\right\|^{2}\right)$	$\pm\left(0.025+0.05 \mid \Gamma\left\llcorner\left.\right\|^{2}\right)\right.$

Maximum phase error $= \pm \sin ^{-1}\left(\Delta \Gamma_{L} / \Gamma_{\llcorner }\right)$.
$\mid \Gamma$ ㄴ | = reflection coefficient of unknown.
Ecrors include directivity, source match, and tracking, but do not include any detection errors.

The 778D is provided with type " $N$ " connectors. APC. 7 is available as an option, and adapters to other connectors are available on request.

Specifications 774D, 775D, 776D, 777D, 778D

HP Model	Froquency Aanco	Coupling Attenuation	Coupling Varkation	Dirsotlvity	SWR	Max   Input	Connector	Lenglth In (mim)	Prloo
7740	$215-450 \mathrm{MHz}$	2088	$\pm 188$	40 dB	$\begin{aligned} & 1.15 \text { pri } \\ & 1.2 \text { aux } \end{aligned}$	50 W avg, 500 W pk,   0.1 sec duty cycle	prif type $N$, one male, one female	$\begin{aligned} & 9-1 / 16 \\ & (230) \end{aligned}$	\$300
7750	450.940 MHz	20 dB	$\pm 1 d 8$	4088	$\begin{aligned} & 1.15 \mathrm{pri} \\ & 1.12 \mathrm{aux} \end{aligned}$			$\begin{aligned} & 9-1 / 16 \\ & (230) \end{aligned}$	$\$ 325$
776 D	$940-1900 \mathrm{MHz}$	20 dB	$=1 \mathrm{AB}^{1}$	40 dB	$\begin{aligned} & 1.15 \text { pii } \\ & 1.2 \mathrm{aux} \end{aligned}$		aux: lype $N$, temale	$\begin{gathered} 6-5 / 16 \\ (161) \end{gathered}$	\$325
7770	1900-4000 MHz	20 dB	$\pm 0.41$	30 dB	$\begin{aligned} & 1.2 \text { pri } \\ & 1.3 \text { aux } \end{aligned}$			$\begin{gathered} 83 / 8 \\ (225) \end{gathered}$	\$350
7780	$100-2000 \mathrm{MHz}$	20 dB nominal	$\pm 188^{2}$	Reflected port:   $36 \mathrm{~dB}, 0.1-1 \mathrm{GHz}$,   $32 \mathrm{~dB}, 1-2 \mathrm{GHz}$   lac. port: 30 dB ,   $0.1-2 \mathrm{GHz}$	1.18 all	50 W avg. 10 kW pk	Pri line ${ }^{3}$   N -male input,   N -female oulpul   Aux arms:   N -fernale	$\begin{aligned} & 163 / 2 \\ & (425) \end{aligned}$	$\$ 450$   Opt 011:   add $\$ 25$   Opt 012 no   extra charge

[^39]
## 7790 directional coupler

Representing the latest achievement in braadband coaxial couplers, the HP 779D spans more than two octaves from 1.7 ro 12.4 GHz with excellent directivity. With increased coupling factor (rypically 24 dB ), the 779 D is useful dosin to 500 MHz . Upper frequency usefulness extends to 18 GHz with directivity reduced to about 15 dB .
The 779D is normally supplied with type $N$ connectors on all ports. On special order, a precision APC. 7 connector can be supplied on any, or all, ports.

## 790 directional couplers

The 790 directional couplers are ultra-flat, high directivity couplers which ase ideal for power-monitoring applicarions in coaxial systems. Output coupling (ratio of output power from main and auxiliary arms) is specified rather than coupling factor. Thus, no correction factor is required to account for insertion losses in the main arm.

## 780 directional detectors

The 780 series directional detectors are directional couplers with built-in crystal detectors. The couplers have flat frequency

response and good directivity, while the detectors have good frequency response plus high sensitivity. The configuration of the direcrional detector reduces the number of ambiguities over rhe standard system of separate coupler and detector and makes possible tighter correlation between main-arm power and detected signal.

The directional detector is well suiked for sweep oscillator leveling and can also be used to monitor power with a voltmeter or oscilloscope.

Specifications, 779D, 790 Series

HP   Model	Frequaney range ( $\mathrm{OHz}_{2}$ )	Mean outpur ooupting (dB)	Outpul couplling varlation (d8)t	Dired-   tivly   (dB) ${ }^{2}$	Equiv.   sofres   matoh2, 3	Max. prbmary Iline SWR	Max.   aux.   arm   SWR	Max.   Input   (W)	Max.   Insertion loss   (dB) ${ }^{4}$	Length		Shipping walght		Prico
										(II)	(mm)	(lb)	(kg)	
7790	1.7 to 12.4	$20=0.5$	$<=0.75$	$\begin{gathered} 30,1.7-4 \\ \mathrm{GHz}, 26 \\ 4-12.4 \mathrm{GHz} \end{gathered}$	1.2	1.2	1.2	50	0.5	71/4	196	3	1,4	\$550
7960	0.96 to 2.11	$20 \pm 0.5$	$\pm 0.2$	30	1.13	1.152	2.202	50	0.4	6	152	2	0,9	\$275
7970	1.9104 .1	$20 \pm 0.5$	$=0.2$	26	1.16	1.152	$1.25{ }^{2}$	50	0.5	41/8	124	2	0,9	\$300
798C	3.7108 .3	$10 \pm 0.3$	$\pm 0.3$	20	1.25	1.20	1.20	10	0.8	4/3:	124	2	0.9	\$325

ialfference in aB between power out of primary tine and auxitiary arm,
'Swept-frequency tested.
The appapent SWR at the output port of a directional coupler when it is used in a closediloop develing system.
Includes loss aue to coupling,
sTyire $\mathfrak{N}$ connectors mate compatibly with conmectors whose dimensions conform to MIL-C-39012 or MIL-C.71.
Specifications, 780 Series

HP   Model	Frequanoy range ( GHz )	Freq. resp. (dB) ${ }^{1}$	$\begin{aligned} & \text { Low. } \\ & \text { level } \\ & \text { sens. } \\ & (\mu \mathrm{V} / \mu \mathrm{W}) \\ & \hline \end{aligned}$	Direo.   tlvity   (dB)	Equly. source SWRE	$\begin{aligned} & \text { Max. } \\ & \text { SWR } \end{aligned}$	Max. inpal! (W, geak or avp.)	Max. Insertion loss   (d)	Length		Shipplng welght		Pribo
									( In )	(mm)	(lb)	(kg)	
784A	1.7 to 12.4	$\pm 1.0$	$>5$	13	1.25	1.4	1	1.25	6\%	159	,	0.9	\$625
7860	0.96102 .11	$\pm 0.2$	$>4$	30	1.13	1.15	10	0.4	6	152	2	0,9	\$300
787D	1.9 to 4.1	$=0.2$	$>4$	26	1.16	1.15	10	0.5	47/9	124	2	0,9	\$325
788C	3.7108 .3	$\pm 0.3$	$>40$	20	1.25	1.20	1	0.8	4\%	124	2	0.9	\$350
789C	8.01012 .4	$\pm 0.5$	$>20$	17	1.25	1.40	1	1.2	115/8	295	3	1.4	\$550

I Includes coupler and detector variation with trequency as readd on a mater calibrated for square-law detectors (e.g., HP 415E SWR Meter).
${ }^{2}$ The apdarent reflection coefficient at the output of an Rf generating system, using a directional detector in a closed.loop leveling system.

- Type N connectors mato compatidy with connectors whose dimensions conform to MIL.C-39012 or MIL.C.71.


## For all models

Detector output impedance: $15 \mathrm{k} \Omega$ max. shunted by approx. 10 pF .
Detector element: supplied.
Nolse: $<200 \mu \mathrm{~V}$ peak-ro-peak with CW poner applied to produce 100 mV outpur.
Detector output polarity; negarive.
Detector output connector: BNC female.
RF connectors:' Type $N$, one male (input), one female (789C: both female).

## Options

2. Furnished with load resistor for optimum square lan characreristics at $24^{\circ} \mathrm{C}\left(75^{\circ} \mathrm{F}\right),< \pm 0.5 \mathrm{~dB}$ variation from square law over a range of at least 30 dB from low level up to 50 mV peak ourput (rorking into ex. rernal load $>75 \mathrm{k} \Omega$ ); sensitivity rypically one-fourth of unloaded sensitivity; add $\$ 20$.
3. Positive polaricy detector ourput; no additional charge.

## MCROWAVE TEST EQUIPMENT

The HP 752 Directional Couplers are important tools in waveguide measurements. They can be used to monitor power, measure reflections, mix signals, or isolate signal sources or wavemeters.

Each coupler has an overall directivity of better than 40 dB (including reflection from built-in termination and flange) over its entire range. Performance characteristics are unaffected by humidity, temperature or time, thus mak. ing these units especially useful in microwave "standards" measurements. Coupling factors are 3,10 and 20 dB ; mean coupling accuracy is $\pm 0.4 \mathrm{~dB}$ ( $\pm 0.7 \mathrm{~dB}$ for K . and $R$. bands); and coupling variation vs frequency is $\pm 0.5 \mathrm{~dB}$ ( $\pm 0.6 \mathrm{~dB}$ for R752D).

Used together and connected back to back, two couplers are most useful with the HP 8620A Sweep Oscillator (see Signal Sources) in broadband reflection and SWR measurements. One directional coupler samples power traveling toward the load, and the detected sample can be used to

## DIRECTIONAL COUPLERS <br> Easy-to-use, precision instruments <br> Model 752A,C,D



Specifications, 752 Series

Band 1,2 (prefix)	Frequency   (GHz)	Flts waveguide size (In)	Mean coupling aoduracy (dB) ${ }^{3,4}$	SWR 5,8 main guida		Averaga power aux. guide load (W)	Length (fin)			Stippling welght		Prics
				752A	262C,0		A	C	D	(ibs)	(kg)	
J*	5.85-8.2	$11 / 2 \times 1 / 4$	$\pm 0.4$	11	1.05	1	261/2	25-9/16	25-9/16	8	3,6	\$400
H	7.05-10	$11 / 4 \times 8$	$=0.4$	11	1.05	1	18\%/8	171/2	171/2	4	1,8	\$300
X	8.2-12.4	$1 \times 1 / 2$	$\pm 04$	11	1.05	1	16-11/16	15-11/16	15-11/16	3	1,4	\$200
P	12.4-18	. $102 \times 391$	$\pm 0.4$	11	105	1	133/4	121/4	$121 / 4$	2	0,9	\$225
K $\dagger$	18-26 5	1/2 $\times 1 / 1$	$\pm 07$	1.1	105	$1 / 2$	10\%/8	9-15/16	9-15/16	2	0,90	\$275
R $\dagger$	26 5-40	. $360 \times 220$	$\pm 0.7$	1.1	1.05	1/2	115/8	$88 / 8$	8-23/32	2	0,90	\$300

[^40]

The HP 8470A and 8472A extend the frequency range of coaxial crystal derectors to 18 GHz . Like the 423 A and 424A Crystal Detectors, the 8470 A and 8472 A combine extrenely Aat frequency response with high sensitivity and low SWR. making them extremely uscful as the derecting clement in closed-loop leveling systems. Marched pairs are available for applications requiring the utmost in derector tracking, and all bue the 8472A can be supplied with video loads for optinum conformance to square lan over a range of ar least 30 dB .
The 422A Ceystal Detectors are convenient waveguide detectors which cover K - and R-bands. They have a dynamic range of 40 dB or more, making them suitable for reftecrometer as $\pi$ ell as general-purpose applications.
The 420 A is a low cost cryscal detector which covers the coaxial range from 10 MHz to 12.4 GHz , making ic ideal for general-purpose video derection. The a20B is essentially the same unit as the 120 A with the addition of a selected video
load for optimum square-law characteristics in the 1 to 4 GHz range.

## X485B Detector Mount

The X485B Detector Mount permits the accurate matching of waveguide sections to a bolometer element. The mount is tuned by a variable short, can be used with a barretter or, where SWR is not critical, with a silicon crystal.

## Specifications, X485B ${ }^{1}$

$\begin{gathered} \text { HP } \\ \text { Model } \end{gathered}$	Frequeray range (GHz)	Max\|mum SWR ${ }^{2}$	$\underset{\substack{\text { Flis wavegulde } \\ \text { size }}}{ }$		Length		Priog
			(in.)	(EIA)	(in.)	(mm)	
X48583,	8.2 -12.4	1.25	1 $\times 1 / 2$	WR90	8.7/18	163	\$150

ioetector efements are nol supplied
1With Welnschel $11809-8$ barrotter
May use 1 N21 or $\operatorname{IN} 23$ crystal for maximum detectlon senslivity where SWR is not crifical

## Specifications

$\begin{gathered} \text { HP } \\ \text { Model } \end{gathered}$	Frequenay Range OHz	Frequenoy Resp. ( 8 B)	Low.Level Senslitivity ( $\mathrm{mV} / \mu \mathrm{W}$ )	Maxlmum SWR	$\begin{gathered} \text { RF } \\ \text { Input } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Matoched } \\ & \text { Pair } \\ & \text { Avallable } \end{aligned}$	SquareLaw Load Available	Lengith		Stilping Welght		Priog
								(tn.)	(mmm)	(lb.)	(kg)	
8471 A	$\begin{aligned} & 100 \mathrm{KHz} \\ & 1.2 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \pm 0.6: \mathrm{typ} \\ & \pm 0.1 / 100 \mathrm{MHz} \\ & \hline \end{aligned}$	$>0.35$	Typically 1,3	$\begin{aligned} & \text { BNC } \\ & \text { Male } \end{aligned}$	No	No	23/4	70	1	0.5	\$50
423A	0.01-12.4	$\begin{aligned} & \text { =0.2/octave } \\ & 108 \mathrm{GHz} ;=0.5 \\ & \text { overall } \\ & \hline \end{aligned}$	$>0.4$	$\begin{aligned} & 1.2 \text { to } 4.5 \mathrm{GHz} ; \\ & 1.35,4.5-7 \mathrm{GHz} \\ & 1.5 .7-12.4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \text { Type N } \\ & \text { Male } \end{aligned}$	Yes ${ }^{1}$	Yes ${ }^{2}$	2.15/32	63	0.5	0.2	150
420A	. $01-12.4$	$\pm 3.5 \mathrm{~dB}$	$>0.1$	3.0	Type $N$ Male	No	No	3	76	0.5	0.2	65
420 B	$\begin{aligned} & \text { l-4 GHz with } \\ & \text { load } \end{aligned}$	$\pm 3$	$>0.05$	3.0	$\begin{aligned} & \text { Type } \\ & \text { Male } \end{aligned}$	Yes ${ }^{1}$	Yes ${ }^{2}$	3	76	0.5	0.2	95
8470A	0.01-18	$\begin{aligned} & \pm 0.2 \text { octave } \\ & \text { to } 8 \mathrm{Gz} \\ & \pm 0.5 \mathrm{to} \mathrm{iz.4} \mathrm{GHz} \\ & \pm 10 \mathrm{verall} \end{aligned}$	$>0.4$	$\begin{aligned} & 1.2104 .5 \mathrm{GHz} ; \\ & 1.3507 \mathrm{GHz} ; \\ & 1.5 \text { to } 12.4 \mathrm{GHz} \\ & 1.7 \text { to } 18 \mathrm{GHz} \end{aligned}$	APC-7	Yes ${ }^{1}$	Yes	$21 / 2$	64	1	0.5	190
8472A	0.01-18	Same as 8470a	$>0.4$	Same as 8470A	$\begin{aligned} & \hline \text { SMA } \\ & \text { Male } \\ & \hline \end{aligned}$	Yes	No	$21 / 2$	64	0.2	0.1	175
$\begin{aligned} & 8472 \mathrm{~A} \\ & \text { Opt, } 100 \\ & \hline \end{aligned}$	. $01-18$	Same as 8470A	>0.4	Same as 8470A	$\begin{aligned} & \text { OSM } \\ & \text { Mole } \end{aligned}$	Yes'	No	2-1/16	53	0,2	0.1	190
S424A	2.60-3.95	$=0.2$	$>0.4$	1.35		Yes?	Yes ${ }^{2}$	2-7/16	62	2	0.9	210
G424A	3.95-5.85	$\pm 0.2$	$>0.4$	1,35		Yes ${ }^{3}$	Yes ${ }^{2}$	2-1/16	52	2	0.9	200
J424A	5.30-8.20	$\pm 0.2$	$>0.4$	1.35	Wave.	Yes ${ }^{3}$	Yes?	11/9	48	1	0.5	200
H424A	7.05-10.0	$\pm 0.2$	$>0.4$	1.35	Guide	Yes ${ }^{3}$	Yes?	1-9/16	40	0.6	0.3	190
X424A	8,20-12.4	$\pm 0.3$	$>0.4$	1.35	Cover	Yes2	Yes ${ }^{2}$	13/8	35	0.5	0.2	170
M424A	10.0-15.0	$\pm 0.5$	$>0.3$	1.5	Flange	Yes ${ }^{2}$	Yes²	1	25	0.5	0.2	290
P424A	12.4-18.0	$\pm 0.5$	$>0.3$	1.5		Yes ${ }^{3}$	Yes ${ }^{2}$	15/26	24	0.4	0.2	210
X422A ${ }^{5}$	18.0-26.6	$\pm 2$	$\times 0.3$	2.5		Yes ${ }^{\text {d }}$	Yes?	,	51	0.6	0.3	350
R422A5	26.5-40.0	$=2$	$\times 0.3$	3		Yest	Yes ${ }^{2}$	2	51	0.6	0.3	350

[^41][^42]

## Slotted Lines Detectors

Hewlett-Packard offers a complate line of slotied lines, detectors and carriages covering the frequency range of . 5.40 GHz . A summary of this product group is presented on the following three pages.

## 805C Coaxial Slotted Line, $0.5-4 \mathrm{GHz}$

Model 805 C is a coaxial slotted line with an integral probe circuit tuable from 500 to $4,000 \mathrm{MHz}$. The slotted line consists of two parallel planes and a cigid center conductor. This configuration results in negligible slot radiation, minimum sensitivity to variation in probe depth or centering, and greater strucutral stability.

## Specifications, 805C

Frequency range: 500 to $4,000 \mathrm{MFiz}$.
impedance: $50 \Omega$.
Residual SWR: less than 1.04:1.
Connectors: type N , one male/female.
Calibration: metric, cm and mm ; vernier reads to 0.1 mm .
Detector probe: tunable; detector may be 1 N 218 crystal (sup-
plied) or 821 series barretter or selected $1 / 100-\mathrm{amp}$ instrument fuse.
Accessorles furnished: I1511A shorting jack; 11512A shorting plug.
Price: HP 805C, $\$ 1000$.

## 817A Coaxial Swept Slotted Line System, 1.8.18 GHz

The 817A is a fully tested, complete swept slotred line system that enables you to make accurate swept-frequency SWR measurements in coax from 1.8 to 18 GHz . The 817A system consists of an 816A Coaxial Slotted Line, an 809 C Carriage with baseplate, and a 448 A Slotted Line Sweep Adapter.

## Specifications, 817A

Frequency range: 1.8 to 18 GHz .
Impedance: $50 \Omega \pm 0.2 \Omega$.
Output connector: APC-7 or type N female, depending upon which end of the 816 A is connected to the load.
Residual SWR:
APC-7 connector: 1.02-1.04 depending on frequency cov. erage.
Type N connector: 1.04-1.06 depending on frequency coverage.
Accessories furnished: 11512A N male short, 11565A APC-7 short.
Dimensions (maximum envelope): $131 / 2^{\prime \prime}$ long, $7^{\prime \prime}$ wide, $7^{\prime \prime}$ high $(343 \times 178 \times 178 \mathrm{~mm})$.
Weight: net, $15 \mathrm{lbs}(6,5 \mathrm{~kg})$; shipping $20 \mathrm{lbs}(9,0 \mathrm{~kg})$.
Price: Model 817A, $\$ 1100$.
Option 022: type N male connector in lieu of $\mathrm{APC}-7$, less $\$ 15$.
Option H03: operation with 8755 series frequency response test sets, less $\$ 100$.


## 809C Carriage

The 809 C Carriage operates with the 816 A Coaxial Slotied Section and four 810 B Waveguide Slotted Sections. Four detectors can be used with the 809C: the $442,444 \mathrm{~A}$, 447 B , and 448 A . The carriage has a centimeter scale with a vernier reading to 0.1 mm , and provision is made also for mounting a dial gauge if more accurate probe position reading is required.
Price: $809 \mathrm{C}, \$ 300$.

## 816A Coaxial Slotted Section, 1.8-18 GHz

(Used with 809C Carriages and 4478 or 448 A Detector Probes)
The 816 A consists of two paralle! planes and a rigid center conductor. This configuration virtually eliminates radiation and minimizes the effect of vatiation in probe penetration and centering. It is fitted with one APC-7 and one type N female connector

## Specifications, 816A

Frequency: $1.8-18 \mathrm{GHz}$.

## Residual VSWR:

APC-7 1.02-1.04 depending on frequency coverage.
type N 2.04-1.06 depending on frequency coverage.
Length: $93 / 4$ inches ( 248 mm ).
Weight: net, $11 / 2 \mathrm{lbs}(0,68 \mathrm{~kg})$; shipping $3 \mathrm{lbs}(1,4 \mathrm{~kg})$.
Accessories furnished: 11512 A type N male short; 11565A APC-7 short.
Price: HP 816A, $\$ 350$.
Option 011: both connectors APC-7, add $\$ 25$.
810B Slotted Sections, 5.3.18 GHz
(Used with 809C Carriage and 442B/444A Detector)
Waveguide slotted line measurements in the frequency
range $5.3-18 \mathrm{GHz}$ are made using the 810 B Slotted Section, the 809 C Carriage and 444 A Probe or 440 A plus 442 B Probe combination.

Specifications, 810B

HP   Model	Frequenoy   range (CHy)	Fits Wavepulde   size EIA	Equivalent	Prloe
$\mathrm{J810B}$	$5.30-8.20$	WRI37	UG441/U	$\$ 275$
H 8108	$7.05-10.0$	WRL12	UG138/U	215
$\times 8108$	$8.20-12.4$	WR90	UG135/U	205
P810B	$12.4-18.0$	WR62	UG419/U	225

444A Untuned Probe, 2.6-18 GHz
The 444A Untuned Probe, for use with HP 810B Wave. guide Slotted Sections, consists of a crystal, plus a small antenna in convenient housing. The probe is held in position by friction or may be fixed by a locking ring. No tuning is required and sensitivity equals or exceeds many elaborate single and double-tuned probes. The 444A fits the 809 C Carriage or other carriages with a $3 / 4$ inch ( 19 mm ) mounting hole. Frequency range is 2.6 to 18 GHz .
Accassory furnished; 11506A Probe Extension Kit.
Price: HP 444A, $\$ 65$.

## 447B Detector

Madel 447B consjsts of a crystal diode detector plus a small antenna probe for sampling energy in HP $816 A$ Coaxial Slotted Lines. The untuned probe is extremely sensitive over its frequency range of 1.8 to 18 GHz . Such performance is achieved through the use of a unique, easily replaced diode package developed by Hewlett-Packard. The 447B fits HP 809C Carriage or other carriages with a $3 / 4^{\prime \prime}$ ( 19 mm ) mounting hole.
Price: HP $447 \mathrm{~B}, \$ 125$.

## SLOTTED LINES <br> Precision tools for measurement to 40 GHz Models 440A, 442B, 446B, 448A, 814B, K815B



## 440A Detector Mount

The 440 A is a tunable mount used for detecting RF energy in coaxial systems or in conjunction with the HP 442 B in waveguide or coaxial slotted sections. Detector (not sup. plied) can be a 1 N 21 or 1 N 23 Crystal or 821 Series Barretter.
Price: 440A, \$125.

## 442B Broadband Probe, 2.6-12.4 GHz

Model 442B is a probe whose depth of penetration into a slotted section is variable. Held in position by friction, it may be fixed in place by a locking ring. Sampled RF appears at a type N jack. It can be connected to a 440A Detector Mount to form a sensitive and convenient tuned RF detector for HP 810B Waveguide Slotted Sections. The 442B fits the 800 C Carriage. Frequency range is 2.6 to 12.4 GHz .
Price: HP 442B, $\$ 60$.

## 448A Slotted Line Sweep Adapter, (detector probe) $1.8-18 \mathrm{GHz}$

The 448A consists of a short slotted line and two matched detectors with adjustable probes. One detector levels the sig. nal source, the other monitors the standing waves in the 816A.

Specifications, 448A
Frequency range: $1.8-18 \mathrm{GHz}$.
Connectors: type N , one male/female.
Weight; net, 7 oz $(0,20 \mathrm{~kg})$; shipping, 14 oz ( 0.40 kg ).
Price: 448A, $\$ 400$.


815B Slotted Section, 18-40 GHz
(Used with 814 B Carriage and 446 B Detector)
The $815 B$ Waveguide Slotted Sections are designed to fit the 814 B Carriage. Like the lower-frequency slotted sections, each 815 B is precision-manufactured, broached and checked with precision gauges for careful control of guide wavelength. The slot is tapered to insure a low SWR.

Specifications, 815B

	K815B	R815B
Frequency range (GHz):	18 t026.5	26.5 t0 00
Residual SWR:	1.01	1.01
Overall length:	$7.9 / 16^{\prime \prime}(192 \mathrm{~mm})$	$7.9 / 16^{\prime \prime}(192 \mathrm{~mm})$
Price:	$\$ 675$	$\$ 700$

- Clicular flange adapters: K-band (UG425/L) 11515A, \$60 eachi R-band (UG381/U) 11516A, \$50 each.


## 814B Carriage

The HP $814 B$ Carriage is designed for use with the HP K815B ( 18 to 26.5 GHz ) and R815B ( 26.5 to 40 GHz ) Waveguide Slotted Sections and HP 446B Untuned Probe. The carriage is equipped with a dial indicator for accurate reading. Slotted sections are easily interchanged.
Price: HP 814B, $\$ 660$.

## 446B Broadband Detector

The HP 446 B is a broadband detector and probe which consists of a modified 1N53 silicon diode in a carefully designed shielded housing. No tuning is required, and probe penetration may be varied quickly and easily. Designed for use with the 814 B Carriage, the 446 B has a Erequency range of 18 to 40 GHz .
Price: HP 446B, $\$ 275$.

TERMINATIONS
Loads and shorts for measurements to 40 GHz Models 905; 907-911; 914; 920; 923; 930


## 905A, 907A, 911 Sliding Loads

The $905 \mathrm{~A}, 907 \mathrm{~A}$ and 911 A are movable 50 n , low reflection loads for precision measurements. The 905 A and 907 A are supplied with three interchangeable connectors, N -male, N . fernale and APC-7. The 911A is supplied with SMA male and female.

905A, 907A, 911A Specifications

$\begin{gathered} \text { HP } \\ \text { Medel } \end{gathered}$	Fraguanoy rarga	Lene swr	Psway ralls	Lenglb ln. (mm)	shipping wolght	Prics
905A	1.8 .18 CHz	1.05	iW ave. 5kW pk	$\begin{aligned} & 171 / 4 \\ & (440) \end{aligned}$	$\underset{(1,4 \mathrm{~kg})}{310}$	\$300
907A	1.18 CHz	$\begin{aligned} & \text { 1.1. } 1-1.5 \mathrm{GHz} ; \\ & 1.05,1.5 .18 \mathrm{GHz} \end{aligned}$	IW avg, $5 k W_{D K}$	$\begin{aligned} & 302 / 8 \\ & (778) \end{aligned}$	$\begin{gathered} 910 \\ (4,1 \mathrm{~kg}) \end{gathered}$	8450
911A	2.18 GHz	1.1. 2.4 GHz ;   $1.05,4-18 \mathrm{GHz}$	JW avg, 5kW ox	$\begin{aligned} & 184 \\ & (380) \end{aligned}$	$\begin{gathered} 3 \mathrm{lD} \\ \langle\mathrm{I}, 4 \mathrm{~kg}\rangle \end{gathered}$	1250

## 908A, 909A Terminations

The 908A and 909A Terminations are low-reftection loads for terminating $50 \Omega$ coaxial systems in their characteristic impedance:

908A 909A Specifications

$\begin{aligned} & \text { HP } \\ & \text { Modal } \end{aligned}$	Frequancy Rympo	Impaderna	8WR	Powar Fatho	Commactor	Price
908 A	$\mathrm{de}^{-4} \mathrm{GHz}$	50 ohms	1.05	1/2 W EVg. I KH DK	$N$ mala	$\begin{array}{\|c\|} \hline 104 \\ \$ 45 \\ 5 \text { to } 8 . \\ 39 \\ 10.88 . \\ 1024, \\ \$ 3588 . \\ \hline \end{array}$
909A	du-18 GHz	50 onms	$\begin{gathered} 1.05 \\ 0 .-6 \mathrm{~Hz} \\ 1.1 . \\ 4-12.4 \mathrm{GHz} \\ 1.25 \\ 12.4-18 \mathrm{GHz} \end{gathered}$	2 Wavg . 300 W pk	APC. 7	$\begin{aligned} & 1604, \\ & 38598 . \\ & 5109 \\ & 879 \mathrm{ea} . \\ & 104024, \\ & \$ 75 \mathrm{ex} \end{aligned}$
909A Option 01? and Option Ol'3	dc-18 6Hz	50 ohms	$\begin{gathered} 1.06 \\ 0-4 \mathrm{GHz} \\ 1.11 \\ 4-12.4 \mathrm{GHz} \\ 12.4-18 \mathrm{GHz} \end{gathered}$	2 Wavg 300 w	$\begin{aligned} & \text { Opt. } 012 \\ & \text { Nmale } \\ & \text { Opt. O13 } \\ & N \text { female } \end{aligned}$	deduct $\$ 15$

11511A, 11512A, 11565A Shorts
These shorts are used for establishing measurement planes and known ceflection phase and magnirude in son coaxial systems.

Price: 11511A N.female $\$ 10$; 11512A N.male $\$ 10,11565 \mathrm{~A}$ APC. 7 \$25.


## 910A-B, 914A Wavegulde Terminations

The 910A-B are fixed termination for payeguide systems. The 914A-B are similar to the 910A.B, except that its absorptive element is movable and a lockable plunger controls the position of the element.

910A/B, 914A/B Speciflications

Model	Friquegry Range (ent)	SWR	Powar Rutlops	Typo	Waypuláa slio (EIA)	Pries
J910A	5,3-8.2	1.02	1 watt	1ixad	WR137	$\underline{195}$
H910A	7.05-10.0	1.02	1 Wat	fixed	WR112	80
$\times 9108$	8.2-12.4	1.015	1 watt	fixed	WR90	55
P910A	12.4-18	1.02	1 watl	flxed	WR62	50
J916A	5.3-8.2	1.01	2	sliding	WR137	325
H914A	7.05-10.0	1.01	I	sliding	WR112	200
X9148	8.2-12.4	1.01	1	slifing	WR90	95
P914A	12.4-18	1.01	1/2	sliding	W862	175
K914B	18-26.5	1.01	1/2	8liding	W942	350
RS14B	$26.5-40$	1.01	4/2	sliding	WR28	400

920A-B, X923A, X930A Shorts
The 920A-B are movable shorts, adjustable through at least half a wavelength at the low end of the band. The X923A is also a movable short, but is adjustable through about two wavelengths at 8.2 GHz . The X930A is a remorable short. SWR is less than 1.02 in "open", greater than 125 in "short".

920A.B, X923A Specifications

Modal	Frepuoncy Mans (0 0 Hx )	Wavaguide size ElA	Prices
J920A	5.3-8.2	WR137	\$200
H920A	7.05-10.0	WRII2	165
X923A	8,2-12.4	WRSO	150
P9208	12.4-18	WR62	190
K920B	18.0-26.5	WRA2	325
R920]	$26.5-40.0$	WR28	350
X9304	8.2-12.4	WR90	300

## MICROWAVE TEST EQUIPMENT

LOW-PASS; BANDPASS FILTERS
Effective elimination of undesirable signals
Models 360A.D; 362A; 8430A-8436A


These Hewlett-Packard low pass and bandpass filters facilitate microwave measurements by eliminating undesirable sig. nals (such as harmonics) from the measurement system. Suppression of such signals is particularly important in applicarions such as slotted-line measurements, where harmoniss generated by the signal source could otherwise impair measurement accuracy. These filters also can be used as preselectors for the HP 8595A Spectrum Analyzer. As such, they permit the maximum utilization of the analyzer's broad spectrum-width capability while ensuring virtually spurious-free displays.

Specifications, 360 Series

HP Model	368A	3638	3606	350 D
Cut-off frequency	700 MHz	1200 MHz	2200 MHz	4100 MHz
Insertion loss	$\leq 1 \mathrm{~dB}$ below 0.9 times sur-off frequency			
Rejection	$\geq 50$ de at 1.25 times cut-off frequency			
Impedance	50 ohms through pass band; should be matched for optimum performance			
SWR	$<1.6$ to within 100 MHzof cul-off		$<1.6$ to within 200 MHz of cut-off	$\begin{gathered} <1.610 \\ \text { with } \\ 300 \mathrm{MHz} \text { of } \\ \text { cut-0ff } \end{gathered}$
Connectors	Type $N$, one mále, one fermale			
Overall (in.)   length $(\mathrm{mm})$	$\begin{aligned} & 107 / 8 \\ & 276 \end{aligned}$	$\begin{gathered} 7.7 / 32 \\ 183 \\ \hline \end{gathered}$	$\begin{gathered} 10.25 / 32 \\ 274 \end{gathered}$	$\begin{gathered} 73 / 8 \\ 187 \end{gathered}$
Center line (in.) to male end (mm)	$\begin{gathered} 21 / 8 \\ 54 \end{gathered}$	$\begin{array}{r} 21 / 8 \\ 54 \\ \hline \end{array}$	-—	-
$\begin{aligned} & \text { Center line (in.) } \\ & \text { to female } \\ & \text { end (mm) } \end{aligned}$	$21 / 4$ 57	$21 / 4$ 57	-	$\square$
	$\begin{array}{r} 2 \\ 0,9 \end{array}$	$\begin{array}{r} 2 \\ 0,9 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ 0,9 \\ \hline \end{array}$	0.45
Price	\$115	\$105	\$95	\$90

Specifications, 362A Series

HP Model	X352A	M362A	P362A	K362A*	R362A ${ }^{\text {F }}$
Passband (GHz)	8.2-12.4	10.0-15.5	12.4-18.0	18.0-26.5	26.5-40.0
Stop band (CHz)	16-37.5	19-47	23-54	31-80	47-120
Passband insertion loss	less than 1 dB	less than 2 d 8			
Stopband rejection	at least 40 dB	at least 40 dB	at least 40 d 8	at least 40 dB	at least 35 dB
SWR	1.5	1.5	1.5	1.5	1.8
Waveguide size, in. (ह\|A)	$1 \times 1 / 2$ (WR 90)	$0.850 \times 0.475$ (WR 75)	$0.702 \times 0.391$ (WR 62)	1/2 $\times 1 / 2$ (WR 42)	$0.360 \times 0.220$ (WR 28)
Length, in. (mm)	5.11/32(136)	4-15/32(114)	3.11/16(94)	21/2(64)	1-21/32(42)
Shipping weight, Ib (kg)	$2(0,9)$	2(0,9)	13/16(0,37)	1/3 (0,15)	$1 / 4$ (0.11)
Price	\$450	\$350	\$375	8385	\$420

- Clicular liange adapters: K-bana (UG425/U), HP 11515A, 560 each; R-band (UG.381/U). HP 11516A, \$50 each.

Specifications, 8430 Series

$\underset{\text { Model }}{H \mathrm{HP}}$	Passband frequanoy (GH1)	Max. passband insarlon loss	Rejeetlon band atteruation				Dimenslans		Shlpping waight		Price
			Below passhand		Above passband						
			Frequency (GHz)	Anenuatan	Freapuenoy ( OH )	Attenuatlon					
8430A	1102	288	$\leq 0.8$	$\geq 50 \mathrm{~dB}$	2.2 to 20	$\geq 45 \mathrm{~dB}$	$51 / 2 \times 43 / 4 \times 1$	$140 \times 121 \times 25$	3	1,4	\$335
8431A	2104	$2 \mathrm{d8}$	$\leq 1.6$	$\geq 50 \mathrm{~dB}$	4.41020	$\geq 45 \mathrm{~dB}$	$51 / 2 \times 3 \times 1$	$140 \times 76 \times 25$	3	1,4	\$335
8432A	4106	208	<3.5	$\geq 50{ }^{88}$	6.51020	$\geq 45 \mathrm{~dB}$	$41 / 2 \times 2 \times 1$	$114 \times 51 \times 25$	2	0.9	\$335
8433 A	6 to 8	2 dB	$\leq 5.5$	$\geq 50 \mathrm{~dB}$	8.5 to 20	$\geq 45 \mathrm{~dB}$	$4 \times 11 / 2 \times 1$	$102 \times 38 \times 25$	2	0,9	\$335
8434A	81010	2 dB	$\leq 7.5$	$\geq 50 \mathrm{~dB}$	10.5 to 17	$\geq 45 \mathrm{~dB}$	$43 / 8 \times 1 \times 1$	$118 \times 25 \times 25$	2	0,9	\$335
8435A	4108	2 dB	$\leq 3.2$	$\geq 50 \mathrm{~dB}$	8.8 to 20	$\geq 45$ d8	$35 / 8 \times 13 / 4 \times 1$	$92 \times 45 \times 25$	2	0,9	$\$ 335$
8436A	8 to 12.4	$2 \mathrm{d8}$	$\leq 8.9$	$\geq 50 \mathrm{~dB}$	13,5 to 17	$\geq 45 \mathrm{~dB}$	$2 \mathrm{~F} \times 1 \times 1$	$73 \times 25 \times 25$	1	0,45	\$335

Connectors: Type N. one male, one remale.


## Advantages

High resolution, easy-to-read dial
Direct reading
Broadband
Accuracy specified over $20^{\circ} \mathrm{C}$ and 0 to $100 \%$ relative humidity

These direct-reading frequency meters allow you to measure frequencies from 5.30 to 40 GHz in waveguide and from 960 MHz to 12.4 GHz in coax quickly and accurately. Their long scale length and numerous calibration marks provide a high resolution which is particularly useful when measuring frequency differences or small frequency changes. Frequency is read directly in GHz so no interpolation or charts are required.

The instruments comprise a special transmission section with a high-Q resonant cavity which is tuned by a choke plunger. A 1-dB or greater dip in output indicates resonance; virtually full power is transmitted off resonance. Tuning is by a precision lead screw, spring-loaded to eliminate backlash. Resolution is enhanced by a long, spiral scale calibsated in small frequency increments. For example, Model X532B has an effective scale length of 77 inches ( 1956 mm ) and is calibrated in $5-\mathrm{MHz}$ increments. Resetrability is extremely good, and all frequency calibrations are visible so you can tell at a glance the specific portion of the band you are measuring, Except for the J 532 A , there are no spurious modes or resonances. (See note 4 below.)

Specifications, 532A Series, 536A and 537A

Model	Frequency Range (OHz)	$\begin{gathered} \text { Dlas } \\ \begin{array}{c} \text { Acuraty } \\ \text { (\%) } \end{array} \\ \hline \end{gathered}$	$\left\{\begin{array}{c} \text { Overall } \\ \text { Acourracy } \\ (\%) \text { ' } \end{array}\right.$	$\begin{array}{\|c\|c\|} \hline \text { Dip af } \\ \text { Resonamice } \end{array}$	Callbration Incremens (MHz)	Fits Waverulds		Equivalent hange	Size In. (mm)			Woight lt (kg)		Prics
						OD(In)	EIA		Length	Helght	Dopth	Net	Shipplng	
536A	0.96-4,20	0.102	0.173	Note 6	2				$\begin{gathered} { }_{(152)}^{6} \end{gathered}$	$\begin{gathered} 91 / 6 \\ (232) \end{gathered}$	$\stackrel{6}{(152)}$	$10(4,5)$	13 (5,9)	\$600
537A	3.7-12.4	0.10	0.17	1 dB min	10				$\begin{aligned} & 48 / 8 \\ & (118) \end{aligned}$	$\begin{gathered} 53 / 4 \\ (146) \end{gathered}$	$\begin{aligned} & 31 / 2 \\ & (89) \\ & \hline \end{aligned}$	$4(1,8)$	$5(2,3)$	\$525
J532A	5.30-8.204	0.033	0.065	1 dB min	2	$11 / 2 \times 3 / 4$	WR137	UG-441/U	$\begin{gathered} 61 / 2 \\ (159) \end{gathered}$	$\begin{aligned} & 91 / 8 \\ & (232) \end{aligned}$	$\begin{aligned} & 4 \dot{3} / 2 \\ & (114) \end{aligned}$	$8(3,6)$	$11(5,0)$	\$550
H532A	7.05-10.0	0.040	0.075	1 dB min	2	1/4 $\times 1 / 8$	WRII2	UG-138/U	$\begin{aligned} & 61 / 4 \\ & (159) \\ & \hline \end{aligned}$	$\begin{gathered} 8 \\ (203) \end{gathered}$	$\begin{aligned} & \hline 43 / 8 \\ & \text { (III) } \end{aligned}$	6 (2,7)	9 (4,1)	\$650
X5328	8.20-12.4	0.050	0.08	1 dB min	5	1×1/2	WR90	UG-39/U	$\begin{aligned} & 41 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 61 / 8 \\ (156) \\ \hline \end{array}$	$\begin{aligned} & 21 / 88 \\ & (73) \\ & \hline \end{aligned}$	$3(1,4)$	$4(1,8)$	\$325
P532A	12.4-18.0	0.068	0.10	$1 \mathrm{d8} \mathrm{~min}$	5	$\begin{gathered} 0.702 x \\ 0.391 \end{gathered}$	WR62	UG-419/U	$\begin{aligned} & 41 / 2 \\ & (114) \end{aligned}$	$\begin{gathered} 61 / 4 \\ (159) \\ (18) \end{gathered}$	$\begin{aligned} & 23 / 4 \\ & (70) \\ & \hline \end{aligned}$	$3(1,4)$	4 (1,8)	\$350
K532As	18.0-26.5	0.077	0.11	13 Bmin	10	$31 / 2 \times 1 / 4$	WRS?	UG-595/U	$\begin{aligned} & 41 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{array}{r} 533 / 8 \\ (137) \\ \hline \end{array}$	$\begin{aligned} & 23 / 8 \\ & (73) \\ & \hline \end{aligned}$	$2(0,9)$	3 (1,4)	\$525
RS32AS	26.5-40.0	0.083	0.12	1 dB min	10	$\begin{aligned} & 0.360 x \\ & 0.220 \end{aligned}$	WR28	UG-599/U	$\begin{array}{r} 41 / 2 \\ (114) \\ \hline \end{array}$	$\begin{array}{r} 51 / 2 \\ (140) \\ \hline \end{array}$	$\begin{aligned} & 23 / 1 \\ & (70) \end{aligned}$	$2(0,9)$	3 (1,4)	\$525

[^43]4 Batause of the wide frequancy range of the J532A, frequencles from 7.6 to 8.2
GHz can excite the TE:12 mode when the dial ls set between 5.3 and 5.6 GHz . s Gircular flange adaplers. K-band (JG.425/U) 11515A, $\$ 60$ eachi R-band (UG-381/J) 11516A, \$50 each.
b 1 dB min., $1.4 \mathrm{GHz} ; 0.6 \mathrm{~dB}$ min., $0.96-1 \mathrm{GHz}$ and 4.4 .2 GHz .

## MICROWAVE TEST EQUIPMENT

## TUNERS, PHASE SHIFTERS Precision instruments for lab or general use Models 870A, 885A

## 885A Waveguide Phase Shifters

HP 885A Phase Shifters provide accurate, controllable phase rariation in the J-, X., and P-band frequency ranges. They are particularly useful in microwave bridge circuits where phase and amplitude must be adjusted independently. They also are used in the study of phased arrays.

The instruments are differential phase devices; that is, they add or subtract a known phase shift from the total phase
shift which a wave undergoes in traveling through the device.
The instruments have high accuracy over their entire phase range, -360 to +360 electrical degrees, have low power absorption, are simple to operate, and require no charts or interpolation. They are sturdily built, comprising two rec-tangular-to-circular waveguide transitions with a dial-driven circular waveguide mid-section. These waveguide phase shifters are housed in cast aluminum containers for extreme rigidity and durability.

Specifications, 885A

	Frequenoy Range (GHz)	DIHerentlal Phase Angla Rangel	Aocurany ${ }^{2}$ (The smailer of)	Insertion Loss ${ }^{3}$	$\begin{aligned} & \text { SWR } \\ & \text { (max. }) \end{aligned}$	Powar Rating (Watls)	Wavegulde		Welght				Price
Model							$\begin{gathered} \text { Sire } \\ (E \mid A) \end{gathered}$	Flange	lb	$\begin{aligned} & \text { let } \\ & \text { kg } \end{aligned}$			
J885A	5.3-8.2	$-360^{\circ}$ to $+360^{\circ}$	$\frac{ \pm 3^{\circ} 0 r}{0.1 \Delta \phi}$	$<288$	1.35	10	WR137	UG-344/U	14	6,3	18	8,2	\$950
X885A	8.2-12.4	$-360^{\circ} 10 \div 360^{\circ}$	$\begin{aligned} & \pm 2^{\circ}\left( \pm 3^{\circ}, 10-1\right. \\ & 12^{\circ} \mathrm{GH}, \mathrm{GHz} \text { or } \\ & 0.1 \Delta \phi \end{aligned}$	$\begin{aligned} & <1 \mathrm{~d} 8,8.2- \\ & 10 \mathrm{GHz},<2 \mathrm{~d}, \\ & 10-12.4 \mathrm{GHz} \end{aligned}$	1.35	10	WR90	UG-39/U	8	3,6	11	5,0	\$725
P885A	12.4-18	$-360^{\circ} 10+360^{\circ}$	$\pm 4^{\circ}$ or $0.1 \Delta \phi$	$<3 \mathrm{~dB}$	1.35	5	WR62	UG-419/U	6	2,7	8	3.6	8900

- Can be shifted continuously through any number of oycles.
${ }^{2} \Delta D=$ phase difference in degrees.
Varlatlon whth froquency (fixed phase setting): approx. 1 dB .




## 870A Slide-Screw Tuners

Waveguide slide-screw tuners are used primarily for correcting discontiauities or for "flattening" waveguide systems. They are also used to match loads, terminations, bolometer mounts, or antennas to the characteristic admittance of the waveguide. They are particularly valuable in determining experimentally the position and magnitude of matching structures required in waveguide systems.

HP 870A tuners consist of a waveguide slotted section with a precision-built carriage on which is mounted an adjustable probe. The position and penetration of the probe is adjusted to set up a rellection which is used to cancel out an existing reflection in à system.

Probe penetration into the guide is varied by a micrometer drive. Position of the probe along the guide is adjusted by a thumb-operated wheel, and position can be read to 0.1 mm on a vernier scale. An SWR of 20 can be corrected to 1.02 , and small SWR's can be corrected exactly.

Specifications, 870A

Model	Freq. Renge (GHy)	Fits Wavegulde Size Nom, OD 〈\|ñ (Ela)		Equivalent Flange Туре	(in.) Length		Nar Wolght   (lbs.)   (kg)				Price
P870A	12.40-18.00	$0.702 \times 0.391$	WR62	UG-419/U	5	127	1/2	0,23	2	0,9	\$275
X870A	8.20-12.40	$1 \times 1 / 2$	WR90	UG-39/U	51/2	140	3/4	0,34	2	0,9	\$250

[^44]

## 934A, P932A Harmonic Mixers

HP 934A, P932A simplify frequency measurements from 2 to 18 GHz . They are also excellent as RF mixers in phasestabilized signal sources. Both feature high sensitivity, yet require no runing.

Speotloathons 934A, P932A					
Model	Froquenay Range ( OHz )	MaxImum Input	Typlaal SonsldyHy	Min. vidao output*	Pr\|at
934A	2 to 12.4	100 mW	$\begin{aligned} & -48 \mathrm{dBm} \text { at } 3.5 \mathrm{GHz} \\ & -25 \mathrm{dBm} \text { al } 10 \mathrm{GHz} \end{aligned}$	1.4 mV p-p	\$150
P932A	12.4 to 18	100 mW	$-10 \mathrm{dBm}$	$0.4 \mathrm{mV} \mathrm{p}-\mathrm{p}$	\$350

-With 0 dBm Input signal.

## 8761A/B Coaxial Switch

The HP 8761 is a single-pole, double-throw coaxial switch with low standing-wave ratio, low insertion loss, and good isolation from dc to 18 GHz . Mechanically, the switch is a break-before-make type controlled by a latching solenoid. Solenoids are available in 12 - and 26 -volt ratings and can be operated by dc or pulsed signals. Any of seven coaxial connectors, or a 50 -ohm termination, may be specified for each port.

> Specifications, 8761A/B

Characterlstic impedance: 50 ohms.
Frequency range: dc to 18 GHz .
Standing-wave ratio: looking into one of the connected ports with 50 ohms (or built-in termination) on the other, third port open.

Frequenoy	Connestor type		
	7-mm	N	3-mm (SBA)
$\mathrm{dc}-12.4 \mathrm{GHz}$	$<1.15$ (1.20)	$<1.20(1.25)$	$<1.2503 .30)$
dc .18 GHz	$<1.20$ (1.25)	$<1.25$ (1.30)	$<1.30$ (1.35)
SWR in parenthesis applies to switch with built-in termination.			

These specificatlons apply when connected ports are of the same connector type; for mixed connector fypes, the larger of the two VSWR's applles. N-connector VSWR specifications apply to option 4 connectors.


Insertion loss: $<0.5 \mathrm{~dB}, \mathrm{~d}-12.4 \mathrm{GHz} ;<0.8 \mathrm{~dB}, \mathrm{dc}-18$ GHz .
Isolation: $>50 \mathrm{~dB}, \mathrm{dc}-12.4 \mathrm{GHz} ;>45 \mathrm{~dB}, \mathrm{dc} \cdot 18 \mathrm{GHz}$.
Power: safely handles 10 W avecage, 5 kW peak, without built-in termination; built-in termination rated at 2 W average, 100 W peak.
Switching energy: 1.5 W for 20 ms (permanent magnet latching).
Solenold voitages (dc or pulsed): 12-15 V, $8761 \mathrm{~A} ; 24-30 \mathrm{~V}$, 8761B.
Switching speed: 35.50 ms (includes settling time).
Life: $>1,000,000$ switchings.
Dimensons: $1.6 \times 1.5 \times 1.5 \mathrm{in}$. ( $41 \times 38 \times 38 \mathrm{~mm}$ ), exclud. ing connectors and solenoid terminals.
Weight: net, 5.8 oz ( 140.220 gm ); shipping, 8.11 oz (220300 gm ).
Price: Model 8761, $\$ 150$ each, 1-9; $\$ 140$ each, 10-24. Add \$35 for built-in termination.

## Ordering information, 8761A/B

Specify solenoid voltage and connectors (including builtin $50 n$ termination) by the alphabetic suffix on the switch model number and the appropriate three-digit option number.


A: 12-15 V; B: 24-30 V

Oplion Coda	Connedtor Type	Optton Code	Commeotor Type
0	N Jack	4	7-mm for UT-250 $\operatorname{Cogx}$
1	N, Plug	5	3.mm Jack
2	7 'mm Jack	6	$3 . \mathrm{mm}$ Plug
3	$7-\mathrm{mm}$ Plug	7	50 n Termination

"Jack" Identifles the connector with fixed threads; "plug" identifies the connector with the coupllag nut.

## MICROWAVE TEST EQUIPMENT

MISCELLANEOUS EQUIPMENT
Increase flexibility of microwave measurements Models 281A-B, 292A-B, 11524A/25A, 11588A, 11606A


## 281A-B Coax to Waveguide Adapters

HP 281 A-B adapters transform waveguide impedance into 50 -ohm coaxial impedance. Power can be transmitted in either direction, and each adapter covers the full frequency range of its waveguide band with SWR less than 1.25.

Speodifoations 281A, B							
$\underset{\text { Model }}{\text { HP }}$	SWR	Fraquenay Range (GH2)	$\begin{aligned} & \hline \text { Wave } \\ & \text { gulde } \\ & 88 \mathrm{zin} \\ & \text { EIA } \\ & \hline \end{aligned}$	Caaxial Canmedtar	Length		$\begin{aligned} & \text { Qiy } \\ & 1-4 \\ & \text { Prlcos } \end{aligned}$
					(in.)	(mm)	
S281A	1.25	2.60-3.95	WR284	N Female	$21 / 2$	64	\$75
6281A	1.25	3.95-5.85	WR187	N femate	21/8	54	\$60
J281A	1.25*	5.30-8.20	WR137	N Female	2	51	\$55
H281A	1.25	7.05-10.0	WR112	N Female	1\%8	41	850
X281A	1.25	8.20.12.4	WR90	N Female	1/8	35	\$45
$\times 2818$	1.25	8.20-12.4	WR90	APC.7**	13/6	35	\$90
P2818	1.25	12.4-18	W962	APC.7**	15/16	24	\$95

*1.3 from 5.3 to 5.5 GHz .

- Option 013. Furnished with stainlass steel N.female connactor, less $\$ 15$.


## Waveguide to Waveguide Adapters

Models 292A-B waveguide-to-waveguide adapters connect two different waveguide sizes with overlapping frequency ranges. The 292A consists of a shori tapered section of waveguide. The 292B is broached waveguide with a step transistion berween waveguide sizes.

Speolfiontions 292A,B					
HP Model	SWR	Length		Frequandy ranga ( GHz )	Pripa
		(19.)	(mm)		
HX2928	1.05	11/2	38	8.201010 .0	$\$ 80$
MX2928	1.05	23/8	60	10.01012 .4	\$70
MP2928	1.05	$23 / 8$	60	12.41015 .0	$\$ 80$
NP292A	1.05	23/8	60	15.0 to 18.0	\$60
NK292A	1.05	23/3	60	18.01022 .0	\$60

## $11524 \mathrm{~A}, 11525 \mathrm{~A}, 11533 \mathrm{~A}, 11534 \mathrm{~A}$

## Coax to Coax Adapters

These coaxial adaptecs, not pictured here, permit easy interconnection of $50-$ ohm precision $7 . \mathrm{mm}$ (APC-7) connectors and $50-0 h m$ Type N or SMA (3-mm type) connectors.

HP Model	Desoription	8hipplan Weight	Frlas
11524A	APC-7 to N femate	$402(110 \mathrm{gm})$	\$70
11525A	APC. 7 to N male	501 (140 gm)	\$70
11533 A	APC. 710 SMA male	$502(140 \mathrm{gm})$	\$115
11534A	APC. 7 to SMA female	$502(140 \mathrm{gm})$	\$115

## 11588A Swivel Adapter, 11606A Rotary Air Line

The 11606A rotary air line and the 11588 A swivel adap. ter are capable of a full $360^{\circ}$ of rotation. A combination of the air line and the adapter permits rigid coax movement in three dimensions. Even the most awkwardly shaped devices can be easily connected or disconnected in a coax system with the aid of these components.

## Specifications, 11588A and 11606A

Frequency range: dc to 12.4 GHz .
Reflection coefficient (SWR): 0.048 (1.1). Ambiguity due to rotation 0.003 ( -50 dB ).
Insertion loss: 0.5 dB .
Connectors: 11588A, one precision 7.mm jack and one APC7; 11606A, one 7 mm plug and one 7 mm jack. Combinations of APC.7, Type $N$, and 3 -mm type SMA available; prices on request.
Dimensions: 11588 A, $15 / 8^{\prime \prime} \times 25 / 16^{\prime \prime} \times 13 / 16^{\prime \prime}(42 \times 59$ $\times 30 \mathrm{~mm}) ; 11606 \mathrm{~A}, 315 / 16^{\prime \prime} \times 3 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}(100 \times 19$ $x 19 \mathrm{~mm}$ ).
Weights: 11588A, net, 8 oz ( 220 gm ), shipping, 11 oz ( 310 $\mathrm{gm})$; 11606 A , net, 6 oz ( 170 gm ), shipping, 11 oz 310 gm ).
Prices: Model 11588A, \$200; Model 11606A, \$150.

## Waveguide Stand, Waveguide Clamps

The 11540 A waveguide stand locks $H P$ waveguide clamp at any height from $23 / 4^{\prime \prime}$ to $51 / 4^{\prime \prime}$ ( 70 to 133 mm ). The stand is $21 / 2^{\prime \prime}$ ( 64 mm ) high, and the base measuces $43 / 4^{\prime \prime}$ ( 121 mm ) in diameter. Price: $11540 \mathrm{~A}, \$ 10$. The waveguide clamps are offered in six sizes to hold waveguide covering frequencies from 5.30 to 40 GHz . They consist of a molded piastic cradle with a center rod. Price: 11543 A. 11548A, 55 each.

The Hewlett-Packard Model 415E SWR Meter is a lownoise tuned amplifier-volmeter calibrated in $d B$ and SWR for use with square-lan detectors. It is an extremely useful and versatile instrument, measuring SWR, attenuation, gain, or any other parameter determined by the ratio of two signal levels. The standard tuned frequency is 1000 Hz and is adjustable over a range of about $7 \%$ for exact matching to the source modulation frequency. Amplifier bandridth is also adjustable, from 15 to 130 Hz . The narrow bandwidth facilitates single-frequency measurements by reducing noise, while the widest setting accommodates a sweep rate fast enough for oscilloscope presentation.

The 415E has a very low noise figure, less than 4 dB . This represents a 6 to 10 dB improvement over other SW/R merers. Equally significant is the fact that the noise figure has been optimized for source impedances presented by de. tectors most often used with SWR meters. As a result the 415 E has greater measurement range because the reduction in noise permits the measurement of loxer-level signals for a given signal-to-noise ratio.

A precision $60 \cdot \mathrm{~dB}$ attenuator with an accuracy of 0.05 $\mathrm{dB} / 10 \mathrm{~dB}$ assures high accuracy in attenuation measurements. In addition, an expand-offset feature allows any 2 . $d B$ range to be expanded to full scale for maximum resolution. Linearity on the expanded ranges is $\pm 0.02 \mathrm{~dB}$, permitting full utilization of the increased resolution; high accuracy is possible on the normal scales as well, for linearity is limited only by meter resolution. The meter itself has individually calibrated, mirror-backed scales plus a rugged taut-band movement for full realization of the inherently high accurac;, resolution, and linearity of the instrument.

The Model 4ISE operates with either crystal or bolometer detectors. Both high- and low- impedance inputs are available for crystal detectors (see page 389), optimum crjscal source impedances being 50 to 200 and 2500 to 10,000 ohms respectively. For operation with bolometers, the 415 E provides precise bias currents of 4.5 and 8.7 mA into 200 ohms, as selected at the front panel. This bias is peaklimited for positive bolometer protection.

Both ac and dc outputs are provided for use of the 415 E as a high-gain tuned amplifier and with recorders. The solid-stare 415 E can be operated with an internally mounted battery pack (optional extra) for completely portable use or to eliminare ground loops.

## Specifications

Sensitivity: $0.15 \mu \mathrm{~V}$ rms for full-scale deflection at maximum bandwidth ( $1 \mu \mathrm{~V}$ ms on high impedance crystal input).
Nolse: at least 7.5 dB below full scale at rated sensitivity and 130 Hz bandwidth with input terminated in 100 or $5000 \Omega$; noise figure less than 4 dB .
Range: 70 dB in 10 - and $2-\mathrm{dB}$ steps.
Accuracy: $\pm 0.05 \mathrm{~dB} / 10 . \mathrm{dB}$ step; maximum cumulative error between any two $10-\mathrm{dB}$ steps, $\pm 0.10 \mathrm{~dB}$; maximum cumulative error between any two $2-\mathrm{dB}$ steps, $\pm 0.05 \mathrm{~dB}$; linearity, $\pm 0.02 \mathrm{~dB}$ on expand scales, determined by in. herent meter resolution on normal scales.


Input: unbiased low and high impedance crystal (50-200 and $2500 \cdot 10,000 \Omega$ optimum source inpedance respectively for low noise); biased crystal ( 1 V into $1 \mathrm{k} \Omega$ ); low and high current bolometer ( 4.5 and $8.7 \mathrm{~mA} \pm 3 \%$ into $200 \Omega$ ), positive bolometer protection; input connector, BNC female.
Input frequency: 1000 Hz adjustable $7 \%$; other frequencies between 400 and 2500 Hz available on special order.
Bandwldth: variable: 15.150 Hz ; typically less than 0.5 dB clange in gain from minimum to maximum bandwidth.
Recorder output: 0.1 V de into an open circuit from $1000 \Omega$ source impedance for ungrounded recorders; output connector, BNC iemale.
Amplffer output: 0.0 .3 V rms (Norm), 0.0 .8 V rms (Expand) into at least $10,000 \Omega$ for ungrounded equipment; output connector, dual banana jacks.
Meter scales: calibrated for square-larv detectors; SWR: 1.4, 3.2-10 (Norm); 1-1.25 (Expand). dB: 0.10 (Norm); $0-2.0$ (Expand); battery: charge state.
Meter movement: taut-band suspension, individually calibrated mirror-backed scales; expanded $\dot{3}$ and SWR scales greater than $41 / 4 \mathrm{in}$. ( 108 mm ) long.
RFI: conducted and radiated leakage limits are below those specified in MПL-I-6181D.
Power: $115-230 \mathrm{~V} \pm 10 \%, 50.400 \mathrm{~Hz}, 1 \mathrm{~W}$; optional re. chargeable battery provides up to 36 hr continuous operation.
Dlmensions: 755/32 in. wide, 63 3 in. high, 11 in. deep from panel ( $190 \times 155 \times 279 \mathrm{~mm}$ ).
Weight: net, $9 \mathrm{lb}(4 \mathrm{~kg})$; shipping, $13 \mathrm{lb}(5,8 \mathrm{~kg})$.
Accessory available: 11057A Handle, fits across top of instrument for carrying convenience.
Combining cases: $1051 \mathrm{~A}, 11 \frac{1}{4} \mathrm{in} .(286 \mathrm{~mm}$ ) deep. 1052 A , $163 / 8 \mathrm{in}$. ( 416 mm ) deep.
Price: HP Model 415E, \$425.
Options: 001. rechargeable battery installed, add $\$ 100 ; 002$. rear-panel input connector in parallel with front-panel connector, add $\$ 25$.

## MICROWAVE TEST ETUIPMENT

## SWR AND RATIO METERS

 For convenient SWR measurementsMadels 415B, 416B


## 415B Standing Wave Indicator

Similar to the $415 E$, this meter is a tuned voltmeter for SWR measurements with Hewlett-Packard slotted lines and detector mounts. It has an input selector for both bolometers and crystals. A special 5 dB attenuator is incorporated to increase resolution through use of the upper portion of the logarithmic meter scale.

## Specifications, 415B

Input: "bolo" ( 200 ohms), bias provided for 8.7 of 4.3 mA bolometer or $1 / 100 \mathrm{amp}$ fuse; "Crystal" ( 200 ohms) for crystal rectifier; "Crystal" ( $200 \mathrm{k} \Omega$ ) high impedance for crystal rectifier as null detector; BNC connector.
Sensitivity: $0.1 \mu \mathrm{~V}$ at 200 ohms for full-scale deflection.
Noise: at least 5 dB below full scale when operated from 200 -ohm resistor at room temperature.
Frequency: $1000 \mathrm{~Hz} \pm 2 \%$; other frequencies, 315 to 2020 Hz , available on special order; should not be harmonically related to porier line frequency.
Bandwidth: 30 Hz (nominal).
Range: 70 dB ; input attenuator provides 60 dB in $10 \cdot \mathrm{~dB}$ steps; accuracy, $\pm 0.1 \mathrm{~dB}$ per $10 \cdot \mathrm{~dB}$ steps.
Calibration: square law; meter reads SWR, dB .
Scale selector: "Normal," "Expand" and "-s dB."
Power: 115 or 230 rolts $\pm 10 \%, 50$ to $60 \mathrm{~Hz}, 55$ watts.
Dimensions: cabinet: $71 / 2^{\prime \prime}$ wide, $113 / 4^{\prime \prime}$. high, $121 / 2^{\prime \prime}$ deep ( $191 \times 299 \times 318 \mathrm{~mm}$ ).
Weight: net, $14 \mathrm{ibs}(6,3 \mathrm{~kg})$; shipping, $15 \mathrm{lbs}(6,8 \mathrm{~kg})$ (cabinet): net, 17 lbs ( 7,7 ); shipping, $27 \mathrm{lbs}(12,2)$ (rack mount).
Price: HP 415B, $\$ 540$ (cabinet) ; HP 415BR, $\$ 550$ (rack mount).

## 416B

The HP 416 B is designed for use with unleveled signal sources in the measurement of reflection coefficient. The ratio meter provides valid results independent of incident power variations as high as 20:1. Either swept- or fixedfrequency measurements can be made using the Model 416 B .


A high-impedance output on the rear of the instrument permits swept-frequency measurements to be presented on an oscilloscope or preserved on a graphic recorder. The 416B operates with either crystals or bolometers.

## Specifications, 416B

## Meter presentation

Reflection coefficient (\%): four ranges, $\mathbf{1 0 0 \%}, 30 \%, 10 \%$ and $3 \%$ reflection.
SWR: two ranges, 1.06 to 1.22 and 1.2 to 1.9 .
DB: 0 to -10 dB ; spans 0 to -40 dB in four $10-\mathrm{dB}$ steps.
Accuracy: crystal, $\pm 3 \%$ of full scale; bolometer, same as crystal except $\pm 5 \%$ for incident input voltage below 1 mV .
Calibration: for use with squate law detectors.
Frequency: 1000 Hz input voltage.
Input voltage (for full-scale deflection):

	Crystal	Bolomalor
Incident channe!	3 to 100 mV mms	0.3 to 10 mV rms
Reflected channel	$3 \mu \mathrm{~V}$ to 100 mV ems	$0.3 \mu \mathrm{~V}$ to 10 mV rms

FREQUENCY RESPONSE TEST SETS
Pushbutton measurements, 0.1 to 18 GHz Model 8755L/8755M

MICROWAVE TEST EQUIPMENT

## Descríption

Model 8755 series Frequency Response Test Sets are precision detection and display systems for making the basic microwave measurements of insertion gain/loss and return loss (VSWR) from 100 MHz to 18 GHz .

The Test Set system is both easy to understand and simple to operate. It is an extremely versatile measurement system and the 8755 is economical, thus enhancing its high value.

Simultaneous Insertion and Return Loss


Features


## System Specifications

Function: Models 875SL and 8755 M are configured test sets for making swept frequency response measurements of return loss, insertion loss, and power. The test sers do not include a sweep oscillaror or directional couplers.
Frequency range: 100 MHz to 18 GHz .

## Measurement range:

Single channel: +10 dBm to -50 dBm (noise level).
Ratio of two channels: 60 dB .
Ratio Measurement Accuracy:


Accuracy curve shows overall system uncertainty for a single detector measurement using the OFPSET JB controls; is is also the accuracy of a ratio measurement when the porrer level to one detector does not change level.

Resolution: Independens for each channel in steps of $10,5,1$, or 0.25 dB per division.

8755L: 1 Div. $\sim 1.29 \mathrm{~cm} .8755 \mathrm{M}: 1$ Div. $\sim 1 \mathrm{~cm}$.
Detector return loss: $1.4 \mathrm{GHz},>20 \mathrm{~dB}: 4.8 \mathrm{GHz},>16 \mathrm{~dB}$; $8.16 \mathrm{GHz},>10 \mathrm{~dB} ; 16.18 \mathrm{GHz},>7 \mathrm{~dB}$.
Temparature Range: Operation, 0 to $55^{\circ} \mathrm{C}$ : storage, $-40^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$.
Power: 48 to $440 \mathrm{~Hz}, 115 / 230 \mathrm{~V}=10 \%$, lyp. 85 watts. Weight:

8755L: Net, $34.3 \mathrm{lb}(15.5 \mathrm{~kg})$. Shipping, $52 \mathrm{lb}(23 \mathrm{~kg})$.
8755M: Net, $31.8 \mathrm{lb}(14,5 \mathrm{~kg}$ ). Shipping, $50 \mathrm{lb}(22 \mathrm{~kg})$.
Dimensions:
8755L (182A Display): 7.15/16 in. wide $\times 13-5 / 16$ in. high $\times 195 / 8$ in. deep overall ( $201,6 \times 338,1 \times 499,5 \mathrm{~mm}$ ).
8755M (180D Display): $163 / 4 \mathrm{in}$. wide $\times 5-7 / 32 \mathrm{in}$. high x $213 / 8$ in. deep overall ( $425 \times 132,6 \times 543 \mathrm{~mm}$ ).
Price: 875SL: $\$ 3.200 .00$.
8755M: $53,300.00$.

Individual Instrument Specifications


8755A
Function: Swept Amplitude Analyzer plug in for 180 series oscilloscopes. Has three inputs ( $\mathrm{R}, \mathrm{A}, \mathrm{B}$ ) which process the 11664A Detectors' outputs.
Weight: Net, $6 \mathrm{lb}, f_{\text {oz }}(2,8 \mathrm{~kg})$.
Shipping, $10 \mathrm{lb}(4,5 \mathrm{~kg})$.
Price: $\$ 1,350.00$.

## 11664A

Function: Derector designed for the 875SA. Detects the envelope of the modulated micrownae signaL. Uses hot carrier diode for detection.
Frequency Response:


Impedance: 50 ohms nominal.
Maximum Input Power: Damage level is +20 dB in ( 100 mW ) power; $10 \mathrm{~V} d c$.
Connector: Type N-Plug.
Dimensions: Cable length is 48 inches.
Weight: Net, $6 \mathrm{oz}(0,17 \mathrm{~kg})$. Shipping, $2 \mathrm{lb}(0,9 \mathrm{~kg})$.
Price: 1166 A : $\$ 200.00$.
Options:
001: APC. 7 connector, add $\$ 25.00$.
002: SMA.Jack connector. No Charge.

## Accessories:

11679A: 2s-foot Extension Cable, 850.00 .
11679B: 200-foor Extension Cable, $\$ 390.00$.

11665A
Function: Non-reflective on-off modulator designed for and powered by the 875SA.

Frequency	Return Loss:	Insertion Loss:	
Range:	On and Off	On	Off
$0.1-0.2 \mathrm{GHz}$	$\leq 1.92 \mathrm{SWR}(\geq 10 \mathrm{~dB})$	$\leq 3.8 \mathrm{~dB}$	$\geq 35 \mathrm{~dB}$
0.2 .4 GHz	$\leq 1.43 \mathrm{SWR}(\geq 15 \mathrm{~dB})$	$\leq 5.8 \mathrm{~dB}$	$\geq 35 \mathrm{~dB}$
4.8 GHz	$\leq 1.67 \mathrm{SWR}(\geq 12 \mathrm{~dB})$	$\leq 3.8 \mathrm{~dB}$	$\geq 40 \mathrm{~dB}$
8.12 .4 GHz	$\leq 2.32 \mathrm{SWR}(\geq 8 \mathrm{~dB})$	$\leq 4.3 \mathrm{~dB}$	$\geq 45 \mathrm{~dB}$
12.4 .18 GHz	$\leq 2.32 \mathrm{SWR}(\geq 8 \mathrm{~dB})$	$\leq 5 \mathrm{~dB}$	$\geq 45 \mathrm{~dB}$

Maximum input: +24 dBm .
Drive Current: Nominally +50 mA in ON condition, -50 MA in OFF condition.
Connectors: Input N-Jack, Outpur N-Plug.
Weight: Ner, 6 oz ( $0,17 \mathrm{~kg}$ ). Shipping, $2 \mathrm{lb}(0,9 \mathrm{~kg})$.
Price: 11665 A. $\$ 300.00$.
Options:

011: Inpur N-Jack, Output N.Jack.	No Charge
013: Input N-Jack, Outpur APC.7	Add $\$ 25.00$
021: Inpur N.Plug, Outpur N.Jack	No Charge
022: Input N.Plug, Outpur N-Piug	No Charge
023: Input N.Plug, Outpur APC.7	Add $\$ 25.00$

## Display Units

Function: The display units are modified (Option 807) 180 series oscilloscope mainframes.
Price:
182A Option 807: Large Screen, cabinet style. $\$ 950.00$.
1800 Option 807: Std. Screen, rack style. $\$ 1,050.00$.
181A Option 807: Storage, cabinet style, $\$ 1,950.00$.
181AR Option 807: Srorage, rack style. $\$ 2,025.00$

# COMPLETE CHARACTERIZATION OF LINEAR NETWORKS 

NETWORK ANALYZERS

## Network analysis

A fundamental problem facing engineers is to predict the behavior of a network that is stimulated by an arbitrary signal and connected to other arbitrary networks. A way to solve this problem is to completely describe the network's behavior in the frequency domain. Network analysis accomplishes this for pas. sive and active linear networks by measuring parameters at the network's ports. Nerwork analysis creares thus a data model representing the actual network behavior as a function of frequency. (For description of the behavior of nonlinear devices see sections abour Specrrum Analyzers and Wave Analyzers).

The engineer designing multicomponent networks tries to predict the performance of the final circuit from a knowledge of the parameters of individual components. The production engineer responsible for the manufacture of each component must know the rolerances allowable on the components to ensure a finished product within specif. cations. Network analysis helps these engineers to narrow the limirs of uncerrainty about nerpork behavior.

## Network behavior

It is possible, to a certain extent, to predict circuit performance by calcula. tion. However, theoretical calculations often disagree with actual measured values since a "perfect" network does not exist and since the electrical characteristics of a circuit may vary in a complicated way with frequency.

At frequencies above approximately 1 MHz , a single lumped element becomes a "circuit" consisting of the basic element plus a number of parasitics like stray capacitance, lead inductance and unaccountable absorptive losses. The magnitudes of these parasitics depend largely upon the constraction of the device and are difficult or impossible to predict.

At frequencies above 1 GHz , the geomelty of the components used in a circuit becomes comparable to the wavelength used. Lower frequency techniques and lumped-element theory are almost impossible to use for complere network characterization. To analyze the behavior of networks at microwave frequencies, distributed-element theory, that is trans-mission-line theory, has to be applied.
A device or "black box" may behave like a resistor at very lorv frequencies, like an L-C circuit at RF frequencies, and like a transmission line at microarave frequencies. This circuit behavior is difficult
and impractical to predict by calculations. Network analysis enables the engineer to accurately measure circuit behavior in a speedy and convenient way.


Magnitude and ohase of the complex impedance of a resonant circuit are measured with the 8407A Network Analyzer using the 11655A Impedance Probe. The calculated parallel resonance is 5.2 MHz . The unexpected series resonance at 60 MHz caused by circuit parasitics can be important information for circuit design.


The insertion loss and "nonlinear" portion of the phase shift of a PIN modulator are traced on the 8412A Phase Magnitude Display. The electrical length of the PIN modulator has been compensated by the line stretcher of the "transducer" used for transmission measure. ments with the 8410A.

## Low frequency network analysis

At frequencies below 10 megahertz networks are characcerized by measuring amplitude and phase changes through the network and its input and output impedance, $h, y$, and $z$-parameters as well as lumped component models are very common analytic tools at low frequency. Group delay, the derivative of phase, is also a significant measurement in many communications systems. All of these parameters can be measured using Hewletr-Packard's broad range of instrumentation.

Amplitude is measured either as a ratio of two signal levels or as an absolute level of one signal. Ratio measurements are typically displayed in dB so that the full dynamic range of the instrumenration can be utilized in observ. ing both the high and low level response of a network. For a ratio measurement reading 0 dB the signal levels would have equal amplitudes. Similaty, $\pm 20$ $d B$ would mean there is a 10 to 1 patio
between tro signals. Absolute measure. ments are expressed in volts, dBV, or dBm . The term dBV is the logarithmic ratio between the unknonn signal in volts and one volt. Likewise, dBm is the $\log$ ratio of power relative to 1 millizarr.
Phase is a much more sensitive in. dicator of a circuit's behavior than amplitude. It thus provides valuable information for precisely determining the location of poles on a phase and log amplitude vs. log frequency plot (Bode Plot). In a similar fashion phase information would establish the frequency of resonance ( $\omega=$ zero degrees) with much greater resolution than amplitude information alone. Phase measurements also are used in circuit design for determining phase margins.
One source of distortion of a complex waveform occurs from the nonlinear phase shift of the waveform's frequency components as it passes through a network. The phase shifting characteristics of a nermork or system is called delay distortion or group delay and is defined as

$$
\mathrm{T}_{\underline{E}}=\frac{\mathrm{d} \Theta}{\mathrm{~d} \omega}
$$

There are numerous rechniques used for measure group delay. They include the phase slope, amplitude modulation, frequency modulation and frequency deviation rechniques. Most Hewlett-Packard network analyzers can be used to make group delay measurements with at least one of these techniques.

## Broadband detection techriques

Instruments using this rechnique accept the full frequency spectrum of the input signal. Eliminating the IF section of the frequency selective analyzer reduces the instrumentation cost while sacrificing noise and harmonic rejection. However, careful measurement techniques, using filters, can eliminate harmonic signals that would otherwise produce inaccurate measurements. Also noise is not a limiration in many applications.
The broadband technique is essential in network measurements where the input and output signal are not at the same fequency. For example, this is the type of instrumentation that would be used to measure the insertion loss of a mixer or frequency doubler.
In general a broadband measurement system is alriays source independent compared to some selective analyzers which use a companion tracking source. Source independence gives the user flexi-
bility to choose a source with frequency accuracy, power output, and cost demanded by his application.

## Frequency selective measurements

Frequency selective nerwork analyzers are built as tracking receivers which convert swept RF signals to a constant IF signal. The lower frequency network analyzers (below 110 MHz ) will generate a constant IF signal only when used with specific signal sources. These signal sources must supply two RF signals; one as a stimulas to the device under test and a second signal, offset in frequency, for tuning the input frequency of the analyzer. A more sensitive, low noise detection of the IF becomes possible. This provides increased accuracy and dynamic range for frequency selection measurements as compared to broadband instru. mentation. Furthermore, precision IF attenuators allow high resolution, accu. rate IF substitution measurements.

## High frequency network analysis

At lower frequencies, currents and voltages can readily be measured. Current and voltage transfer functions and impedance, the ratio of voltage to current, are widely used circuit parameters. In ciscuit design, $h$, y or 2 parameters are used. At microwave frequencies, however, these parameters cannor be accurately measured because it is extremely difficult to establish the required short and open circuit measurement conditions. Also, voltage and current vary along the transmission line causing measurements to become arbitrary. Consequently, microwave phenomena are more commonly expressed in terms of power which is invariant along a lossless teansmission line.
Parameters which describe the energy flow within a nerrook are the scattering parameters or S-parameters. They are used at microwave frequencies because they are much easier to measure and design arith than other kinds of parameters at these frequencies.
S-parameters describe the ratios of reflected and transmitted signals within a nerwork.
$S_{11}$ is the reflection coefficient at port 1 , $E_{11} / E_{11}$, if $E_{12}=0$ (port 2 is terminated in its characteristic impedance). $\mathrm{S}_{21}$ is the transmission coefficient $\mathrm{E}_{\mathrm{r} 2} / \mathrm{E}_{\mathrm{i} 1}$, if $\mathrm{E}_{\mathrm{i} 2}$ $=0$. By reversing the ports, $S_{22}$ and $S_{1 \text { : }}$ can be defined. It is important to

note that the network is always terminated in its characteristic impedance thus
a voiding oscillation by active devices and other unwanted parasitic effects caused by open or short circuit terminations during measurements.

S-parameters complerely characterize transistors, solid state devices and other active and passive linear nerworks. They are useful in the design of amplifiers, transisror circuit, and in flow graph analysis of multicomponent circuirs.

Hewlett-Packard has developed a set of tutorials for measurement of and design with S-parameters: Application Notes 95. 117.1, 117-2; videotapes " 5 -Parameter Design Techniques Part 1 " \#800586, "S.Parameter Design Tech. niques Part 2", \#800600; calculator programs "Microwave Circuit Design PAC, Vol. 1": seminars on design rechniques with $S$-parameters are also being offered.

With the increased use of microwave frequencies in communication systems and other new applications. S-parameter measurements become more and more important and are more generally used in design work. The accuracy and ease of $S$-parameter measurements are also available at RF frequencies. Since S-parameters completely characterize linear networks, they can mathematically be converted into any desired parameter set such as $h, y$ and $z$ parameters or return loss, impedance and transfer functions.
Hewlett-Packard helps the RF engineer with these parameter conversions, where desirable, by offering a variety of displays, display overlays, a reflectometer calculator and software for Hewlett. Packard programmable calculators.

## Network analyzers

Hewlett-Packard offers a complere line of network analyzers throughout the frequency range 1 Hz to 40 GHz . Compared to other instrumentation that can be used for network characterizarion such as broadband voltmeters, $\log$ amplifiers, oscilloscopes, crystal detectors and slotted lines, netrork analyzers offer the follow. ing advantages.

## Versatlity of measurements

Hewletr-Packard network analyzers are capable of measuring or resting a large variety of parameters of inumerous nerworks-passive, active and networks with various characteristic impedances. A broad frequency coverage and the design of the network analyzers achieve this measurement versatility. As ratiomerers, their performance is virtually in. dependent of the power level used to stimulate the device under test. Their dual-channel capability enables measurement of various parameters through the use of "transducers"; besides S.paramerers, the ratio of voltage to current (impedance) or voltage and current transfer functions can be measured. Comparison


The insertion loss and phase shift of a tunable 50 MHz bandpass filter are traced on the 8412A Phase-Magnitude Display used with the 8407A Network Analyzer. The swept trequency display allows rapid adjustments for linear phase shift through the passband. Group delay can be computed from the phase information displayed.


The reflection coefficient $S_{\text {II }}$ of a transistor is measured over the frequency range 300 MHz to 700 MHz . The measurements setup includes the 8410A Network Analyzer using the 8414A Polar Display. The Smith Chart overlay permits direct readings of complex impedance values.
measurements become possible. The variety of 'rransducers' allows the user also to update his "mainframe" as measure. ment/test requirements change.

## Accuracy of measurements

Hewlett-Packard network analyzers are built either as tracking receivers which convert the swept RF signal to a narrow-band constant IF signal or they use harmonic frequency conversion for obtaining a constant IF signal. In both cases, sensitive, low noise detection of the IF signal becomes possible. Furthermore, precision attenuators allow high resolution, accurate IF substitution mea. surements.

## Speed of measurements

Hewlerr-Packard network analyzers are capable of real-tíme swept displays (except for 8405A Vector Volumeter and 4815A RF Impedance Meter). Swept measurements entail a substantial increase in speed of measurements compared to CW measurements. Also, they prevent oversights due to point-by-point rechniques and make measurement results easier to interpret.

## 3575A

The 3575A measures Phase and Am. plitude or Gain. With the 3575A, the complete response picture is available at a reasonable cost from a single insrru-
ment, over an 80 dB range, from 1 Hz to 13 MHz . The 3575 A uses a broadband measurement technique, which is attractive because the measurement is not constrained by an internal tracking source or dedicated external device. The 3575A is not dependent on the wave shape, thus measurements can be made on a variety of waveforms such as, triangle and square waves. Noise and harmonic tolerance further enhances the range of measurement, so the instrument is useful under bench conditions.

## 3040A/3041A/3042A

The 3040A is a network analysis system capable of measuring amplitude and phase to 13 MHz . Group delay is an optional capability. The system consists of a synthesizer signal source and a twochannel tracking derector. The system has a 100 dB dynamic range, and measures amplitude to a resolution of .01 dB and phase to a resolution of $.01^{\circ} \mathrm{Mea}$. surement applications include filter de. sign and production, amplifier testing. delay measurements on communications devices, and measurements on any linear two-port device.

The 30flA extends the capabilities of the 3040A to semiautomatic use. The 3260A Card Reader provides control over all front panel functions such as frequency, level, and sweep. Repetitive tests can be done quickly and easily withour operator error. The 3041 A provides not only the amplitude, phase and group delay, but limit test and offset as standard features.

The 3042 A is a fully automatic sys. tem which uses the Hewlett-Packard 9820A Calculator as a controller. The memory, computational power and decision making power of the calculatorcontroller extend the measurements to complex network solutions in the lab or rapid production line testing system. Accuracy can be improved by subtracting system errors from the measurements by using the memory and algebraic powers of the calculator.

## 8407A

The 8407 A Nerwork Analyzer tracks the 8601A Generator/Sweeper (or $8690 \mathrm{~B} / 8698 \mathrm{~B}$ Sweeper) from 100 kHz to 110 MHz . The 8407A achieves great versatility of measurements through a set of six different "transducers." Measurement capabilities include:

1) Transmission (gain, loss, phase shift) in $50 \Omega$ and $75 \Omega$ systems. Refection (rerurn loss, impedance) in $50 \Omega$ and $75 \Omega$ systems.

2) Complex impedance $|Z|, \Theta$ or $R \pm i X$ over the wide impedance range $0.1 \Omega$ to $>10 \mathrm{k} \Omega$.
3) Volvage and current transfer functions (voltage or current gain, loss: phase shift).

4) High impedance in-circuit probing.
5) Visual comparison measurements with $0.01 \mathrm{~dB}, 0.2^{\circ}$ resolution in $50 \Omega$ and $75 \Omega$ systems.
6) S-paramerer measurements of active and passive linear networks (transistors) in $50 \Omega$ systems (also $75 \Omega$ systems for passive devices).
A rectangular and polar display and various CRT overlays permit direct read. ings of parameter values of interest. Ap. plications are detailed in Application Notes 121-1, 121-2. Also, a videotape "8407 Network Analyzer System" \#800475 is available.

## 4815A

To design a circuit for maximum power transfer and/or with desired frequency characteristics, engineers must know the impedance of the components they use. The $4815 A$ RF Vector Impedance Meter provides direct readout of complex impedance values $|\mathbf{Z}|$ and $\theta$ on adjacent meters thus greatly simplifying the measurement of impedance compared to conventional methods. Operating range of the 4815 A is $1 \Omega$ to $100 \mathrm{~K} \Omega$ and $0^{\circ}$ to $360^{\circ}$ over the frequency range 500 kHz to 108 MHz .

These operating characteristics are very similar to the $8407 \mathrm{~A} / 1165 \mathrm{SA}$ impedance measuring system. The 8407A/ 11655A combination is superior to the 4815A with regard to accuracy (reactive probe parasitics of 11659 A can be cancel. led out), and also speed (real-time swept displays). However, the 4815A is lower priced.

## 8405A

The 8405 A Vector Voltmeter is a dual. channel RE millivolemerer and phasemeter. It reads the absolute voltages on either of two channels and simultaneously determines the phase relationship between them. CW measurements are made over the frequency range 1 MHz to 1 GHz .

Besides its use as a voltmeter, applications of the 8405 A include:

1) Transmission measurements (gain, loss, phase-shift) in 508 impedance systems. Reflection measurements
(impedance, return loss) in $50 \Omega$ systems.

2) Group Delay, Amplitude Modulation Index
3) In-circuit probing
4) S-parameters in $50 n$ systems

For detailed applications, Application Notes 77-1, 77.3, 77-4 and 91 are available.

## 8410A

The 8410A Network Analyzer System measures the transmission and refection characteristics (S-parameters) of linear networks in the form of gain, attenua. tion, phase shift, reflection coefficienr, normalized impedance in the frequency range 110 MHz to 40 GHz ,

Harmonic frequency conversion from RF to a constant IF is accomplished by the s4ilA Harmonic Frequency Converter operating from 110 MHz to $\{2.4$ GHz ; the 8411A Option H10 operates up to 18 GHz . In the frequency ranges 18.26 .5 GHz (K.band) and $26.5 \cdot 40 \mathrm{GH}_{2}$ (R.band), the K8747A and R8747A Re. flection/Transmission Test Units use crystal mixers and a local oscillator to heterodyne the signals down into the range of the $8410 \mathrm{~A} / 8$ and1A. In this manner, waveguide components can be char. acterized for S-parameters from 18 to -10 GHz .

The 8410A is a ratiometer, like the 8407A Network Analyzer, using both a reference and a test signal input. Consequently, the porver from the sweeper must be split into two channels. This is accomplished by a "Iest Set" whose other major function can be to provide the switching required for making trans. mission and reflection measurements with minimum or no changes in the measurement setup. Hewlett-Packard offers a total of twelve different test sets covering various frequency ranges and switching functions.

Another major instrument required in the 8410 measurement system is a unit for amplitude and phase detection and display. Hewlett-Packard offers three plug-ins for this purpose: a phase-gain indicator with a meter readout for CW measurements, a phase-gain display for displaying log amplirude and phase ver. sus frequency, and a polar display dis. playing amplitude and phase in polar coordinates.
The 8410 A is capable of sweeping octave bands through 18 GHz . Between 18 GHz and $\{0 \mathrm{GHz}, 2 \mathrm{GHz}$ frequency windows can be viewed. Measurements of more than 60 dB of attenuation and 40 dB of gain are possible. Another im. portant facility is a line stretcher in the reference channel of the test sets, making possibie equalization of electrical lengths
in both channels for accurate differential phase measurements.
The variery of test sets, displays and accessories for measuring active devices makes the 8410A Network Analyzer adaptable to almost any measurement with regard to linear networks. For more detailed information, the videotape " 8410 Network Analyzer System" $\# 800473$ is a vailable.

## 8540 Serles

An 8540 Series system couples the Network Anzlyzer's (8410A or 8407A) ability to completely measure the linear characteristics of a device with a computer's ability to completely setup a measurement, store data, and solve complex mathematics. As a result the automatic system can greatly improve:

1. The SPEED of the measurement (at least by a $5-20 \mathrm{x}$ factor).
2. The ACCURACY of the measurement through sophisticated error correc. tion techniques which cannot practically be performed manually.
3. The EASE OF OPERATION and.
4. The DATA OUTPUT FORMAT which can be presented in the most useful manner (alphanumeric or graphic with hardcopy, cassette or CRT presenta. tion).
Data can be made readily accessible by compurer-aided design programs which help the design engineer analyze the overall performance of a circuit based on subassembly measurement daca.

Network Analyzer Summary

Model	Frequency Range	Souroe	Measurement Capabilities
3575A Gain/Phase Meter (Page 414)	$1 \mathrm{H}_{2}-13 \mathrm{MH}$	None	Gain Phase and Amplitude Low Frequency Analysis
3040A Manual Nolwork Analy7er (Page 407)	$50 \mathrm{Hz-13} \mathrm{MHz}$	$3320 \mathrm{~A} / \mathrm{B}$ or $3330 \mathrm{~A} / \mathrm{B}$	Amplitude and Phase Optional Group Delay Gain or Loss
3041A Semiautomatic Network Analyzer (Page 409)	$50 \mathrm{~Hz}-13 \mathrm{MHz}$	33308 Synthesizer	Amplitude, Phase, Group Delay Limit Test Offset   Card Reader Control
3042A Automatic Network Analyzer (Page 411)	$50 \mathrm{Hz-13} \mathrm{MHz}$	3330B Synthesizer	9820 Calculator Control Complex Network Analysis Declision Making Ability Compulational Capability
676A Tracking Detector (Page 413)	$10 \mathrm{kHz-32} \mathrm{MHz}$	675A Sweaping Signal Generator	Transfer Functions, Impedance in $50 \Omega$, $75 n$ systems Comparison Measurements of two networks in 50s. $75 \Omega$ systems   Complex Impedance, $0.3 \mathrm{~m}-3 \mathrm{kn}$
8407A Network Analyzer (Page 418)	$100 \mathrm{kHz-110} \mathrm{MHz}$	8601A Generator/Sweeper 86908/8698B Sweep Oscillator	Transter Functions, Impedance in $50 \Omega$, $75 n$ systems Complex Impedance $0.1 \Omega$ to $>10 \mathrm{k} \Omega$   High Impedance in Circuit Probing   Kilgh Resolution Comparison Measurements in 50, $75 \Omega$ systems   5 - parameters in 500 , $75 \Omega$ systems
4815A Vector Impedance Meter (Page 416)	$\frac{500 \mathrm{kHz}-\mathrm{J} 08 \mathrm{MHz}}{(\mathrm{CW})}$	Internal (external possible)	Complex Impedance, $1 \Omega$ lo $>100 \mathrm{k} \Omega$
8405 A Vector Voltmeter (Page 417)	$1 \mathrm{MHz-I} \mathrm{CHz}_{2}(\mathrm{CW})$	608E, F Signal Generator, VHF 612A Signal Generator, UHF 32008 Oscillator, VHF   8654A Signal Generator, UHF	Vollmeter   Transfer Functions, Impedance in 50n systems Group Delay, Amplitude Modulation Index $S$ - parameters in 50 n systems
8410A Network Analyzer (Page 421)	$110 \mathrm{MHz}-40 \mathrm{GHz}$	8620 - Series Sweep Oscillator 8690-Series Sweep Oscillator	Transmission/Reflection Characteristics in $50 \Omega$ systems $S$ - parameters in $50 \Omega$ systems
8540 Series Automatic Network Analyzer (Page 426)	$100 \mathrm{kHz}-18 \mathrm{GHz}$	8690/8620 Sweep Oscillators	Automatic measurement of Transmission/Ieflection characteristics   Full error Correction   Virtually no programming required   Versatile output: 28 parameter atphanumberic or graphic; hardcopy cassette or cathode-ray-tube.



## Description

The 3040A Network Analyzer System consists of any of four synthesizer sources ( $3320 \mathrm{~A} / \mathrm{B}$ or $3330 \mathrm{~A} / \mathrm{B}$ ) and a selec. tive detector, the 3570 A . The synthesizer source provides both the signal stimulus and the tracking frequency infotmation to the selective detector. The 3040A provides the capability to characterize lineas two-port networks to 13 MHz . The 3040 A Manual Network Analyzer provides measurements formerly avalable only on automatic systems. Sweeping of amplitude and frequency, internal calculation of group delay, and offset
mensurement capability are available as well as the standard measurement of amplitude and phase.

Wide dynamic range - high resolution
The 3040 A provides 100 dB of dynamic range on each of three input ranges and has sensitivity on the lowest range to -120 dB V ( 1 microvolt). Measurement of amplitude is made to 0.01 dB resolution and phase $00.01^{\circ}$ resolution.

Selection of sources
The sources available ( $3320 \mathrm{~A} / \mathrm{B}$ and $3330 \mathrm{~A} / \mathrm{B}$ ) allow the user a range of performance from three digit to eight digit
frequency resolution, and one part in $10^{-5}$ to one part in $10^{-0}$ frequency stability to precise amplitude level control. The $3330 \mathrm{~A} / \mathrm{B}$ sources also provide frequency sweep capability and permit the use of the 3570A group delay option. Further, the 3330 B provides amplitude sneep capability.

## SOURCE SELECTION CHART

	33204	33208	$3330 A$	33308
Freq. Ramge	0.01 Hz to 13 MHz in 7 ranges 0.1 Hz to $>13 \mathrm{MHz}$			
Freq. Resolution	3 digit		8 digit	
Frea Swesd	No		Yes	
Amg̣litude Ranga	$\begin{aligned} & +13 \mathrm{dBm} \text { to } \\ & 0 \mathrm{dBm} \end{aligned}$	$\begin{array}{\|} +26 \mathrm{to} \\ -73 \mathrm{dBm} \end{array}$	$\begin{gathered} +13 \mathrm{dBm} \\ \text { to } 0 \mathrm{dBm} \end{gathered}$	$\begin{aligned} & +13.44 \mathrm{dBm} \\ & \text { to }-86.55 \mathrm{dBm} \end{aligned}$
Amplituota Flatness	$\pm 2 \mathrm{~dB}$	$=0,05 \mathrm{~dB}$	$=0.5 \mathrm{~dB}$	$=0.05 \mathrm{~dB}$
Amplitude Resolution	1 turn potentioneter	4 digils	1 larn potentiometer	4 digits
Amplifude Swép	No		Yes	
Groud Dilay	No		Yes	
Dlg\|tal Programming	BCD	$\begin{aligned} & \hline \text { BCD or } \\ & \text { ASCII } \end{aligned}$	ASCII	

3040A Manual Network Analyzer

3570A Options	5 Description	Price
Opt. 100	Standard son 3570A	\$5000
Opt. 101	Standard 758 3570A	\$5000
Opt. 102	$50 \Omega$ Delay/Limit Test and Offset added to 3570A	add \$ 400
Opt. 1037	$75 \Omega$ Delay/Limit Test and Offset added to 3570A	add \$ 400
Opt. 104	Isolated ASCII Two-Way	add \$ 500


3320A Options	Description	Price
Opt. 200	Standard $50 \Omega 3320 \mathrm{~A}$	$\$ 1900$
Opt. 201	Standard $75 \Omega 3320 \mathrm{~A}$	$\$ 1900$
Opt. 202	XTAL Oven (10-s/day)	add $\$ 290$
Opt. 203	BCD Remote Control	add $\$ 300$
Opt. 206	$100 \mathrm{~Hz} / 10 \mathrm{~Hz}$ Ranges	add $\$ 200$

## 33208 Options

Opt. 300	Standard s0n 3320B	$\$ 2550$
Opt. 301	Standard 7503320 B	$\$ 2550$
Opt. 302	XTAL Oven (10-s/day)	add $\$ 290$
Opt. 304	BCD Remote Control	add $\$ 400$
Opt. 306	$100 \mathrm{~Hz} / 10 \mathrm{~Hz}$ Ranges	add $\$ 200$
Opt. 307	ASCII Remote Control	add $\$ 595$

## 3330A Options

Opt. 400	Standard $50 \Omega 3330 \mathrm{~A}$	$\$ 5100$
Opt. 401	Standard 7503330 A	$\$ 100$
Opt. 402	XTAL Oven $\left(10^{-0} /\right.$ day $)$	add $\$ 500$
Opt. 403	Delete Standard XTL Oven	Suberact $\$ 200$
Opt. 404	Isolated ASCII	add $\$ 225$
Opt. 405	$5 \mathrm{~V} / 50 \Omega$ Output	add $\$ 250$

## 33308 Options

Opt. 500 Standard 500 3330B $\$ 6000$

Opt. 501 Standard $75 \Omega 3330 \mathrm{~B} \quad \$ 6000$
Opt. 502 XTAL Oven ( $10^{-9} /$ day)
Opt. 503 Delete Standard XTL Oven
Opt. 504 Isolated ASCII
Opt, $5055 \mathrm{~V} / \mathrm{SO}$ ? Output
$\$ 1900$
$\$ 1900$
add $\$ 300$
add $\$ 200$
add $\$ 500$
Subtract \$ 200
add $\$ 225$
add \$ 250

TRACKING DETECTOR
Used with 3040A, 3041A, 3042A network analyzers
Model 3570A


## Description

The 3570A Tracking Detector is the selective detector in the 3040A, 3041A and 3042A Network Analyzers. The detector is a two.channel device aith two outpurs which provides stimulus signals derived from the system's synthesizer and trio
level measurement inputs. Level of both channels, Channel A or Channel B , can be measured in dB or the $\log$ difference B-A mode may be used to provide unreferenced or comparative measucements. Phase is measured as phase of Channel B with respect to Channel A. Amplitude is measured to 0.01 dB and phase to $0.01^{\circ}$.

## Optional capability

Offset and group delay capability is available with the 3570 A as an option. Measurements can be offset by arbitrary values, and deviations from the offser point can be measured. With the group delay option and either the 3330A or 3330 B sources, group delay measurements can be made with resolu. tion as small as 1 ns.

## Specifications, 3570A

Frequency range: 50 Hz to 13 MHz .
Channel A and B outputs: electrically identical-equal in frequency and amplitude to the signal generator output. Output impedance: $50 \Omega$ or $75 \Omega \pm 2 \%$. Maximum output: 1 V rms into $50 \Omega$ or $75 \Omega$.
Channel A and B Inputs: electrically identical-both tuned to the signal generator's fequency. Input impedance: I MO工 $2 \%$ shunted by 30 pF nominal. Inpur signa! range: 1 V rms to $1 \mu \mathrm{~V}$ rms. Input selectivity: $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 3 hHz bandwidths.
Amplitude measurements: dB measurement reference selectable; $1 \mathrm{~V}, 0 \mathrm{dBm}$, or 1 V reference. Measurement range: 100 dB belon selected reference. Display resolution: 0.01 dB . Display range: 0 to -100 dB below reference setting (using A or B "Amplitude Function").
-100 dB to +100 dB (using B-A "Amplitude Func(tion').
-199.99 dB to +100.99 dB (with offiset option).
Amplitude accuracy: $\left(25^{\circ} \pm 5^{\circ} \mathrm{C}\right.$ ).
Absolute: no spec-may be calibrated to source using front panel adjustments.
Relative: A. B or B.A "Amplitude Function."

$$
\begin{aligned}
& 0 \mathrm{~dB} \\
&
\end{aligned}
$$

Frequency response: A or B "Amplitude Function"; $\leq 0.5$ $\mathrm{dB} \mathrm{p} \cdot \mathrm{p}$ error. B-A "Amplitude Function": $\leq 0.1 \mathrm{~dB} \mathrm{p} \cdot \mathrm{p}$ error.
Phase measurements: phase reference is phase reading in reference Channal A.
Display resolution: $0.01^{\circ}$
Display range: $-179.5^{\circ}$ to $+179.5^{\circ}$ (display recycles).
A/A reference offset: $180^{\circ} \pm 0.1^{\circ}$.
Phase accuracy: $\left(25^{\circ} \pm 5^{\circ} \mathrm{C}\right)$-channel B wichin 6 dB of Channe! A.
Phase linearity: $\pm 0.2^{*}$.
Frequency response: (channels at 0 dB ).

$\pm 8^{\circ}$	$\pm .2^{\circ}$	$\pm 1^{\circ}$
$50 \mathrm{~Hz} \quad 100 \mathrm{~Hz}$	1 MHz	13 MHz
Amplitude respanse		




Analog outputs (rear panel)
Amplitude function
$D C$ voltage is proportional to the logarithmic amplitude response in Channel A. Channel B or B-A. ( 0 to $\pm 10 \mathrm{~V}$ ds for 0 to $\pm 100 \mathrm{~dB}, 0.1 \mathrm{~V} / \mathrm{dB})$.
Output impedance: $\mathrm{I} \mathrm{k} \Omega \pm 10 \%$.
Phase/Delay
DC voltage proportional to phase response or group delay. Phase ( 0 to $\pm 9 \mathrm{~V} d c$ for 0 to $\pm 180^{\circ}, 0.05 \mathrm{~V} /{ }^{\circ}$ ).
Delay ( 0 to $\pm 10 \mathrm{~V}$ for 0 to 2,000 counts of delay, 5 mV per count).
Output impedance: : $k \Omega \pm 10 \%$.
Deiay ( $X$ - $Y$ recorder)
This X.Y recorder outpur should be used when ploting delay. Same voltage range as the regular delay analog output.
Output impedance: $1 \mathrm{k} \Omega \pm 10 \%$.
Digital outputs
Internal A to $D$ converter provides digital outputs of amplitude, phase and delay. The front panel readours of amplitude. phase and delay are also driven by the A to D converter. All digital oulputs are ASCII coded. TTL, low true logic.
Z-Axis output
Provides markers during frequency sweeps and amplitude soeeps. Inrensify center frequency, 11 evenly spaced markers, or limir points.
Blanking voltage: 10 V de $\pm 10 \%$.
Unblanking voltage: 0 to 7 V dc $\pm 10 \%$ (adjusrable).
Output Impedance: $1 \mathrm{k} \Omega \pm 10 \%$.

## Options

$50 \Omega$ or 75s-Output Impedance and Input Reference. (Factory installation only).
Channel A and B output impedance is $50 \Omega$ or $75 \Omega$.
0 dBm on "Max/Ref Inpur Voleage" switch is referenced to 509 or $75 \Omega$.
50』 Delay/Limit Test and Offset Measurements. (Factory in. staltation oniy).
Delay measurement

$$
D_{T}=\frac{\phi_{1}-\phi_{2}}{360^{6}\left(f_{2}-f_{1}\right)}
$$

Frequency resolution: exenty choices from 5 Hz to 200 kHz in a $5,10,16.6,20$ sequence.
Measurement range: five ranges; 19.999 нs, $199.99 \mathrm{\mu s}$, $1.9999 \mathrm{~ms}, 19.999 \mathrm{~ms}$, and 199.99 ms .
Delay sensitivity from I ns to $10 \mu \mathrm{~s}$ depending on measure. ment range in use.
Delay accuracy: $\pm$ (\% of reading $+\%$ of range $)$

0 dB	-40 dB	-80 dB
$\pm(0.2 \%+0.2 \%)$	$\pm(0.5 \%+0.5 \%)$	no spec

Limlt test: limit tests may be made on amplitude, phase and delay.
Limit stop mode: stops when a limit transition occurs.
Limit no-stop mode: analyzer continues making measure. ments after a limit point is crossed.
OHset measurements: enter an offset from either the front panel or remotely. Amplitude phase and delay measurements can be offset. Arbitrary offsets can also be entered remotely.
758 Delay, Limit Yest and Ofset Measurements. (Factory installation only).
Sarne as above except measurements are referenced to $75 \Omega$.
ASCII Isolated Two way.
Digital input and outpur lines are electrically isolated from signal ground.
DC isolation: $\pm 250 \mathrm{~V}$.
AC isolation: $>30 \mathrm{~dB}, 0$ to 1 MHz .
For field installation, order accessory kir HP 11176 A .


The 3041A Semiautomatic Network Analyzer consists of three instruments: 1) the 3570A Tracking Detector, 2) the 3330B Automatic Synthesizer and, 3) the 3260A Marked Card programmer, all installed and tested in the 294028 Instrument Rack. The system has the same amplitude and phase specifica. tions as the 3040 A , but has the semiautomatic conerol and added functional capability offered by the marked card programmer.

## Easy programmability

The marked card programmer provides a convenient means of performing semiautomatic measurements for production tests or other situations where quick, repeatable, error-free data entry and test secup is required. The 3260A Card pro. grammer accepts both marked or punched cards which can be easily coded to control any of the front panel functions of the 3330 B Synthesizer of 3570 A Tracking Detector. Entry of a variety of frequencies, and amplitudes to perform a series of measurements becomes a simple matter of inserting a card into the 3260 A . In addition, the system provides programmable limit rest, offset, and group delay as standard equipment.

## Limit test, offset, group delay

The 3570A Detector can accept sets of hi and lo limits from the card programmer, and provide front panel indication of whether or not the measured parameter lies within the prescribed bounds. Thus, production tests can be carried our quickly and easily utilizing only the hi, go, or lo indications.

Measured values can be offsec by current readings or by arbitrary values by the single entry of a card. In this way, devices can be tested with respect to their deviations from prescribed values. For example, filter passband ripple can be measured directly without tedious correction for insertion loss, merely by offsetting the measurement by the amount of the loss. Group delay can also be easily programmed and measured using the marked card programmer.

## 33308 Automatic Synthesizer

The 3330 B is a high resolution frequency synthesizer. The synthesizer has a frequency range from 1 Hz to 13 MHz with a resolution of 1 Hz and stability of one-part in $10^{-8}$. Amplitude range is from +13.44 dBm to -86.55 dBm into 508 with 0.01 dB resolution. Full specifications for the 3330 B can be found on page 330.

## 3260A System Controller

The controller for the 3041A Semiautomatic Network Analyzer is the 3260A Marked Card Programmer. This easy to use controller is useful for remotely programming all front penel controls on the 3330B Automatic Synthesizer and 3570A Tracking Detector.

Each key and slide switch position has a seven-bit ASCII word assigned to it. Programming consists of setting up a measurement manually, and when satisfactory results are obtained ... simply recall and wrise down the sequence in which the various keys and switches were used. Next, with easy to use code tables, convert the sequence to ASCII words and mark or punch these words on 3260 A program cards. This same test can now be performed with absolute repeat. ability and freedom from operator error, simply by inserting the card in the 3260A.

## 3041A includes

3330B Automatic Synthesizer.
3570 A Network Analyzer with Group Delay/Offset Limit rest.
3260A Marked Card Programmer.
294028 Rack with fixed shelf and filler panels.
11171A/B Front Panel Accessory Kit.
Cable kit (11236B/11170C/11172A)
Operating and programming manual and service manual.
System assembly and checkout at factory.

## 3041A Options

## Option 103, 7044A X-Y Recorder.

Obtain hard copy results of amplicude and phase/delay measurements with fast X.Y Recorder. All connections are made to the rear of this rack mounted recorder in the 3041A rack.

## Option 104, 12018 Oscilloscope

Two channel, variable persistence scope for convenient display of amplitude and phase/delay measurements. All con. nections are made to the rear in the 3041 A rack.

3041A Seml-Automatic Network Analyzer

304IA Option	Description	Price
Opt. 100	Standard 508 System	\$14,000
Opt. 101	Standard 75n System	\$14,000
Opt. 102	Isolated ASCII Input/Output (required when connected to computer or 9820A)	add \$ 725
Opt. 103	7044A X. Y/ Recorder with switch panel for RTIP	add \$ 1.550
Opt. 104	1201B Oscilloscope $10 \times 10$ div. scale, RTIP	add \$ 2,150
Opt. 105	230 V Powerline version ( 50.60 Hz )	no additional charge
Opt. 106	XTAL oven ( $10^{-9} / \mathrm{day}$ )	add \$ 500



## Description

The 3042A Automatic Network Analyzer provides a level of control and performance never before a vailable in this price range. The 3570 A Tracking Detector and the 3330 B Auromatic Synthesizer in the 20402B Instrument Rack are under the control of the HP Model 9820A Calculator.

All the measurement capability described on pages 407 through 410 on the 3040 A and 3041 A systems can be performed automatically by utilizing the easy to use programs in the 9820 A Calculator.

In addition to providing increased control and data logging ability to the system, the calculator can be programmed to make decisions based on the measured data and improve the performance of the system by such routines as subtracting out any system errors to provide more accurate measurements.

## Solve problems

In the Design Lab. Fully automatic measurements can be made by utilizing the calculator based 3042A system. The computing capability of this system makes it ideal for use in
the design lab. In addition to analyzing hardware automatically, the 9820 A Calculator is useful for solving cumbersome design equations.

In Production. The 3042A Nerwork Analyzer's automatic measurement capability makes production testing faster and gives outsranding repearability. Operator interaction can be on the level of entering test parameters and answering questions asked by the calculator, such as "IS DEVICE IN FIXTURE", or can be made as simple as pressing a single key on the calculator keyboard to initiate entire sophisticated tests.

Automatic data analysis is a powerful tool in production. The 3042 A can easily manipulate data for use in QA or yield analysis, and for use in making performance decisions on the device under test. GO/NO GO testing speeds up production tests even more and reduces operator errors.
In Callbration and Adjustment Procedures. The network analyzers offer accuracy, repeatability and ease of control ... three important criteria for calibrations and adjusrments. Analog outputs of all measurement paramcters, coupled with the optional display device, make dynamic adjustment possible.
Calculator control in the 3042 A can aid the operator in
making adjustments. The calculator can tell the operator which adjustment to make resulting in faster tests, plus reduced operator errors.

## Calculator control

The 9820A Calculator is the controller for the 3042 A Automatic Network Analyzer. This capable desk-top calculator allows you to design a remote controlled network analyzer with built-in data analysis to meet your specific needs.
System programming is done from the easy to understand user language keyboard and magnetic eard program storage. The 9820A Calculator takes advantage of the two-way data flow on the ASCIl interface bus to inpur readings from the 3570 A for data logging and automatic dara analysis.

## New interface structure

The ease of control and tremendous capability of the 3042A System is due, in part, to the new Hewlet-Packard ASCII interface bus. This is a bus structure which allows is wite parallel connection of instruments and controllers. All devices are addressable and may have both listen and talk capability. Program information and data are eransmitted in character serial form in an eight bit ASCII code. This system vastly simplifies the interface structure and the problem of communication and control between instruments.

## 3042A Programs and Documentation

The 3042 A derives much of its great accuracy, speed and ease of use through a set of ponerful, ready-to-use programs supplied with the system. These general purpose programs can easily be modifed to your specific application by an operator with little or no prior programming experience. Easy-to-use program editing of the English and algebraic language 9820A Calculator, plus the structure of the supplied programs, makes your softrare requirements fast and economical. The 3042A's program library includes diagnostic programs used for verify. ing performance, routine maintenance, and automatic troubleshooting to the instrument level.

## 3042A includes

3330B Automatic Synthesizer with Isolated Remore.
3570 A Network Analyzer with lsolated Remote.
9820 A Calculator, Option 001429 Data Registers.
11221A Math ROM block for calculator.
11145 A 3042 A Interface kit-1/O card, ROM, cables, and sofroware including verification and diagnostics.
111jlA/B Front Panel Accessory Kit.
Cable Kit (11236B/11170C/11172A).
29-i02B Rack with fixed shelf and filler panels.
Operating and programming manual.
Service manuals.
System assembly and check out at the factory.

## 3042A options

Option 102, Group delay/limit test/offset added to 3570A
Recommended when it is required to make these measurements within the 3570 A rather than calculate them with the 9820A

## Option 104, 1201日 Oscilloscope

Two channel, variable persistence scope for convenient display of amplitude and phase measurements. All connections are made to the reas in the 3042 A rack.

## 3042A Recommended Accessorles 9852A Plotter

Obtain hard copy plots of all measurements, as well as 9820A calcuiations and data analysis.


## 9865A Cassette Memory

Use where convenient, reliable storage of 9820A programs or 3042 A measurement data is required. 6000 data registers or 48,000 progran key strokes are provided with numbered file search capability. Requires 11223A Cassette Control Block in 9820A.

## 9861A Typewriter

Ideally suited for producing finished test reports, completely documented problem solutions or typing on preprinted forms gll under automatic control of the 9820 A .

## 11222A User Definable Functions Block

Permits defnition of up to 15 or the keys in the left-hand key blocks of the 9820 A with special user functions and sub-programs.

## 11268A Calculator System Table

9820A and any two peripherals set on top of table. Work space and built-in power strip add operator convenience.

## 3042A Automatic Network Analyzer

3042A Option	Description	Price
Opt. 100	Standard 500 System	\$22,900
Opt. 101	Standard $75 \Omega$ System	\$22,900
Opt. 102	$50 \Omega$ delay/Limit tesr/Offset added to 3570 A	add \$ 400
Opt. 103	$75 \Omega$ delay/Limit test/Offset added to 3570A	add \$ 400
Opt. 104	1201B Oscilloscope $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ scale, RTIP	add \$ 2,150
Opt. 105	230 V Powerline version $(50.60 \mathrm{~Hz}$ )	no additional charge
Opt. 106	XTAL oven ( $10^{-8} / \mathrm{day}$ )	add \$ 500

# NETWORK ANALYZER 80 dB amplitude response $/ 360^{\circ}$ phase Models 675A/676A 

 NETWORK ANAL YZERS
## Network Analyzer, 675A \& 676A

This network analyzer provides swept phase and amplitude information over the 10 kHz to 32 MHz frequency range. Borh laboratory and production oriented, the 675A Sweeping Signal Generator and 676A Phase/Amplitude Tracking Detector system provides an amplitude response with 80 dB dynamic range. accompanied by $360^{\circ}$ (or multiples of) phase measurament capability.

## Frequency

The 675 A frequency can be manaally positioned, aucomatically swept berween two preset limits, or swept about a center frequency in calibrated increments. A bypass marker system superimposes markers on all phase and amplitude channels for easy frequency identification and calibration. 100 kHz and 1 MHz comb markers and up to five individual single frequency markers are a vailable in the 100 kHz to 32 MHz range.
When used with a low frequency oscilloscope or X.Y re. corder, the network analyzer presents displays that can be calibrated in frequency, phase, and amplitude. Along with the low residual FM ( $<70 \mathrm{~Hz}$ peak), low spurious response and low noise ( -85 dB ), these capabilities permit accurate measurements of devices with steep responses,

## Amplitude and phase

The 676A is a dual channel detector synchronously tuned to the sareep frequency. Four scope outputs (A, B. A-B, PHASE A.B) are located on the front panel of the detector. A and B provide 80 dB of $\log$ amplitude dynamic range ( $50 \mathrm{mV} / \mathrm{dB}$ ) for each channel, and $\mathrm{A} \cdot \mathrm{B}$ is the log difference between the two channels. All three present information in linear dB. PHASE A.B is a dc voltage that is linearly proportional $(10 \mathrm{mV} / \mathrm{de}-$ gree) to the phase difference between channels from $0^{\circ}$ to $360^{\circ}$.

To make using an oscilloscope or recorder more convenient, a "CAL" is provided for the scope outputs to allow fine adjustment of the display. Phase is also conveniently calibrated using the $5^{\circ}$ to $100^{\circ}$ "PHASE CAL CHECK" buttons. Either pushbutton supplies a calibrated dc offset to the vertical input of the oscilloscope allowing a quick check of phase and calibration of the display.

## Specifications, (675A and 676A)*

Frequency range: 10 kHz tc 32 MHz in one range with Start. Stop, Manual, Center Frequency Sweep, and CW control. Digital drum readout, 1 kHz setrability, 20 kHz resolution.
RF output (Channels $\mathbf{A}$ and $\mathbf{B}$ ): two equal-amplitude, in-phase outputs derived from 675A output through resistive power divider.
Level (676A only): +2 dBm ( 0.28 V rms) into 500 with 675 A set to +13 dBm . Adjustable with 675 A attenuator.
Impedance: $50 \Omega$ ( $75 \Omega$ on request). NOTE: impedance inde. pendent of 675A. Impedance of 675 A must match imped. ance of 676A.
Output Isolation: 16 dB berween channels.
RF input (Channels A and B): identical inputs synchronously tuned to 675 A output frequency.
Level: $+2 \mathrm{dBm} \max$ (not to exceed +13 dBm or $(\mathrm{V} \mathrm{sms}$ ).
Impedance: same as RF output.
Crosstalk: $>84 \mathrm{~dB}$ between channeis.

## Amplitude functians

Range: 0 to -80 dBm .
Accuracy
Using Channel $A$ or $B$ : output proportional to $\log$ of input $\pm 1.5 \mathrm{~dB}$ over 80 dB dyramic range.


## System flatness

Using Channel A or B: $\pm 0.8 \mathrm{~dB}, 10 \mathrm{kHz}$ to 200 kHz .675 A unleveled; $\pm 0.8 \mathrm{~dB}, 200 \mathrm{kHz}$ to $32 \mathrm{MHz}, 675 \mathrm{~A}$ internally leveled.
Nolse: <-85 dB (son source impedance)
Spurious responses: $<-8 s \mathrm{~dB}$ ( 50 s source impedance).
Channel $A$ and $B$ scope output: $50 \mathrm{mV} / \mathrm{dB}(+4.2 \mathrm{~V} \mathrm{dc}$ for +2 dBm input level) adjustable with CAL control.

## Phase function

Range: $0^{\circ}$ to $360^{\circ}$. Display recycles every $360^{\circ}$, internal phase shifter allows $0^{3}$ to $360^{\circ}$ continuous phase offset.

## Accuracy

As a function of frequency: 100 kHz to $32 \mathrm{MHz}, \pm 1^{\circ} ; 10$ kHz to $100 \mathrm{kHz}, \pm 2^{\circ}$
As a function of amplitude: $\pm 5^{\circ}$ over entire 80 dB dynamic range.
Calibrator accuracy: $100^{\circ} \pm 1.0^{\circ}, 5^{\circ} \pm 0.2^{\circ}$.
Phase scope output: $10 \mathrm{mV} /{ }^{\circ}\left(1.80 \mathrm{~V} \mathrm{dc} \pm 1.80 \mathrm{~V} \mathrm{dc}\right.$ for $180^{\circ}$ with phase control set to $0^{\circ}$ ). Adjustable with CAL control.

## General

Operating temperature: $0^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$, 48 Hz to 440 Hz .
Dimensions ( 675 A ) : $163 / 4^{\prime \prime}$ wide, $83 / 4$ " high, $183 / 8^{\prime \prime}$ deep ( 425 $\times 221 \times 467 \mathrm{~mm}$ ) ; ( 676 A ): $163 / 4^{\prime \prime}$ wide, $3 \cdot 15 / 32^{\prime \prime}$ high. $183 / 8^{\prime \prime}$ deep ( $425 \times 88 \times 467 \mathrm{~mm}$ ).
Total system weight: net, $59 \mathrm{lbs}(26,3 \mathrm{~kg}$ ) : shipping, 83 lbs ( $37,4 \mathrm{~kg}$ ).
Total system power: 185 VA max.
Price (must order 676A and 675A for network analyzer system): HP 676A, $\$ 1625$; HP 675A, 52575 .
HP 675A Option 001 (includes 1 MHz harmonic comb marker), add $\$ 75$.
HP 675A Option 002 (includes 100 kHz namonic comb marker), add \$75.
HP 675A Optlon 003 (includes 1 MHz and 100 kHz har. monic comb markers), add $\$ 125$.

[^45]

## Description

HP's 3575A Gain/Phase Meter is a basic instrument used for making network measurements over a seven decade frequency and 100 dB amplitude range. Because ic isn't dependent on sweeping sources or dedicated displays, a number of different instrument contigurations are possible. While allow. ing variations in the hasic phase and amplirude secups, the flexibility also implies arelications in such measuremenrs as impedance, delay and complex root location.
Phase in degrees and amplitude in $d B$ or $d B V$ are the out. purs. The phase and amplitude information is available from a LED digiral readout, analog outputs on the rear pancl. or BCD outputs in Option 002 or 063. The phase and amplitude readings can be plotted by hand on log paper to give a Bode plot. Alternatively, the analog outputs can be used to drive an X-Y' recorder to give the same plot faster and for more points. As a third choict, a storage scope can be used to display the frequency response. As a fourth alternative, the $B C D$ informa. tion can be used by a compurer or HP calculator.

## Phase

To measure phase, two inpu: signals are necessary. One in. put is used for a reference signal. Tize orher channel monitors the phase stifted signal. Both inpur ibannels have identical high impedance inpu! circuits, so circuit loading is compensated and low voltage signs!s can be used on either channel. To reduce phase errors that arc caused by capacitive loading. a 10:1 Iow capacirance scope probe or a low impedance termination can be used. The 10:1 probe is also uscful for extend. ing the voltage range to 200 V .
Phase angles are measured by looking at the time difference betneen successive zero crossings of the two input signals. Because zero crossings are the only significant information used. the shape of the waveform away from zero is not sig. nificant. Square. triangle and distorted waveforms witl all give the same answer as a sine ware.

## Harmonles

The 3575A has been designed so even harmonics cannor cause phase measurement errors. In phase, odd harmonics will not cause error either. This is an important instrument feature
because the input signais always have some harmonic content. Most oscillators have harmonics f0 dB below the fundamental. With this amount of harmonic conrent, phase errors could result. However, the 3573A has been designed so crrors from input signals are commensurate with the basic accuracy of this instrument: thus, the effects of harmonics don't become a concern to the user.

## Noise

HP's 3575A has unique logic circuitry (patent applied for) which makes it tolcrant of noise. This important feature keeps the digits from racking when using lon Invel signals. Without this feature, it would not be possible to get unambigious readings at the lower amplieude range of the instrument.

Besides being colerant of noise, the 3575A is also able to reject noise. A front panel switch selects the appropriate threedecade frequeocy range. By covering three decades, plots and sweeps can be made without repeated adjustment and, at the sance time, noise rejection is still achieved.

The 3575 A can be used over its wide amplitude and frequency ranges in the presence of noise and harmonics without external signal conditioning.

## Amplitude

Amplitude measurements fall into cro categories. The am. plitude of either channel or the ratio can be measured. The channel measurements are in dB rihere $\mathrm{D} d \mathrm{~B} \mathrm{~V}=1 \mathrm{~V}$ rms. Measurcments of the ratio are in dB where 0 dB means the channcl levels are the same. If the input signal level is too low for the phase or ratio functions to operare, a measurement of the channel amplitude will reveal this. If the level is too high, the digits will be blanked and the overload annunciator will indicate which channcl is in overload.

To achieve a wide dynamic range withoal internal or ex. ternal ranging, a wide dynamic range log amplifier was developed. It uses eight log segments to achicve an 80 dB range. The 20 dB attenwator associated with each channel allows 100 dB of signal dizarence.

The amplifier in both channels continuously logs the input signal. The logged signals are then rectified to give a de volt. age that is proportional to the log of the input. With the two
dc signals available, it is possible to measure either the level of Channel $A$ or $B$ or by subtracting the de voltages to obtain the log ratio. Using this technique, the amplitude ratio of waveforms at different frequencies or different waveforms can be measured.

The technique of subtracting Channel A from B directly yields the gain or loss through a network. The advantage of measuring input and output to find gain is that the input stimulus isn't required to have a flat frequency response. The stimulus can also have a distorted waveshape without affecting results. The Bode plot is then independent from the stimulus and in-circuit measurements are possible.

## Specifications



## Temperature: $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$.

Frequency ange switch on lowest applicable range.
Analog ousput accuracy (rear panel).
Input signal range: $200 \mu \mathrm{~V}$ rms to 20 V gms.
Harmonic rejection
Even harmonics no erroc.
Odd harmonics in plase no error.
Odd harmonics out of phase $0.57^{\circ}$ worst case error when total odd harmonic distortion is 40 dB below the fundamental.
Nolse tolerance: $2^{\circ}$ error for a $10 \mathrm{kHz}, 1 \mathrm{~V}$ sine wave on one channel. One volt sinewa ve added to Gaussian noise (limited to a 1 MHz bandwidth and $30 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio) on the other channel. The 100 Hz to I MHz frequency range was used.
Display
Range: $\pm 180^{\circ}$ with $12^{\circ}$ of overrange.
Resolutlon: $0.1^{\circ}$.
Panal meter accuracy: $\pm 3$ counts ( 0.3 degrees, $0.3 \mathrm{~dB} / \mathrm{dB}$ V). The panel meter error must be added to the phase and amplitude errors to obrain the display error.

Inputs
Impedance: 1 M : 30 pF .
Protection: $\pm 50 \mathrm{~V}$ de, 25 V ims.
Response time to achieve $90 \%$ of final reading:

Frequanoy range	Time
1 Hz to 1 kHz	20 s
10 Hz to 100 kHz	2 s
100 Hz to 1 MHz	0.2 s
1 kHz to 13 MHz	20 ms

Rear terminal Inputs are available as a special (3575A-C09). Digital (Opt 002).
$0,+5$ ground true. 12 lines to fully program all functions. Amplltude accuracy*


## *Conditions:

Temperature: $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$.
Accuracy applies $10 d B V$ and ratio measurements with she same frequency on both channels.
For ratio measurements, the lowest level channel deternines accuracy.
Analog oulput acturacy (rear panel).
Amplitude functlons: $A d B V, B d B V$ or $B / A d B$.
Amplitude reference: $(A d B V, B d B V) 1 V \mathrm{rms}=0 d B V$.
Display
Range
$A d B V, B d B V:-74 d B V$ to $+26 d B$ (in two ranges). $\mathrm{B} / \mathrm{A} \mathrm{dB}:-100$ to +100 dB . (Both input signals must be within the range of 0.2 V rms to 20 V rms.)
Resolution: 0.1 dB V, 0.1 dB .

## Outputs

## Analog

Phase: $10 \mathrm{mV} /$ degree.
Amplitude: $10 \mathrm{mV} / \mathrm{dB}$ or dB V .
Output Impedance: $1 \mathrm{k} \Omega$.
Digital (Opt 002)
$0,+5 \vee$ ground true. $3 i$ output lines ( $1 \cdot 2 \cdot 4 \cdot 8 \mathrm{BCD}$ ).
Digital readout
$31 / 2$ digirs with sign and annumciators. Four readings per second, fixed.

## Options

## 001 dual panel meters

The 3575 A Opt 001 is equipped with two digital readouts and two analog outputs for simultaneous amplitude and phase readings. This option has no additional measurement capability over the standard instry ent.
Dual analog outputs: rear panel BNC connectors provide de output voltages that correspond to the respective panel meter readings.
002/003 programmable
3575A Opt 002 and Opr 003 are equipped with dual panel meters and dual analog outputs (same as Opt 001) plus BCD ourputs and complete remote control capability. Op. tion 002 has negative true output levels and Opt 003 has positive true output levels. BCD information from the 3575A (Opt 002) can be read by the 9810 or 9820 HP Calculators with the 11203A BCD card.

## General

Power: $115 \mathrm{~V} / 230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 40 \mathrm{~W}$.
Weight
net: $18.4 \mathrm{lbs}(8,3 \mathrm{~kg})$.
shipping: $25 \mathrm{lbs}(11,3 \mathrm{~kg}$ ).
Dimensions: $163 / 4^{\prime \prime}$ wide, $3.15 / 32^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep ( 425 x $88 \times 337 \mathrm{~mm}$ ).

## Price

HP 3575A, \$2450.
Opt 001 Dual Readout, add $\$ 400$.
Opt 002 Programmable (negative true outpur levels), add $\$ 720$.
Opt 003 Programmable (positive true output levels), add $\$ 720$.
Accessories furnished
Rack mount kit
Extender boards
Line cable
so-pin connector (Opr 002 and 003 only)
Accessories available
10001A 10:1 Voltage Divider Probe
11048 C s00 Feed-thru Termination
1109-1B 75 2 Feed thru Termination
11095B 600 Feed-thru Termination
11203 A (Option A05) BCD card for 9810 and 9820 Calculator

## Advantages:

Direct reading of impedance and phase Convenient probe for in-circuit measurements
Self calibration check provides measurement confidence
Analog outputs for data recording
Low-level test signal minimizes circuit disturbance
The HP 4815A RF Vector Impedance Meter provides all of the convenience of "probe and read" measurements. In use, the probe is connected directly into the circuit to be evaluated, frequency is selected, and complex impedance is read. This type measurement allows a straightforward adaptation to various jigs and fixtures for special measurements. Where only component values are to be determined, a quick-mount adapter is provided to allow rapid measurements. For critical component applications, the unit to be evaluated may be mounted directly in its working circuit and its value determined in its actual environment, at the frequency of interest.

## Specifications

## Frequency

Range: 500 kHz to 108 MHz in five bands: 500 kHz to $1.5 \mathrm{MHz}, 1.5$ to $4.5 \mathrm{MHz}, 4.5$ to $14 \mathrm{MHz}, 14$ to 35 $\mathrm{MHz}, 35$ to 108 MHz
Accuracy: $\pm 2 \%$ of reading, $\pm 1 \%$ of reading at 1.592 and 15.92 MHz .
RF monltor output: 150 mV minimum into 50 ohms.

## Impedance magnitude measurement

Range: 1 ohm to 100 k ohms; full-scale ranges: 10,30 , $100,300,1 \mathrm{k}, 3 \mathrm{k}, 10 \mathrm{k}, 30 \mathrm{k}, 100 \mathrm{k}$ ohms.

Accuracy: $\pm 4 \%$ of full scale $\pm\left(\frac{\mathrm{f}}{30 \mathrm{MHz}}+\frac{\mathrm{Z}}{25 \mathrm{k} \text { ohms }}\right)$ $\%$ of reading, where $\mathrm{f}=$ frequency in MHz and Z is in ohms; reading includes probe residual impedance.
Calibration: lineas meter scale with increments $2 \%$ of full scale.

## Phase angle measurement

Range: 0 to $360^{\circ}$ in two ranges: $0 \pm 90^{\circ}, 180^{\circ} \pm 90^{\circ}$.
Accuracy: $\pm\left(3+\frac{\mathrm{f}}{30 \mathrm{MHz}}+\frac{\mathrm{Z}}{50 \mathrm{k} \mathrm{ohms}}\right)$ degrees; where $f=$ frequency in MHz and $Z$ is in ohms.
Callbration: increments of $2^{\circ}$.
Adjustments: front panel screwdriver adjustments for Magnitude and Phase Zero.

## Recorder outputs

Frequency: 0 to 1 volt from 0 to 1 k ohm source, proportional to dial rotation.
Impedance magnitude: 0 to 1 volt from 1 k ohm source.
Phase angle: $0 \pm 0.9$ volt from 1 k ohm source.
Dimenslans: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $183 / 4^{\prime \prime}$ deep ( 426 x $185 \times 476 \mathrm{~mm}$ ).
Woight: net $39 \mathrm{lbs}(17,6 \mathrm{~kg})$, shipping $55 \mathrm{lbj}(24,8 \mathrm{~kg})$.
Power: 105 to 125 V or 210 to $250 \mathrm{~V}, 50$ to $400 \mathrm{~Hz}, 50 \mathrm{~W}$.
Accessories turnished:

1. 00600A Probe Accessory Kit: contains BNC Type " $N$ " adapter, Probe Socket, 00601A Componenc Mounting Adapter, 2 probe center pins, probe ground assembly.
2. Rack Mount Kit.

Price: HP 4815A, $\$ 2800$.


## VECTOR VOLTMETER Accurato voltazg, phase measurements, $1-1000 \mathrm{MHz}$ <br> Model 8405A



## Description

The 8405A Vector Voltmeter measures voltage vectors de. scribed by both magnitude and phase. This capability makes the 8403A a unique instrument for about any design and test application in the frequency range 1 to 1000 MHz .

In addition to absolute voltage measurements, capabilities in. clude insertion loss and group delay of passband-filters and other transmission devices, gain and phase margin of amplifiers, complex impedance of mixers, antennas, matching the electrical lengths of cables, s-pacameters of transistors, ampli. tude modulation index, RF distortion measurements, and in. circuit probing.

The 8405A achieves this measurement versatility through its two channel capability enabling voltage magnitude measurements in either channel, thus allowing ratio measurements, and phase difference measurements between the two channels. Gain or loss in excess of 90 dB and phase measurements with $0.1^{\circ}$ resolution over a $360^{\circ}$ phase range are possible.

Accuracy is achieved through the 1 kHz bandwidth entailing response only to the fundamental frequency of the input signal. Also, phase-locked coherent sampling to translate 1 to 1000 MHz RF signals to 20 kHz IF signals enables accurate detection of voltage magnirude and phase. Automatic phaselocked tuning makes it possible ro select the one of 21 over. lapping octave ranges which contains the input signal frequency by simply rotating a switch.

## Specifications

Frequency range: 1 MHz to 1 GHz in 21 overlapping octave bands; runing automatic within each band.

Isolation between channels: 1 to $300 \mathrm{MHz},>100 \mathrm{~dB} ; 300$ to $1,000 \mathrm{MHz},>80 \mathrm{~dB}$.
Maximum Input: ac, 2 V peak; $d c, \pm 30 \mathrm{~V}$.
Voltage range (rms):

Channal	1.10 MHz	$10 \cdot 500 \mathrm{MHz}$	$600 \cdot 1000 \mathrm{MHz}$
A	$1.5 \mathrm{mV} \cdot 1.0 \mathrm{~V}$	$300 \mu \mathrm{~V} \cdot 1.0 \mathrm{~V}$	$500 \mu \mathrm{~V} \cdot 1.0 \mathrm{~V}$
8	$<20 \mu \mathrm{~V} \cdot 1.0 \mathrm{~V}$	$\langle 20 \mu \mathrm{~V} \cdot 1.0 \mathrm{~V}$	$\langle 20 \mu \mathrm{~V} \cdot 1.0 \mathrm{~V}$

11538A $50 \Omega$ Tee, with Type $N$ RF fittings,
for monitoring signals in $50 \Omega$ transmission
line without terminating the line. $\$ 75$


## System Description

The 8407A Network Analyzer System is a versatile measuring system for engineering and testing in the frequency range 100 kHz to 110 MHz ; the system is capable of accorate swept measurements of numerous magnitude and phase properties of attenuators, detectors, filters, cables, antennas, recording heads, amplifiers and many other passive and active linear networks.

Measurements include: gain, loss, phase shift (compute group delay), return loss, complex reflection coefficient of networks with 50 or 75 -0hm characteristic impedance. Swept complex impedance, $|Z|$, © over the $0.1 \Omega$ to $>10 \mathrm{k} \Omega$ range and speept voltage and current transfer functions, also incircuit, can be measured with speed and accuracy. The system can also be used for high resolution visual comparison measurements and for making transistor s-parameter measurements with push-button ease. This measurement versatility is achieved through the modular construction of the system.

Basic instruments are: the HP 8601A Generator/Sweeper providing the RF stimulus for the device under test and the VTO output required by the network analyzer; the HP 8407A Network Analyzer which is a ratio meter using both a TEST and a REFERENCE channel input; the HP 8412A Phase-Magnitude display or the 8414 A Polar Display for detecting and displaying amplitude and phase as a function of frequency. These instruments have to be combined with the one of six different "transducers" that corresponds to the measurement of network parameters desired.

This modular construction makes the system easily adaptable to new measurement/test requirements-addible at small incremental costs. Thus, system utilization is optimized and obsolescence avoided. Accuracy, speed and lexibility of measurements combine to make the 8407 Network Analyzer System an extremely useful tool for design and development work as well as in production testing.

## Instrument Description

## RF Stimulus

The HP 8601A Generator/Sweeper is the signal source that provides the RF stimulus to the device under test and the VTO for the local oscillator of the 8407A Network Analyzers. The 8601 A is a 0.1 to 110 MHz CW or swept source. Sweep is in two ranges from 0.1 to 11 MHz and 1 to 110 MHz .

The HP 8690B/8698B Sweep Orrillator is the other sig. nal source that can be used with the 8407A Network Analyzer. Sweep is in two ranges from 0.4 to 11 MHz and from 4 to 110 MHz . The 8690 B also accepts plug ins from 100 MHz to 40 GHz .

The HP 8600A Digital Marker is an optional complement to the 8601 A or $8690 \mathrm{~B} / 8698 \mathrm{~B}$ signal sources. The 8600 A provides five independent, continuously variable markers which may be placed on a display while making swept mea.

surements. A marker displayed on a counter readout, while sweeping, is useful for very accurately determining frequency values of interest.


## Network Analyzer

The 8407 A Netuork Analyzer is a ratio meter using both a TEST and a REFERENCE channel input. The 8407 A forms the magnitude ratio and phase difference between these two input signals after their conversion to a constant intermediate frequency. The resultant signals are routed to a display for detection and display. Dynamic range is 80 dB with the 8412 A Phase-Magnitude Display, measurement range is from +90 dB to -100 dB . Input power to the device under test can be from -10 dBm to -85 dBm . Dis. play REFERENCE attenuators provide 89 dB of accurate test channel offset permitting bigh resolution measurements by using IF substitution techniques. Residual magnitude and phase responses versus frequency are typically less than $\pm 0.1$ dB and $\pm 2^{\circ}$ from 1 to 110 MHz .


## Displays

The 8412 A Pbase-Magnitude Display is an accurate oscilloscope readout displaying amplitude and phase versus frequency either separately or simultaneously. It has 80 dB and $\pm 180^{\circ}$ display range. Measurements with 0.05 dB and $0.2^{\circ}$ resolution are possible.

The 8414 A Polar Display has a measucement range of 30 dB and $360^{\circ}$. For reflection measurements, the 8414A displays reflection coefficient as a function of frequency. Smith Chart overlays permit readings of normalized complex impedance values. A rectangular overkay permits readings of $R \pm j \mathrm{X}$ for impedance measurements over the range $0.1 \Omega$ to $>10 \mathrm{k} \Omega$.


## Signal conditioners

The 11652A Reflection/Transmission Kil contains a power splitter and two phase-matched Jow leakage cables permitting accurate swept measurements of gain, loss and phase shift. It also contains a directional bridge (8721A) with $>40 \mathrm{~dB}$ directivity, a calibration short and a precision termination for measurements of return loss and reflection coefficient (complex impedance) in 50 or 75 -ohm systems.

The 11655 A Impedance Probe makes possible swept ac. curate complex impedance measurements over the wide impedance range $0.1 \Omega$ to $>10 \mathrm{k} \Omega$. The 11655 A 's design allows effective elimination of all reactive parasitics of the probe so that open circuit impedance appears simply as a $10 \mathrm{k} \Omega$ resistor. This feature and a built-in $100 \Omega, 0^{\circ}$ calibrator make it possible to measure true values of unknown impedance.

The 11654 A Passine Probe Kit includes two each of probe cables and corrent probe tips and a wide variety of acces. sories for grounding and getting at chose "difficult to measure" circuits. Voltage or current transfer functions can be measured with a pair of voltage or current probes. By using one voltage probe and one current probe, complex impedance or admittance can accurately be measured at frequencies below 11 MHz .

The $1121 A$ AC Probe is an active probe biased through the PROBE PWR jacks on the front panel of the 8407A. The probe has a $100 \mathrm{k} \Omega, 3 \mathrm{pF}$ input impedance. Voltage transfer functions can thus be measured in low level signal circuits with minimum circuit disturbance or in circuits whose characteristic impedance is radically different from 50 ohms.
The $8728 B$ Network Comparalor adds the capability for making swept visual comparison measurements with the 8407A. The transmission characteristics of a test network and of a known standard are teaced separately on a highly sensitive large-screen oscilloscope for visual comparison. Level differences of $0.01 \mathrm{~dB}, 0.2^{\circ}$ are easily discernable. The 8728B provides the switching required to accomplish the substitution comparison between the two networks.

The 85404B S-Parameter Test Set provides all the switch. ing necessary for measuring with push-button ease the four s-parameters of passive and active linear nemworks with 50 of 75.0 hm characteristic impedance (HP 85428B Min Loss Pads for 75 -ohm systems). Transistors can easily be measured by using, in conjunction with the test set, the HP 11600B or 11602 B Transistor Fixture which plugs into the HP 85426A Bias Insertion Network ( 2 each required).

8407A
Frequency range: 0.1 to 110 MHz .
Measurement range: gain +20 dB , loss -100 dB .
Impedance: s08. Option 008: 758. VSWR <1.08.
Amplitude accuracy:
Frequency response (may be calibrated out): $\pm 0.2 \mathrm{~dB}, 0.1$ to $110 \mathrm{MHz}: \pm 0.05 \mathrm{~dB}$ over any 10 MHz portion.
Display reference: $<0.05 \mathrm{~dB} / 1 \mathrm{~dB}$ step, sotal error $<0.1 \mathrm{~dB}$; $<0.1 \mathrm{~dB} / 10 \mathrm{~dB}$ step, total error $<0.25 \mathrm{~dB}$.
Phase accuracy:
Frequency response (may bellibrated out): $\pm 5^{\circ}, 0.1$ to $110 \mathrm{MHz} ; \pm 2^{\circ}$ over any 10 MHz portion.
Display reference: $<0.5^{\circ} / 10 \mathrm{~dB}$ step, total error $<3^{\circ}$
Power: 65 watts, $50.60 \mathrm{~Hz}, 11 \mathrm{~s} / 230 \mathrm{~V}+10 \%$.
Welght: ner, $32 \mathrm{lb}(14,6 \mathrm{~kg})$; shipping, $39 \mathrm{lb}(17.8 \mathrm{~kg})$.
Dimensions: $71 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep, $163 / 4^{\prime \prime}$ wide.
Price: 8 \{07A, $\$ 2950$ : Option 008, $75 \Omega$, add $\$ 110$.

## 11658A

General: 50 to 75.0 hm matching resistor for 8407 A .
insertion loss: 3.5 dB Return loss: $>40 \mathrm{~dB}$.
Weight: net, 1 oz. Pilce: $\$ 30$.
8412A
Genaral: plug. in CRT display for 8407A.
Amplitude accuracy: display, $0.08 \mathrm{~dB} / \mathrm{dB}$ from midscreen.
Phose accuracy:
Display: $0.065^{\circ} /$ degree from midscreen.
Phase offset: $0.3^{3} / 20$ degree step, nor to exceed rotal error of $3^{\circ}$ for $360^{\circ}$ of change, positive or negative direction.
Vs. displayed amplitude: $<1^{\circ} / 10 \mathrm{~dB}$, total error for 80 dB $<6^{\circ}$.
Power: 23 watts, supplied by 8407 A .
Weight: net, $17 \mathrm{lb}(7,8 \mathrm{~kg})$; shipping $22 \mathrm{lb}(10 \mathrm{~kg})$.
Price: 8412A, \$1,700.

## 8414A

General: plug-in normalized polar coordinate display for 8407A: magnitude calibration is in 0.2 of full scale grada. tions, full stale determined by DISPLAY REFERENCE setting on 8407 A . Phase calibration is in $10^{\circ}$ increments over a $360^{\circ}$ range.
Accuracy: all errors in amplitade and phase due to the dis. play are contained within a circle of 3 mm about the measurement point.
Power: 35 watts, supplied by 8107A.
Weight: net, $1 f \mathrm{lb}(6,4 \mathrm{~kg})$; shipping, $17 \mathrm{lb}(7,6 \mathrm{~kg})$.
Price: 8flfA, \$1,300.

## 11652A

General: refection-transmission kit contains power splitter, 8721 A directional bridge, a precision son termination, calibrating short, BNC adapters and matched, low-leakage cables.
Directional bridge: 8721A: 6 dB coupling in main and auxiliary arm. Frequency response is $\pm 0.5 \mathrm{~dB}, 0.1$ to 110 MHz . Directivity is $>-10 \mathrm{~dB}, 1$ to 110 MHz . Return loss at LOAD port is $>30 d$ B. Price: $8721 \mathrm{~A}, \$ 150$; Option 008, $75 \Omega$, add $\$ 10$.
Power splitter: 6 d 8 loss through each arm.
50 e termination: return loss is $>43 \mathrm{~dB}$.
Weight: net, $2 \mathrm{lb}(0,9 \mathrm{~kg})$; shipping, $3 \mathrm{lb}(1,4 \mathrm{~kg})$.
Price: 11652A, \$325; Option 008، 75ת, add $\$ 50$.

## 11654A

General; passive probe kit contains a pair each of six resistive divider probes ( $1: 1,5: 1,10: 1,20: 1,50: 1,100: 1$ ) current probes, and variety of adapters.
Welght: net, $2 \mathrm{lb}(0,9 \mathrm{~kg})$ : shipping $3 \mathrm{lb}(1,4 \mathrm{~kg})$.
Price: $11654 \mathrm{~A}, \$ 400$.
11655A
General: impedance probe, mounts directly onto 8407A. Contains a component mounting adapter, a probe to BNC adap. ter, a probe to type N adapter and various ground assem. blies.
Frequency range: 0.5 to 110 MHz .
Measurement range: amplitude, $0.1 \Omega$ to $>10 \mathrm{k} \Omega$; phase. $0^{\circ}$ $\pm 90^{\circ}$.
Internal callbrator: amplitude $100 \Omega \pm 0.5 \%$; phase $0^{\circ} \pm 2^{\circ}$.
CW accuracy: amplitude $\pm 5 \%$; phase $\pm 5^{\circ}$ for $/ Z />3.160$.
Swept frequency accuracy: typically $\pm 5 \%$ in amplitude, $\pm 5^{\circ}$ in phase from 3.110 MHz ; accuracy is decreasing below 3 MHz .
Weight: ner, $2 \mathrm{lb}(0,9 \mathrm{~kg})$; shipping, $6 \mathrm{lb}(2,7 \mathrm{~kg})$.
Price: 1165sA, 8750.

## 1121A

General: 1:1 active probe furnished with $10: 1$ and $100: 1 \mathrm{di}$. vider and BNC adapter.
Frequency response: 1 kHz to $100 \mathrm{MHz}, \pm 0.5 \mathrm{~dB}, \pm 2^{\circ}$.
Input impedance: 100 kZ , shunt capacitance 3 pF at 100 MHz ; with 10:1 or $100: 1$ divider, 1 M ?, shunt capacitance 1 pF at 100 MHz .
Output impedance: $50 \Omega$ nominal.
Power: supplied by 8407 A through PROBE PWR jacks.
Welght: net. $2 \mathrm{lb}(0.9 \mathrm{~kg})$; shipping, $5 \mathrm{lb}(2.4 \mathrm{~kg})$.
Dimensions: $3^{\prime \prime}$ high, $8^{\prime \prime}$ deep, $101 / 2^{\prime \prime}$ wide.
Price: \$415.

## 8728B

Frequency range: 0.1 to 110 MHz .
Repeatabllity: 0.003 dB . VSWR: <1.05.
Channel isloation: $>90 \mathrm{~dB}$.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep.
Weight: net, $21 \mathrm{lb} 702(9,6 \mathrm{~kg})$ : shipping, $27 \mathrm{lb} 7 \mathrm{oz}(12,3 \mathrm{~kg})$.
Channel tracking: amplitude 0.02 dB , phase $\pm 0.2^{\circ}$.
Price: $8728 \mathrm{~B}, \$ 1,400$; Option 006, $75 \Omega$ WECO connectors. add $\$ 200$; Option 008, $75 n$ BNC connectors, add $\$ 100$.

## 85404B

Frequency range: 0.1 to 110 MHz .
Repeatabillty: $<0.001$ dB. VSWR: <1.2.
Connectors: 50』 APC-7: min loss pads (85428B) for 750.
Power: 85 watts, $50-60 \mathrm{~Hz}, 115 / 230 \mathrm{~V} \pm 10 \%$.
Dimensions: $7^{\prime \prime}$ high, $193 / 8^{\prime \prime}$ deep, $163 / 4$ " wide.
Weight: 38 lbs. Price: $854048, \$ 5000$.
85426A
General: bias insertion network for 854048 .
Frequency range: 0.1 to 500 MHz .
Insertion loss: $<0.4 \mathrm{~dB}$. Return loss: $>28 \mathrm{~dB}$.
Max blas current: 750 mA , max blas voltage: 70 V .
Connectors: BNC for biasing; APC. 7 for RF.
Price: 85426A, \$300; Option 001 (Female type-N connectors). less $\$ 30$.

## 85428 B

General: min loss pad ( $75 \Omega$ ) for 85404 B .
Insertion loss: 5.7 dB . VSWR: <1.05.
Price: 85428B (50 B BNC/m, 75ת BNC/i). $\$ 85$; Option 001 ( $50 \Omega$ APC- $7,75 \Omega$ GR900), add $\$ 175$.

All 8410S Systems measure transmission and reflection parameters of coaxial and waveguide components in the form of gain, attenuation, phase, reflection coefficient or impedance. Each option has been configured either for making general measurements within a frequency range or for pushbutton S-parameter measurements on semiconductor devices in a variety of package styles. In addition to selected signal conditioner and accessory items, each option contains the 8410 Network Analyzer, 8411 A Harmonic Frequency Converter, two plug-in displays (the 8412 Phase Magnitude Display and 8414A Polar Display), and the 11609 Cable Kit. All systems come complete with necessary accessories and interconnecting cables. Overall system accuracy is specified for easier error analysis. Individual instrmments which make up the system can also be ordered separately for updating existing network analyzer equipment.

## Sweeps over octave bands

Swept display's for efficient real time testing over fullband. Rapid srveep for dynamic CRT display-make adjustments to devices while viewing overall effects.

## Wide dynamic range-high resolution

$60-\mathrm{dB}$ amplitude and $360^{\circ}$ phase displays: use precise offer controls to read amplitude and phase to $0.1 d B$ and 0.1 degree resolution. No phase ambiguity-meter indicates phase sense directly.


## 8410 N Network Analyzer Systems

Frequibnoy rande	$\begin{gathered} 84105^{\prime} \\ \text { Optlon } \mathrm{No} . \end{gathered}$	SIBNAL CONOITIONERS			8717B						Prloo	Ust
$110 \mathrm{MHz}-2 \mathrm{GHz}$	$110^{=}$										\$13,015	General purpose - low frequency
$110 \mathrm{MHz} \cdot 2 \mathrm{GHz}$	400				-	$\square$					13,170	Characterize semiconductors with TO-18 or T0. 72 packages
$110 \mathrm{MHz-2} \mathrm{GHz}$	401				$\square$		$\square$				13,170	Characterize semiconductors with TO-5 or T0-12 packages
2-12.4 GHz	$210^{*}$										12,175	General purpose - high irequency
. $5-12.4 \mathrm{GHz}$	500										14,670	Characterize stripline semiconductors with TI-Line packages
.5-12.4 GHz	501										14,670	Characterize stripline semiconductors with K-disk packages
$110 \mathrm{MHz} \cdot 12.4 \mathrm{GHz}$	$310 *$		$\square$					-			16,490	General purpose - complele Irequency coverage

[^46]
## 8410S Specifications

Function: All systems measure transmission and reflection parameters on either a sweept-frequency or CW basis in the form of attenuation, gain, phase shift, reflection coefficient, return loss, or impedance depending on readout display.
Display units: Choice of 8412A phase magnitude display, 8413 phase-gain indicator, or 8414 A polar display. 8412 A and 8414 A accept intensity marker and blanking signals from Hewletr-Packard sweep oscillators.
Measurement range: full 60 dB dynamic range.
RF input: 20 dB range between -21 dBm and +7 dBm between . 11-2 GHz or -14 dBm and +14 dBm between $2-12.4 \mathrm{GHz} .20 \cdot \mathrm{~dB}$ variation causes less than 1.5 dB and $4^{\circ}$ change amplitude and phase readings.
Transmisslon measurement accuracy: Accuracy curves below show overall system uncertainty when measuring amplitude and phase. Sources of error included are IF gain control, meter accuracy, phase offset, system noise, and crosstalk. System frequency response is specified separately and is not included in accuracy curves.

Transmission amplitude uncertainty.


Transmission phase uncertainky.


Frequency response
Transmission: typically $<+0.35 \mathrm{~dB}$ amplitude and $< \pm 3^{\circ}$ phase for .11 to $2 \mathrm{GHz} .< \pm 0.5 \mathrm{~dB}$ amplitude and $< \pm 5^{\circ}$ phase for 2 to 12.4 GHz .
Reflection: magnitude typically $< \pm 0.06$; phase $< \pm 5^{\circ}$ . 11 to 2 GHz , and $< \pm 7^{\circ} 2$ to 12.4 GHz ; as read on the 8414 A with a short on the unknown port.
Transmission reflection selection: manual by front panel lighted pushbuttons; remote by contact closure or saturated transistors through 36 -pin connector contacts,
Reflection measurement accuracy: Accuracy curves show overall system uncertainty when measuring reflection coefficient. Sources of error included are directivity, source match, and polar display accuracy. System frequency response is specified separately and is not included in the accuracy cucves.

Reflection coefficiant uncertainty.


Reflection phase uncertainty.


[^47]

Transistor S-Parameter Measurements

## 100 MHz to 2 GHz

The 8745 A S-parameter test set combined with the 11600B or 11602B Transistor Fixtures make accurate transistor characterization as easy as pushing a bulton. Transistors are conveniently biased with the new 87178 Transistor Bias Supply by a simple cable connection to a rear panel connector of the 8745 A . The $8745 \mathrm{~A}, 8717 \mathrm{~B}, 11600 \mathrm{~B}$ and 11602B are capable of making useful S-parameter measurements from 40 MHz to 2 GHz and can be used with either the 8405A Vector Voltmeter, 8407A Network Analyzer, or 8410A Network Analyzer.

Function: used with or without the 8745 A to measure tran. sistors and other semiconductor devices. Mounts directly on the 8745 A . A calibration short and thru are included with the fixtures.
Model 11600B: for TO-18/TO-72 or similar transistor packages. It has four snap-on dials, two for bipolars and two for FET's.
Model I1602B: for TO-5/TO-12 or similar transistor pack. ages. It has two snap-on dials for bipolars.
Frequency: dc to 2 GHz .
Lead lengths: accepts leads up to 1.5 inches long.
Lead diameters: 0.016 to 0.019 inch.
Impedance: $50 \Omega \pm 2 \Omega$.
Connectors: APC-7 precision connectors. Option 001: precision type N connectors, less $\$ 30$.
Dimenslons: $45 / 8^{\prime \prime} \times 6^{\prime \prime} \times 11 / 2^{\prime \prime}(119 \times 152 \times 38 \mathrm{~mm})$.
Waight: net, $4 \mathrm{Ib}(1,8 \mathrm{~kg})$; shipping, $5 \mathrm{lb}(2,3 \mathrm{~kg})$.
Price: $11600 \mathrm{~B}, 5600 ; 11602 \mathrm{~B}, \$ 600$.

## 500 MHz to 12.4 GHz

The 8746 B S-parameter Test Set combined with the 11608A Transistor Fixture permit complete characterization of TO. 51 and K-disc packaged stripline transistors. The 8717B Transistor Bias Supply conveniently attaches to the 8746 B Bias Networks with a rear panel connector cable. With the 8717 B it is possible to make frequency swept measurements of all four $S$-parameters as a function of load current and voltage with pushbutton ease. The 8746 B , 11608A, and 8717 B can be used with either the 8405A Vector Voltmeter or 8410 Netwock Analyzer.

Function: used with the 8746 B for completely characterizing stripline transistors. Mounts directly on 8746B. A calibration short and a thru are included with Options 002 and 003.
Frequancy range: $D C$ to 12.4 GHz .
VSWR: (measured with thru-line calibration unit inserted and one end of the fixture terminated in a 50 -ohm load). $<1.10$ to 4 GHz .
$<i .15,4 \mathrm{GHz}$ to 8 GHz .
$<1.25,8 \mathrm{GHz}$ to 12.4 GHz .
Striplines: $0.031^{\prime \prime}$ thick (P.P.O.) ; $0.080^{\prime \prime}$ wide.
Impedance: 50?.
Dimenslons: $55 / 8^{\prime \prime} \times 31 / 2^{\prime \prime} \times 1^{\prime \prime}(143 \times 89 \times 25 \mathrm{~mm})$.
Weight: net, $2 \mathrm{lb}(0,9 \mathrm{~kg})$; shipping, $3 \mathrm{lb}(1,4 \mathrm{~kg})$.
Option 001: machinable for custom packages, $\$ 375$.
Option 002: TO. 51 ( 0.250 inch diameter), $\$ 400$.
Option 003: HPAC-200 (0.205 inch diameter), $\$ 400$
Opt. 100: type $N$ (female) connectors, less $\$ 30$.

## 87178 Transistor Bias Supply



The 8717B Transistor Bias Supply is an ideal power supply for manual or programmable transisror testing. It is particularly useful with the $11600 \mathrm{~B}, 11602 \mathrm{~B}$, and 11608 A Transistor Fixtures. The 8717 B has two meters for independently moniroring current and voltage on any of the three leads of a transistor under test. Bias connections are conveniently selected for all transistor configurations (EBC,

BEC, BCE) with a front panel switch. Special circuitry protects sensitive (expensive) devices from excessive current transients which commonly occur in less sophisticated supplies during accidental loss of line power or when applying or removing bias.

## Specifications, 8717 B

Voltage ranges: $1,3,10,30,100 \mathrm{~V}$.
Current ranges: $0.1,0.3,1,3,20,30,100,300,1000 \mathrm{~mA}$. Accuracy: $4 \%$ of meter full scale for both current and voltage.
Dimensions: $16^{3} / 4^{\prime \prime} \times 33 / 8^{\prime \prime} \times 131 / 2^{\prime \prime}(425 \times 86 \times 336 \mathrm{~mm})$. Weight: net, $20 \mathrm{lbs}(9,0 \mathrm{~kg})$; shipping, $25 \mathrm{lbs}(11,0 \mathrm{~kg})$. Price: 8717B, $\$ 1800$.

Option 001: programmable D/A converter, $\$ 650$.

## MICROWAVE NETWORK ANALYZERS <br> Individual instruments <br> 8410 Family



## Signal conditioners

8740A Transmiselon Test Unit
Function: RF porver splitter and calibrated line stretcher for transmission measurement with network analyzer.
Frequency range: dc. 12.4 GHz .
Price: Model 8740A, 51600.

## 8741A and 8742A Reflection Test Units

Functlon: wideband refectometer, phase-balanced for swept or single frequency impedance tests with 8410 A . Calibrated adjustable ceference plane.
Frequency range: 0.11 -2.0 GHz ( 8741 A ); $2.0 .12 .4 ~ \mathrm{GHz}$ (8742A).
Price: Model 8741A. S1700; Model 8742A, s1800

## 8745A S-Paremeter Test Set

Function: wideband RF power splitter and refectometer with calibrated line stretcher. Pushbutton operated for either transmission or reflection measurements with network analyzer.
Frequency range: $0.1-2 \mathrm{GHz}$.
Price: Model 8745A, s3300; Option 001 (type $N$ female conneccors on outpues to 8411A), no additional charge.

## 11599A Qulck Connect Adapter

Function: quickly connects and disconnects the 8745A and the transistor fixtures or 11604A Universal Extension.
Dimenslons: $3^{\prime \prime} \times 5^{\prime \prime} \times 41 / 4^{\prime \prime}(76 \times 127 \times 108 \mathrm{~mm})$
Weight: net, $14 \mathrm{oz}(397 \mathrm{gm})$; shipping, $2 \mathrm{lbs}(652 \mathrm{gm})$.
Price: Model 11599 A. 590 .

## 11604 A Universal Extension

Function: mounts on front of 8745 A ; connects to device under test. Rotary air lines and rotary joints connect to any two port geometry.
Weight: net, $4 \mathrm{lbs}(1,9 \mathrm{~kg})$; shipping, $6 \mathrm{lbs}(2,5 \mathrm{~kg})$.
Dimenslons: $101 / 2^{\prime \prime} \times 5^{\prime \prime} \times 114^{\prime \prime}(267 \times 127 \times 31,6 \mathrm{~mm})$.
Price: Model 11604A, s92s

## 11607A Small SIgnal Adapter

Function: used with the Hewlett-Packard Model 8745A S. Parameter Test Set. It permits measurements with Model 8410A Network Analyzer with incident signal levels to the test device in the -20 to -40 dBm range.
Frequency range: $0.11 \cdot 2.0 \mathrm{GHz}$.
Price: 5600

## 8743A Reflection/Transmisslan Test Units

Function: wideband RF power splitter and reflectometer with calibrated line stretcher. Pushbutton operated for either transmission or reflection measurements with network analyzer.
Frequency range: 2-12.4 GHz.
Price: \lodel 8743A, 52675.

## I1605A Floxlble Arm

Function: mounts on front of 8743 A ; connects to device under test. Rotary air lines and rotary joints connect any two-port geometry.
Weight: net, $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping. $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Length: $10.1^{\prime \prime}$ ( $256,3 \mathrm{~mm}$ ) closed, $25.5^{\prime \prime}(647,7 \mathrm{~mm}) \mathrm{ex}$ tended.
Price: Model 11 (005A, 5800

## 8746B S-Parameter Tost Sot

Function: wideband RF power divider and reflectometer with calibrated line stretcher and a selectable 0.70 dB incident signal attenuator. Pushbutton operated for either transmission or reflection measurements with network analyzer.
Frequency range: 0.5 to 12.4 GHz .
Price: 55000 .


P, X 8747A Reflection/Transmission Test Units
Function: waveguide setup for measuring seflection and transmission parameters of waveguide devices with the network analyzer.
Frequency range: X8747A: 8.2.12.4 GHz; P8747A: 12.4-18 GHz.
Price: Model X8747A, S1950; P8747A, S1950.

## K,R 8747A Reflection/Transmission Test Units

Function: waveguide setup for measuring reflection and transmission parameters of waveguide devices with the network analyzer; down-converts with built-in mixers to the frequency range of the 8411 A .
Frequency range: K8747A: 18-26.3 GHz; R8747A: 26.5-40 GHz .
Prlce: Model K8747A, 55650; R8747A, 56300

## NETWORK ANALYZERS

## AUTOMATIC NETWORK ANALYZER Speed, accuracy, and ease of operation 8540 Series

An 8540 series system couples the network analyzer's ability to measure the linear characteristics of a device with a computer's ability to completely set-up a measurement, store data and solve complex mathematics. As a result the system can greatly improve the measurement accuracy, speed, and ease of operation. It can format the data in the most useful manner by computing a variety of parameters and outputting in alphanumerical or graphical form on either hardcopy, cathode-ray tube or cassette. It is supplied with a complete set of programs which virtually remove the need for programming. The system is currently in use in over 100 different facilities covering the range of production, design, calibration and metrology applications.

The 8545 A can be operated stand-alone or under the control of a timeshare system. The timeshare system is accessed
either by dial-up telephone lines or by a hardwire connection to a resident timeshare system. A minimum configuration stored-program computer provides the local intelligence to program the measurement and to return uncorrected data to the operating program resident in the timeshare system. This confguration is advantageous because it provides 1) a lower cost entry into the field of automatic microwave measurement and 2) the easily accessed computing and storage capability of the timesharing system. The dedicated 8545 A and the 8542 B both operate under the exclusive control of a local stored progran computer. This configuration is advantageous because of 1) the turnkey nature of its versatile package of application programs 2) its lower operating costs and its greater throughput. The 8542 B provides the best accuracy as well as the widest frequency coverage.


## Summary of characteristics

Frequency range: for the timeshared and dedicated 8545 A the frequenc; range is $110 \mathrm{MHz}^{*}$ to 12.4 GHz . For the 8542 B the frequency range is 100 MHz to 12.4 GHz ( 18 GHz optional).

Accuracy: Low level reflection can be performed with 0.015 accuracy and transmission measurements can be performed with 0.20 dB accuracy' on the timeshared and dedicated 8545 A . These same measurements can be performed with 0.003 and 0.05 dB accuracy on the more precise 8542 B .

Speed: for the timeshared 8545 A , speed varies according to the data communication speed. For the dedicated 8545 A and $8542 \mathrm{~B}, 20$ measurements can be performed in one second with full automatic error correction. This represents a conservative $5-20$ times throughput improvement
over the less accurate equivalent manual measurement, depending on the device tested.
Software: for the timeshared 8545 A , easy interface to timesharing system software with measure command. For the dedicated 8545 A and 8542 B virtually no programming is required by the user thanks to a complete, versatile series of application programs. These programs can be used by simply filling a measurement program form. ATS BASIC is made available for special resting occasions.
Price: Timeshared $8545 A$ from $\$ 40,000$, Dedicared 8545 A from $\$ 67,300$, and the 8542 B from $\$ 139,500$ (.1-12.4 GHz ).

[^48]Meeting the requirements of the communications industry is a rapidly ex. panding accivity of Hewlett-Packard. The instruments described in this section were designed to meet these requirements and many of their capabilities were established by close cooperation with the industry.

## Balanced/symmetrical measurements

The world of relecommunications is characterized by the extensive use of balanced or symmetrical circuitry. The basic reasoning behind this is that the extremely large number of sircuits in close physical proximity to each other and to $50 / 60 \mathrm{~Hz}$ power lines must have some protection against pickup of spurious and unwanted signals. Shielding is usually not practical, since most of the coupling is electromagnetic due to the relatively low impedance of the circuits. This kind of coupling requires expensive magnetic shielding to be effective. The solution, then, is to operate the circuits balanced or symmetrical. Provided the two sides of the circuit receive relatively equal exposure to the source of interference, the coupling will be in the form of a longitudinal or common-mode volrage: i.e., equal amplitude and phase on both sides of the circuir. The balanced input of various amplifiers in the relephone multiplex equipment will ignore spurious signals by virtue of their com-mon-mode rejection capability.
$D B$ readings are typically used in the communications industry pather than voltage readings as power is generally of more interest. DB readings compress the extremely wide range of voltages and powers in a communications system and offer the ability to compute gain and loss.

Hewlett-Packard dedicated communications instruments properly indicate $d B$. dBm or dBrar regardless of the input im. pedance chosen. Wide frequency ranges allow measurements to be made on voice frequency circuits or carrier systems up ro 3600 chamnels. Narrow bandwidth filters ate available to make highly selective measurements in voice frequency telegraph systems using frequency shift keying techniques. Wider bandwidths are available to allow a complete 3.1 kHz voice channel to be measured. Sweep and wide dynamic range plotting capability makes possible highly accurate measurements of group filters, channel bank filters and voice frequency tele.
graph filters. Hewlert-Packard selective volemeters and racking detecrors may be used as a team to allow the entire baseband spectrum, or a portion thereof, of a carcier system to be displayed on an oscilloscope. They may be used to determine the frequency response of active or passive transmission devices. Hewlett-Packard selective voltmeters make highly accurate and wide range measurements practical in most complex communications systems.

High quality long-haul communications would be impossible if is were not for the teiephone carrier system. A car. rier system combines a large number of communications channels having a normal 4 kHz bandwidth into a single baseband, which may be many MHz in bandwidth and which can be used to modulate a microwave radio system or transmitted direct over a coaxial cable system. Each voice channel is given a definite frequency assignment and by modulation techniques (usually single sideband suppressed carrier) elevated to an assigned slot. An individual channel may occupy a different frequency slot from those shown at different stages in a carrier system, but the channel will still be a nominal 4 kHz wide. In order to synchronize the receive demodulators with the send modulators (since the carrier is suppressed) and to provide level regulation, several pilot tones are inserted in spaces berween channels. Hence. a carrier system produces a signal having a very complex spectrum. Since this baseband signal represents the capability of transmitting 3600 revenue.producing roll circuits, down time is out of the question and maintenance must be performed on an "in-service" basis. This is where the selective voltmeter finds one of its most practical applications. It can be used to examine the entire baseband. signal by signal, without interfering with or interference from the other signals.

## Noise measurements

The theory of message-circuit noise measurement is based on a relative inter. fering effect of the noise on the subscriber's hearing. Because of the frequency zesponse of the telephone subset and the fact that the human ear responds differently to noise of various frequencies, a weighting function is assigned to each frequency in proportion to its contribution to the interfering effect. The weighting curve cucrently accepted as a U.S. Standard is the Bell System C-mes.
sage weighting. The unit used to define noise measured in this manner is dBRNC, meaning deciBels above Reference Noise, C-message weighted. The CCITT recommendation is psophometric weighting, which as a slightly different curve and is referenced to 800 Hz . The measuring units for this weighting are picowarts psophomerric, pWp.

## Selective voltmeters

The low noise and wide dynamic range of Hewletr-Packard selective voltmeters make them useful for many tele. phone applications including measure. ment of system flatness, analysis of distortion and intermodulation (cross. talk) in carrier systems, and measurement of noise levels. Input impedances of $50,60,75,124,135,150$ ohms of bridging, balanced or unbalanced are selectable at the front panel of HP's Madel 312A.


Figure 1. Bandpass for the 312A Opt. 001 Selective Voltmeter.

The HP 312A Option 001 provides carrier system operators with a filter that allows channel noise measurements with a 3 kHz bandwidth. Two notches are superimposed 2 kHz away from the cen. ter frequency. Better carrier rejection is obtained, as can be seen in Figure 1. If the carrier frequency is known, the HP 312A Option 001 need only be tuned to 2 kHz above or below the carrier frequency, and the carrier frequencies adjacent to the voice channel are atten. wated 45 dB before they are detected.

The indication is a much truer representation of channel noise.

## Impedance levels

Generally, in the United States, subscriber's loops are of nominal 900 ohm impedance. 600 ohms is an accepted trunk and toilboard impedance and is found in the many miles of open-wite carrier still in use. The CCITT does no recognize 900 ohms as a subscriber-loop impedance but recommends 600 ohms.

## COMMUNICATIONS TEST EOUIPMENT

## GENERAL INFORMATION

Wire-cable carrier, typically short-haul. uses 135 -ohm cable. Many higher capacity systems use 135 ohms as an inter. face impedance on a group or super. group basis. The CCITT equivalent of this impedance is 150 ohms. Long-haul coaxial-cable carrier systems use 75 ohms in the United States and in the CCITT recommended systems.

## Measure amplitude, phase and group delay

The HP 3040A, 3041 A and 3042 A Network Analyzers make transmission gain, phase and group delay measurements on linear telecommunications devices. Both point-by-point and swepr measurements can be made.

Designed primarily for the relecommunications manufacturer and lab, these transmission test sers make gain measurements with 0.01 dB resolution, phase measurements with $0.01^{\circ}$ resolution and delay measurements with 20 choices of "split frequency" and with as much as one nanosecond sensitivity. A digital off. set fearure allow's any rest to be referred to a previous reading so differential gain and delay can be measured easily.

## 3040A Transmission Test Set

The 30.10A consists of a frequency synthesizer as the transmitter and a two. channel, selective, tracking receiver. All measurements are made at precise frequencies since the transmitter is a stable and accurate frequency standard. The 3040 can also characterize narrow band devices with extremely high $Q$. The 3040A can be operated either manually or remotely. All front panel switches are programmatle using the new HP ASCII BUS, which offers the advantages of easy software and interfacing. ASCII is the code used by telerypes and many other popular I/O devices.

## 3041A Semlastomatic TTS

The 3041A adds a 3260 A marked card programmer to the basic test ser. The card programmer gives the 3041A the ability to do limit testing on gain, phase or delay measurements. The HIGO.LO resting is useful in production since it simplifes the operator's task and reduces errors.

When doing point-by-point limit tests, front panel annunciators give the HI . GO.IO indication. Srept limit testing can be done in one of two ways:

1. Limit sweep stop-the 3041A srops sw'eeping when a limit point is crossed (restart sweep by depressing LIMIT SWEEP RESTART button).
2. Limit sweep no-stop-the 3041A does not stop bur does intensify limit point on a CRT display.

## 3042A Automatic TTS

The 3042A adds an HP Model 20 Calculator to the basic test set.

The 30.12 A is an ideal manufacturing and research tool since it can be operated manually or programmed quickly for different tasks using magnetic cards. Complete tests for filters, equalizers and other telecommunications devices can be run withour operator assistance and the results evaluated by the calculator.

For more information on the 3040 A . 3041 A and 3042 A , see caralog pages 407.412 .

## Microwave radio links

In most countries, the main communications system consists of a Detwork of FM Microwave Radio links. These links can typically carry up to 1800 telephony channels and use either a 4 GHz or 6 GHz RF band.

The common objective for all types of traffic carried by rhese links, whether it be telephony, television or low speed data, is to convey the information with the minimum amount of distortion. Failure to keep the distortion within acceptable limirs not only results in an unusable signal, but also incurs a severe financial penalty due to lost revenue. Fortunately, the major causes of distoz. tion can be identified and, in many cases, with the availability of suitable rest equipment. can be minimized to acceptable levels.

The major coneributors to distortion in FM links are the baseband and IF sections, of which modulators, demodulators. IF amplifiers and flrers are examples. Also technological development has lead to more signal processing at RF, necessitating distortion measurements in the RF bands.

Differential Phase, Differential Gain and Group Delay Distortion are the main parameters that require monitoring. Users of microwave radio links regularly measure these patameters to ensure optimum performance in the frequency domains of baseband, IF and RF. In many cases, the measuraments can be
made against reference information supplied by the link manufactueer.

The instruments under the title MIC. ROWAVE LINK ANALYSIS in this section were developed specifically for the purpose of measuring various forms of distortion on microwave radio links and their measurement capabilities were established by close cooperation with the industry.

## Digital transmission measurements

As a result of transmission through a dispersive medium, all signals experience distortion. A major advantage of transmitting information in a digital form is that digital signals can be reconstructed from signals which have been distorted, a process called regeneration. Errors occur in regenerators and elsewhere in a digital transmission system and the criterion used in assessing the performance of a system is Bit Error Rate (BER); a measure of the number of received bits in error for a given number of transmitted bits. BER is measured by stimulating the system under test with a pseudo-random binary sequence and then comparing the sysrem output, bit by bit, with an independent reference sequence so that all errors can be detected.

The Hewlett-Packard Bit Error Measuring System (Data Generator and Error Detector) measured BER from 1.5 to 150 M bits/second. The Deta Gencrator also supplies many of the test seguence requited for the development and evaluation of digital transmission systems. For example, ir will stimulate sequences with long blocks of zeros to check the timing recovery circuits used in regenerators for binary Pulse Code Modulation communications systems.

Many Hewlett-Packard instruments listed in this catalog meer many requirements of the telecommunications indus. try. For example, HP's 3403 B AC Voltmeter (see Page 75) has a dB display which provides readings directly in $d B$ which is a major convenience to ac users. The $d B$ reference to which the measure. ment is made, is conveniently adjustable from the front panel both to provide a convenient means to offset the reading by as much as 13 dB for unreferenced measurements.

For your general purpose instruments needs, see Pages 311.325 (oscillators and function generators) and Pages $42 \cdot 102$ (analog and digital voltmeters).


The HP 3555B Transmission \& Noise Measuring Ser and HP Psophometer are designed especially for telephone plant maintenance. Both instruments measure transmission gain, loss, cross-talk coupling and noise. The weighting curves of the 355SB complies with the Bell Systern C-message weighting standard. Besides the built-in C-nessage, program, 3 kHz and 15 kHz fileers are also included.

The 5556 A has built-in teiephone program niters weighted
according to 1960 CCITT recommendations. Also included are 3 kHz and 15 kHz filters. Operating instructions printed in the protective cover are available in different languages at no extra charge. Refer to data sheet.

Complernentary equipment for the 3555B is the HP 236A Telephone Test Oscillator (236A Opt. H10 for the 3556A). When used together, they make a complete ransmission test set for accurate, convenient voice and carrier measurements.

	Speohfloations*	
	36558 (Bell Standards)	3558A (CCITT STANOARDS)
VOICE FREQUENCY LEVEL MEASUREMENTS: 20 Hz to 20 kHz		
db/volt range	-91 dBm $10+31 \mathrm{dBm}$	-78 dBm to $+32 \mathrm{dBm} / 0.1 \mathrm{mV}$ to 30 V F.S.
Level accuracy ${ }^{* *}$	$\pm 0.5 \mathrm{~dB}: \pm 0.2 \mathrm{d8}, 40 \mathrm{~Hz}$ 10 15 kHz , lavel $>60 \mathrm{dBm}$	$100 \mathrm{~Hz} \mathrm{to} 5 \mathrm{kHz}: \pm 0.2 \mathrm{~dB} ; 20 \mathrm{~Hz}$ to $20 \mathrm{kHz}:=0.5 \mathrm{~dB}$
Input	Terminated or bridged $600 \Omega$ or $900 \Omega$ balanced. Bridg. ing loss: $<0.3 \mathrm{~dB}$ at 1 kHz . Balance: $>80 \mathrm{~dB}$ at 60 Hz , $>70 \mathrm{~dB}$ at $6 \mathrm{kHz},>60 \mathrm{~dB}$ to 20 kHz . Return loss: 30 dB $\min (50 \mathrm{~Hz}$ to 20 kHz )	Terminated: 600n symmetrical. Nonterminated: $10 \mathrm{k} \Omega$ symmetrical, Nonterminated error: $<0.4 \mathrm{~dB}$ at 800 Hz . Symmetry: $>80 \mathrm{~dB}$ at $50 \mathrm{~Hz},>70 \mathrm{~dB} \mathrm{at} 6 \mathrm{kHz},>50 \mathrm{~dB}$ to 20 KHz . Return loss: 30 dB min ( 50 Hz to 20 kHz )
Holding circuit	$700 \Omega$ dc resistance. 60 mA max. loop line current at 300 4 kHz	With holding circuit in, above specs apoly from 300 Hz to
NOISE MEASUREMENTS:		
dB/volt range	-1 dBrn to +121 dBm	$-78 \mathrm{~d} 8 \mathrm{ml} 10+32 \mathrm{dBm} / 0.1 \mathrm{mV}$ 10 30 VF.S.
Weighting fillers	$3 \mathrm{KHz}, 15 \mathrm{kHz}$, C-message, and program. (EEI, Bell Systam)	$3 \mathrm{kHz}, 15 \mathrm{kHz}$, telephione and program. (P53, CCITT)
Inpu!	Same as for voice frequency measurements	
CARRIER FREQUENCY LEVEL MEASUREMENTS:		
$\mathrm{dB} / \mathrm{volt}$ range	-61 dBm to +11 dBm	$-48 \mathrm{dBm} 10+12 \mathrm{dBm} / 3 \mathrm{mV} 103 \mathrm{~V}$. S.
Level accuracy	$600 \Omega$ balanced (symmetrical): 1 kHz to $150 \mathrm{kHz}=0.5$ anced) $\dagger$ : : kHz to $600 \mathrm{kHz}, \pm 0.5 \mathrm{~dB}$; 10 kHz to 300 kHz $=0.2 \mathrm{~dB} ; 30 \mathrm{~Hz}$ to $1 \mathrm{MHz}=0.5 \mathrm{~dB} ; 1 \mathrm{MHz}$ to 3 MHz .	kHz to $100 \mathrm{kHz},=0.2 \mathrm{~dB} .135 \Omega$ balanced (or $150 \Omega \mathrm{bal}$ dB. $75 \Omega$ unbalanced (asymmetrical): 100 Hz to 000 kHz , $B \pm 10 \%$ of meter reading
Input	Terminated or bridged $135 \Omega \mathrm{f}$ or 6005 balanced ( $\$ y m m$	and 75@ unbalanced (asymmetrizal)
Return loss	$600 \Omega$ : 26 dB min. 3 kHz to $150 \mathrm{kHz} ; 135 \mathrm{R}$; 26 dB min	to $600 \mathrm{kHz} ; 75 \mathrm{R}: 30 \mathrm{~dB}$ min. 103 MHz
Bal/symmetry	$>70 \mathrm{~dB}$ to $10 \mathrm{kHz} .>60 \mathrm{~dB}$ to $100 \mathrm{kHz},>40 \mathrm{~dB}$ to 800	
GENEPAL:		
Meter	Linear d8 scale	Linear dBm scale
Exlernal battery	24 V or 48 V affice battery, $<15 \mathrm{~mA}$	
Internal battery	Single NEDA 202. 45 V " B " battery.   Option H03 uses rechargeable batteries and similar to 3556A	4 lechargeable batleries ( 25 V total) or power line from 90 V to $250 \mathrm{Vac}, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz},<10 \mathrm{VA}$. Option 001 uses same battery as $3555 B$
$A C$ :	115 or 230 V (specily for 3555 B ) (switch for 3555 A ) 48 Hz to $440 \mathrm{~Hz}_{2}<10 \mathrm{VA}$	
Dimensions	$73 / 4$ in. wide $\times 113 / 6$ in. high $\times 81 / 8$ in. deep	197 mm wide, 299 mm high, 207 mm deeo
Weight	Net: $15 \mathrm{lb}(6.8 \mathrm{~kg})$ shipping: $17 \mathrm{lb}(7.5 \mathrm{~kg}$ )	
Jacks	Will accept Western Electric 241, 309, 310, 358, 289 and 347 olugs; 1011B hand-set or 52 lypo head-set	Will accept Siemens 9 REL KLI-6A, 4 mm diameter banana plugs or 3 -prong Siemens 9 REL STP. 6 AC connector
Price	HP 3555B \$695	HP 3556A $\$ 800$

[^49]

## General

The solid-state Hewlett-Packard 236A and 236A Option H10/H20 Telephone Test Oscillarors are designed specifically to deliver transmission test signals. They are particularly useful for lineup and maintenance of relephone voice and carrier systems.

## Description

The HP 236A is the perfect companion to the HP 3555B Transmission/Noise Measuring Set for accurate, convenient voice and carrier measurements meeting Bell standards. Like-

wise, CCITT recommendations are met when the HP 236A Option H10 and HP 3556A Psophometer are used together. Refer to page 429 for specifications and details.

Complementary equipment for the 236A is the HP 3555B Transmission and Noise Measuring Set (3556A Psophometer for the 236A Option H10). When used together, they make a complete transmission test set for accurate, convenient voice, carrier and noise measurements. Operating instructions printed in the protective cover are available in different languages (236A Option H10 and H2O only) at no extra charge. Refer to data sheet.

	Speatroathars*	
	2364 (Boll)	238A Option H10 (CCITT)
Frequency range	50 Hz to 560 kHz	
Frequency dial accuracy	\$3\% of setting	
Frequency response		
600 2 output	$\pm 0.3 \mathrm{d8} \mathrm{from} 50 \mathrm{~Hz}$ to 20 kHz	
900 $200 t p u t$	$\pm 0.3$ dB from 50 Hz to 20 kHz	
1358. output	$=0.3 \mathrm{~dB}$ from 5 kHz to 560 kHz	
150 and 75@ outputs		$\pm 0.3 \mathrm{~dB}$ from 5 kHz to 560 kHz
Output level/accuracy	-31 to +10 dBm in 0.1 dBm step/ $\pm 0.2 \mathrm{dBm}$ from -31 to +10 dBm ( kHz ref., 0 pt. H10, 800 Hz ref.)	
Noise	At least 65 dB below total output or -90 dBm - whichever noise is greater	
Dislortion	At least 40 dB below fundamental output	
Output circuit	8alanced (symmetrical) and floating. Can be operated up to $\pm 500 \mathrm{~V}$ dc above (earth) ground	
Output impedance	$\begin{aligned} & 609 \text { and } 900 \Omega=5 \% \\ & 135 \Omega \pm 10 \% \\ & \hline \end{aligned}$	600 and 150 a symmetrical 75? asymmetrical
Output balance (output symmetry)	600 and $900 \Omega$ outputs: $70 \mathrm{d8}$ at $100 \mathrm{~Hz}, 55 \mathrm{~dB}$ al 3 kHz 135 and $150 \Omega$ outputs: 5088 at $5 \mathrm{kHz}, 30 \mathrm{~dB}$ at 560 kHz	
Output jacks	Accepts Western Electric 241, 309, and 310 plugs	Accepts 3-prong Siemens 9 REL, STP 6 AC or 4 mm diamenter banana plugs
	Binding posts accept banana plugs, spade lugs, phone tips or bare wires. Removable shorting bar between sleeve and ground binding posis.	
Dial jacks	Accepts Western Electric 309 and 310 plugs. Clip Dosts accept Western Electric 1011B lineman's hand-set clips	Accepts 3-prong Siemens 9 REL, STP 6 AC or 4 mm diameter plugs. Clip posts accept Iineman's handset clips as aliligator clips
DC holding coil	600 and 900 , oulputs only, $700 \mathrm{n}=10 \% \mathrm{dc}$ resistance; 60 mA maximum 100 p current at 100 Hz	
Power requirements	Line: 115 or 230 V (switch) $\pm 10 \% \mathrm{AC}, 48 \mathrm{Kz}$ to $440 \mathrm{~Hz},<2 \mathrm{VA}$   Internal battery: single NEDA 20245 V " $B$ " battery   236A Option H 20 : (same as 236 A Option H 10 except) five 6.25 V rechargeable balleries; $90 \mathrm{~V}-250 \mathrm{Vac}, 48 \mathrm{~Hz}-440$   $\mathrm{Hz},<10 \mathrm{VA}$ during battery charge	
Weight	Net: $13.5 \mathrm{lbs}(6,1 \mathrm{~kg})$; shipping $17 \mathrm{lbs}(7.7 \mathrm{~kg})$	
Complementary equlpment	RP 35558 Transmission and Noise Measuring Set. See page 429	HP 3556A Psophometer. See page 429
Price	HP 236A, \$630	HP 236A Option H10 (ac line and dry battery), $\$ 735$ HP 236 A Option H 20 (ac line and rechargeable batteries),

[^50]
## PORTABLE TEST SET Measures transmission line characteristics Model 3550B



The Hewlett-Packard Model 35s0B Portable Test Set is designed specifically to measure transmission line and system characteristics such as attenuation, frequency eesponse, of gain. It is particularly useful for lineup and maintenance of multichannel communication systems. Model 3550 B concains a wide range oscillator, a volumeter, and a patch panel to match both the oscillator and the volmerer to 135,600 , and 900 ohm lines. These instruments are mounted in a combining case that is equipped with a splash-proof cover. In addition, the oscillator, voltmerer, and patch panel may be used separately whether they are in or removed from the combining case
Both the oscillator and voltmeter are transistorized and operate from their internal rechargeable batteries or from the ac line. The batteries provide 40 hours of operation berreen charges and are recharged automatically during operation from the ac line.

## Specifications* ${ }^{*}$

Oscillator 204C Opt. H2O
Frequency range: $S \mathrm{~Hz}$ to 1.2 MHz in 6 ranges. Vernier. Dial accuracy: $\pm 3 \%$ of setting.
Frequency response: $+5 \%-1 \%$ s $\mathrm{Hz} 10100 \mathrm{~Hz} . \pm 0.5 \%$ 100 Hz to $300 \mathrm{kHz} . \pm 1 \% 300 \mathrm{kHz}$ to 1.2 MHz (normal).
Output impedance: 600
Output: $>2.5 \mathrm{~V} \mathrm{rms} \mathrm{( } 10 \mathrm{~mW}$ or +10 dBm ) into $600 \Omega ;>5 \mathrm{~V}$ rms open circuit. Can be floated up to $\pm 500 \mathrm{~V}$ peak between output and chassis ground.
Output control: $>40 \mathrm{~dB}$ ranges continuously adjustable.
Output balance: $>40 \mathrm{~dB}$ belon 20 kHz .
Distortion: $<1$ ct 5 Hz to 30 Hz and 100 kHz to 1.2 MHz ; $<0.1 \% 30 \mathrm{~Hz}$ to 100 kHz (Law Dist. Mode)
Hum and noise: $<0.01 \%$ of ourpur.
Operating temperature: (for specifications): $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

## Voltmeter 4038 Opt, 001

Range: 0.001 to 300 V rms full scale ( 12 ranges) in $1,3,10$ sequence.
Frequency range: $S \mathrm{~Hz}$ to 2 MHz .
Accuracy: within $\pm 0.2 \mathrm{~dB}$ of full scale from 10 Hz to 1 MHz ; within $\pm 0.4 \mathrm{~dB}$ of full scale froms Hz to 10 Hz and 1 MHz to 2 MHz , except $\pm 0.8 \mathrm{~dB} 1$ to 2 MHz on the 300 V range ( $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ ).
Meter: individually calibrated, taut band. Responds to average value of input waveform and is calibrated in the rms value of a sine wave,
Nominal input impedance: 2 M ?; shunted by $<60 \mathrm{pF}$ on 0.001 V to 0.03 V ranges, $<30 \mathrm{pF}$ on 0.1 V to 300 V ranges.
DC isolation: signal ground may be $\pm 500 \mathrm{~V}$ de from chassis ground.

Patch panel, 353A
(specifications with oscillator and voltmeter)
Input (receiver)
Frequency range: 50 Hz to 560 kHz .
Frequency response: $\pm 0.5 \mathrm{~dB}, 50 \mathrm{~Hz}$ to 560 kHz .

Balance: better than 70 dB at 60 Hz for 600 n and 9003 ; better than 60 dB at 1 kHz for 600 and $900 \Omega$; better than 40 dB over entire frequency range for 135,600 and 900 .
impedance: $135,600,900 \Omega$ and bridging ( $10 \mathrm{k} \Omega$ ); centertapped.
Insertion loss: $<0.75 \mathrm{~dB}$ at 1 kHz .
Maximum level: +22 dBm ( 10 V rms at $600 \Omega$ ).
Output (source) includes all receiver specifications and attenuation: 110 dB in 1 dB steps.
Accuracy: 10 dB section $< \pm 0.25 \mathrm{~dB}$ per step. 100 dB sec. rion, $< \pm 0.5 \mathrm{~dB}$ per step.

## Available telephone patch panels

Patch panel 353A opt. HO2 (same as Model 353A except as indicated).
Attenuator: $23 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$ (1.step slide switch).
Hold clrcuit (send terminals)
Frequency response: 300 Hz ro $3 \mathrm{kHz}, \pm 0.5 \mathrm{~dB}, 1 \mathrm{kHz}$ reference.
DC resistance: $240 \Omega$ NOMINAL
Maximum de current: 100 mA .
Maximum de voltage: 150 V .
Connectors: special telephone jacks to accept Western Electric No. 309 and 310 plugs. Sleeve jack is connected to sleeve of jacks 309 and 310.
Patch panel 353A opt. H03 (same as Model 353A except as indicated).
Hold circuit (receive terminals)
Frequency response: 300 Hz to $3 \mathrm{kHz}, \pm 0.5 \mathrm{~dB}, 1 \mathrm{kHz}$ reference.
DC resistance: 240 NOMINAL
Maximum de current: 100 mA .
Maximum de voltage: 150 V .
Attenuation: $23 \mathrm{~dB}=0.5 \mathrm{~dB}$ (1-step slide switch).
Hold circuit (send terminals)
Frequency response: 300 Hz to $3 \mathrm{kHz} \pm 0.5 \mathrm{~dB}, 1 \mathrm{kHz}$ reference.
DC resistance: 2409 NOMINAL.
Maximum de current: 100 mA .
Maximum dc valtage: 150 V
Connectors: special telephone jacks to accept Western Electric No. 309, 310 and 241 at send and rec terminals. Sleeve jack is connecred ro sleeve of jacks 309 and 310.

## General

Power: specifications for both voltmeter and oscillator (patch panel has no power connector). 4 rechargeable batteries (furnished); 40 hr operation per recharge, up to 500 recharging cycles; recharging circuit is self-contained and functions auromatically when instrument is operated from ac line ( 115 or $230 \mathrm{~V} \pm 10 \%, 48$ to 448 Hz , cotal of 7 VA max).
Dimensions: $83 / 8^{\prime \prime}$ high, $191 / 4^{\prime \prime}$ wide, $131 / 4^{\prime \prime}$ deep (with cover installed) ( $213 \times 489 \times 336 \mathrm{~mm}$ ).
Weight: net, $30 \mathrm{lbs}(13,5 \mathrm{~kg}$ ); shipping, $41 \mathrm{lbs}(18,5 \mathrm{~kg}$ ).
Accessories furnished: detachable poner cord; two 11035A Cables ( 1 foot long, dual banana-plug to BNC); the three instruments are enclosed in a 11046 A Combining Case with a splash-proof cover.
Price: HP 3550 B ( 204 C opt. $\mathrm{H} 2 \mathrm{O}, 353 \mathrm{~A}$ and 403 B opt. 001 ), \$1255. HP 3550 B opt. H02 (204C opt. H20. 353A opt. H02 and 403 opt. 001 ), $\$ 1375 . \mathrm{HP} 3550 \mathrm{~B}$ opt. H03 ( 204 C opt. H2O, 353A opt. H03 and 403B opt. 001 ), $\$ 1375$.

- For complete specifications refer to dala sheat,



## Description

The 653A Option H01 Test Oscillator is a lightweight, solid. state signal source primarily used in the adjustment of trans. mission characteristics of video loops. The output signal is automatically leveled to 0.03 dB for the sine wave outpur while monitoring 0.2 dB for all other functions. Use of the 653A Option H01 can reduce the number of individual pieces of test equipment on the sending end.
The 653A Option H 01 includes a 60 Hz square wave, a simulated video signal, a modulated video signal, and a sepa. rate sync-only pulse. The simulated video signal, useful for qualitative monitoring. contains a blanking pulse, sync pulse, and white window. For wideo measurements and adjustments, the 633A Option H01 can replace the Western Electric GiC Signal Generator, 70B Power Meter, and HP 200CD Reference oscillator at the sending end. It can be used with the Western Electric 1 AP or 38 transmission comparing sets and associated cabling.
Adjustable rest frequencies from 10 Hz to 10 MHz cover the complete video frequency range. The internal 300 kHz reference oscillator, conveniently selected by a front-panel switch for comparison measurements, eliminates the need for a separate reference oscillator. Amplitude stability, accuracy, and frequency response, good for 90 days from calibration, eliminate the need for the power meter at the sending end.
Front and rear covers provide protection and convenient cable storage space during uransportation and periods when the instrument is not in use. The test set can be operared vertically on the floor or ground.
The 694A Test Oscillator is similar to the 633A except it is general purpose test oscillator. The internal 300 kHz reference oscillator is deleted. It has BNC output connectors, and the meter is calibrated in dBm . Output impedance of 50 and 75 ohms unbalanced and 133, 150, and 600 ohms balanced are selected by a pushbutton 5 witch.

## Specifications, 653A Opt HO1

Fraquency range: 10 Hz to 10 MHz in 6 bands.
Test frequency accuracy: $\pm 1 \%$ at $4.5 \mathrm{MHz}^{*}: \pm 2 \%, 100 \mathrm{~Hz}$ to 5 MHz (on X100 range) : $\pm 3 \%, 10 \mathrm{~Hz}$ to 5 MHz : $\pm 4 \%$. 10 Hz to 10 MHz .
Reforance accuracy ( 0 d日 V): frequency, $300 \mathrm{kHz} \pm 2 \%$; level, $\pm 0.1 \mathrm{~dB}$ for 90 days.
Output impedance: 758 unbalanced, $124 \Omega$ balanced.

Return loss (an 0 dB pange and below): $>40 \mathrm{~dB}$ to 5 MHz ; $>30 \mathrm{~dB}, 5 \mathrm{MHz}$ to 10 MHz .
Output level: +11 dB V max to -90 dB V, 10 dB and 1 dB steps with adjustable $\pm 1 \mathrm{~dB}$ vernier into $73 \Omega$ unbalanced or 124! balanced.
Overall attenuator accuracy sine wave: $\pm 0.15 \mathrm{~dB}$ ( $\pm 1 \mathrm{~dB}$ at output levels below -60 dB at frequencies $>300 \mathrm{kHz}$ ). All other functions $\pm 3 \%$.
Meter range: $\pm 1 \mathrm{~dB} \mathrm{~V}$ full scale.
Meter rasolution: 0.02 dB .
Meter tracking accuracy; $\pm 0.05 \mathrm{~dB}$ sine wave; $\pm 0.2 \mathrm{~dB}$ all orher functions.
Frequency response: ( 0 dB V, with meter centered, at end of recommended 6 .ft cables): $\pm 0.05 \mathrm{~dB}, 10 \mathrm{~Hz}$ to $10 \mathrm{MH}_{2}$.
Balance: $>90 \mathrm{~dB}, 10 \mathrm{~Hz}$ ro $1 \mathrm{MHz} ;>40 \mathrm{~dB}, 1 \mathrm{MHz}$ to 10 MHz.
Distortion (THD): $>40 \mathrm{~dB}$ below fundamental, 10 Hz to 9 $\mathrm{MHz}_{2}>34 \mathrm{~dB}, 5 \mathrm{MHz}$ to 10 MHz .
Hum and nolse: $>70 \mathrm{~dB}$ below full output.
Outport jacks: accepts WE 358A and 408A plugs; max dc voltage which can be applied to the output jacks, $\langle \pm 3 \mathrm{~V}$ p.
Countar output: $>0.1 \mathrm{~V}$ rms into son, BNC connector,
Functions: ${ }^{*}$
Sine wave (standard operation).
60 Hz square wave, $0 \mathrm{~dB} \mathrm{~V}=1 \mathrm{~V} \mathrm{p} \cdot \mathrm{p}$, risetime $2 \mathrm{~T}(\mathrm{~T}=$ 125 ns ).
Simulated video signal with sync pulse, blanking pulse and white window, $0 \mathrm{~dB} \mathrm{~V}=1 \mathrm{~V}$ p.p, risetime 150 ns .
Video signal modulated by 60 Hz square wave, $0 \mathrm{~dB} \mathrm{~V}=$ 1 V P-p, risetime 150 ns .
Sync pulse only, $0 \mathrm{~dB} \mathrm{~V}=0.25 \mathrm{~V}$ p-p, width $12.7 \mu \mathrm{~s}$, rise. time 150 os.

## General

Operating tamperature: $32^{\circ} \mathrm{F}$ to $130^{\circ} \mathrm{F}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to 440 Hz , 35 VA max.
Dimenslans (covers installed): $161 / 4^{\prime \prime}$ a.ide, $5^{\prime \prime}$ high. $16^{\prime \prime}$ deep ( $425 \times 127 \times 406 \mathrm{~mm}$ ).
Waight: net, 21 lbs ( $9,5 \mathrm{~kg}$ ); shipping, 31 lbs ( 14 kg ).
Accessorles furnished: rack mount kit, front cover, rear cover, 7.5-ft yellow power cord.

Price: HP 653 Opt H01, $\$ 1.435$.

- Accuracy for temperatures from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.
- AcWuvelorms conform to Ela Spec. R5170.



## Description

The Hewlerr-Packard Model $312 \mathrm{~A} / 313 \mathrm{~A}$ is a frequency selective voltmerer/tracking oscillator ser operating in the frequency range of all commercially available carrier and radio syscems including the Western Electric L4 system. The set is capable of making transmission and noise measurements with an unparalleled speed and accuracy resulting in a substantia! time saving even when operated by inexperienced craftrmen.

The 312A uses a frequency syathesizer for runing that is automatically phase locked in 1 MHz steps with no runing clicking relays or flashing lights necessary to achieve lock. Tuning between lock points is indicated on a 7 -place indicator cube readout with 10 Hz plus time-base accuracy. The frequency is unambiguous and can be set up easily by inexperienced crafts. men. Coupled with this digital indication of frequency is an automatic tuning aid known as automatic frequency control (AFC). The AFC will automatically fine tune the frequency to the center of the set's passband, eliminating the need for time consuming peaking of the meter indication. It will automatically correct for any relative frequency drift between the set and the signal being measured. Long term monitoring of pilots is possible without periodic readjustment. The high frequency accuracy coupled with APC gives clear, instantancous tuning with complete operator confidence and eliminates the need to search for signals or bump tones for identification.

Input and IP attenuators allow a maximum of dynamic range withour concern for overloading the set. The atrenuators can be easily set for maximum distortion or noise performance. Attenuator settings are indicated clearly on a lighted annuncia. tor which, when added to the merer indication, gives a fast, error-free indication of input level. An accessory expanded scale meter allor's 0.02 dB resolution of input level for ac. curate measurements.

The set is equipped with both balanced and unbalanced inputs to fit any measuring situation without the need for external accessory transformers. A wide selection of input impedances, either bridging or terminated, is provided along with provisions
for an accessory high impedance, balanced bridging probe to eliminate messurement errors. The ser always indicates directly in dBm or volts for any impedance without the need for time consuming calculations or conversion charts.

Three selectable bandwidths are provided for all measure. ment situations. A narrow 200 Hz bandwidth is used for highly selective measurements, a 1000 Hz bandwidth for general mea. surements, and a 3100 Hz bandwidth for noise measurements. The Model 312A Option 001 provides for channel noise measurements in dBroc at carrier frequencies on operating systems similar to the Western Electric 7A. This allows easy troubleshooting of rough noise problems by making possible noise measurements of a noisy channel anywhere in the baseband spectrum.

Demodulation of upper or lower sideband channels with an audio output is provided for monitoring of noise, traffic, or tones in any channel. The inherent accuracy of the digital fre. quency readout requires only a quick reference to the system frequency charts to determine frequency for perfect demodu-lation-no tuning around for natural sounding demodulation is required. In this respect the Model 312A can be thought of 25 a singie-channel, runeable, multiplex, receive terminal.

The Model 313A Tracking Oscillator provides an accurate, flat output at the frequency to which the 312A is tuned for frequency response measurements. The outpur frequency is quickly and easily set by the digital tuning indicator on the selective voltmeter.

Output level is easily set by a 3 -digit presentation with 0.1 dB resolution. Output level is also easily read and remains constant with changes in frequency requiring no time consuming resetting of level at each new frequency,

A built-in meter provides an expanded scale display of the 312A's meter indication with 0.02 dB resolution of input level.

## Specifications, 312A

## Tuning characteristlcs

Frequency range: 1 kHz to 18 MHz in 18 overlapping bands, 200 kHz overlap between bands.
Frequency aceuracy: $\pm$ ( $10 \mathrm{~Hz}+$ time-base accuracy). Fre. quency indicated on in line digiral readour with $\pm 10 \mathrm{~Hz}$ reso. Jution.
Time base stabillty
Aglige rate: $\pm 2$ pporn per week.
As a function of ambient temperature: $\pm 15^{\circ}$ in $+33^{\circ} \mathrm{C}$, $\pm 20 \mathrm{ppm} ; 0^{\circ}$ to $+35^{\circ} \mathrm{C}, \pm 100 \mathrm{ppm}$.
As a tunction of lise voltage: $\pm 0.1 \mathrm{ppm}$ for changes of $\pm 10 \%$.
Salactlulty

Raj aotlon	$\begin{aligned} & 200 \mathrm{Nr} \\ & \text { bardwidh } \end{aligned}$	$\begin{aligned} & \text { T000 Hz } \\ & \text { bandwdith } \end{aligned}$	$\begin{aligned} & \text { SOO } \mathrm{HI} \\ & \text { bandwldth } \end{aligned}$
$\begin{array}{r} 3 \mathrm{~dB} \\ 60 \mathrm{~dB} \end{array}$	$\begin{gathered} 200 \mathrm{HI}=10 \% \\ <470 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 1 \mathrm{kHz}=10 \% \\ & <2350 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 3 \mathrm{kHz}=10 \% \\ \langle 6680 \mathrm{~Hz} \end{gathered}$

(Midpoint of the band is marked by rejection notch 3 Hz wide.)
Automatlc fraquency control
Dynamic hold-ln range: $\pm 3 \mathrm{kHz}$ al 3.1 kHz bandwidth ( 0 dB ref.)
Trackling speed: $100 \mathrm{~Hz} / \mathrm{s}$; locks on to signals as low as 60 dB below zero reference. Zero reference level set with Amplitude Range switch set to 0 dB .

## Amplitude characteristles

Amplitude range: 50 to $150 \Omega,-97 \mathrm{dBm}$ to +23 dBm full scale: $600 \Omega,-107$ to +13 dBm .
Voitage: $3 \mu \mathrm{~V}$ to 3 V full scaile ( 50 n reference).
Amplitude accuracy
Ampiltude range: attenuator: $\pm 0.1 \mathrm{~dB}$ ( $1 \%$ of reading). Reference lavel attenuator: at $1 \mathrm{MHz}, \pm 0.2 \mathrm{~dB}$.
Frequency response (bridging input with external terminatlon of $50 \Omega \pm 1 \%$ ): 1 kHz to $10 \mathrm{kHz}, \pm 0.5 \mathrm{~dB}(5 \%$ of reading; 10 kHz to $10 \mathrm{MHz}, \pm 0.2 \mathrm{~dB}$ ( $2 \%$ of reading) 10 MHz to $18 \mathrm{MHz}, \pm 0.5 \mathrm{~dB}$ ( $5 \%$ of reading).
Meter tracking: $\pm 0.1 \mathrm{~dB}$ to -10 dB ( $1 \%$ of reading).
Internal calibrator output
Frequency: 1 MHz square wave (derived from time base).
Amplitude: -40 dBm into 750 termination.
Amplitude stabillty: $\pm 0.1 \mathrm{~dB}$.
Output connector: BNC female.
Matching impedance: $50,60,75,124,135,150$ or $600 \Omega$, balanced or unbalanced.
Bridging impedance: $20 \mathrm{k} \Omega \pm 3 \%$ shunted by $<30 \mathrm{pF}$ (balanced): $10 \mathrm{k} \Omega \pm 3 \%$ shunted by $<60 \mathrm{pF}$, reference level attenuator al -40 dB (unbalanced).
Common-mode rejection (balanced input): 10 kHz to $5 \mathrm{M}(\mathrm{Hz}$, $>40 \mathrm{~dB}: 5 \mathrm{MHz}$ to $18 \mathrm{MHz}>30 \mathrm{~dB}$.
Harmonic distortion: 1 kHz to 1 MHz , $>5 S \mathrm{~dB}$ below zero reference with Amplitude Range switch set at $0 \mathrm{~dB}_{;} 1 \mathrm{MHz}$ ro $18 \mathrm{MHz} .>65$ dB below zero reference with Amplitude Range switch set at 0 dB .
Residual responses: 72 dB below zern reference with no inpur and reference lerel in any position.
Noise level, referred to input: 50 to $150 \mathrm{n},-120 \mathrm{dBm}$ ( 200 Hz bandwidth): 600 R . -130 dBm ( 200 Hz bandwidth). Ref. level at 0 .

## Receiver characteristles

Recelver mode outputs:
AM and AM/AFC: diode-demedulared audio.
Beat: beat frequency audio center at $f_{0}$.
LSB: product-demodulated audio, carrier reinserted at $f_{n}+1.8$ kHz .
USB: product demodulated audio, carrier reinserted at $f_{0}-1.8$ kHz .
Audio output level: $>0.5 \mathrm{~V}$ rms into $10 \mathrm{k} \Omega$ with full scale meter deflection.
Recorder output level: $1 \mathrm{~V} \pm 0.1 \mathrm{~V}$ with full-scale meter deflec. tion across open circuit. Outpur connector, BNC female. Tracking accuracy, better than $\pm 0.1 \mathrm{~dB}$ to 20 dB below foll-scale reference on 0 dB position of Amplinde Range sxitch; better than $\pm 0.2 \mathrm{~dB}$ to 30 dB belor full.scale reference. Output resistance, $1 \mathrm{k} \Omega$.
Auxiliary outputs
$1 \mathrm{MHz}: 1 \mathrm{~V}$ p-p sine wave into $1 \mathrm{k} \Omega$ : outpur connector, BNC female.
$30 \mathrm{MHz}: 40 \mathrm{mV}$ to 70 mV rms into $50 \Omega$ : ourpur connector. BNC female.
Local osclliator ( 30 to 48 MHz ): 60 mV to 90 mV rms into son; output connector, BNC female.
Accessortes avallable: 11530 A Probe provides amplitude accuracy (probe and divider only) of $\pm 0.5 \mathrm{~dB}$; $\$ 225$.
$11143 A$ Balanced Cabie, $44^{\prime \prime}$ overall length (BNC to clip lead). $\$ 25$.
5060-0216 Joining Bracket Kit for joining two-full-module instruments, $\$ 25$.
Probe input impedance (at 1 MHz )

Probe divider	Unbalanced Input Impedanoe amanoed	
1:1(0dB)	$20 \mathrm{k} \Omega$ shunted by $<40 \mathrm{pF}$	$40 \mathrm{k} \Omega$ shunted by <10 pf
10:1 (20 dB)	$20 \mathrm{k} \Omega$ shunted by $<12 \mathrm{pF}$	40 ka shunted by $<6 \mathrm{pF}$
100:1 (40 d8)	20 ks shunted by < 7 pf	$40 \mathrm{k} \Omega$ shunted by < 4 pf

Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 100 \mathrm{VA}$.
Weight: net, $46 \mathrm{lbs}(20,8 \mathrm{~kg})$ : shipping, $62 \mathrm{lbs}(28,1 \mathrm{~kg})$.

Dimensions: $163 / 4^{\prime \prime}$ wide, $103 / /^{\prime \prime}$ high. $183 / 3^{\prime \prime}$ deep ( $425 \times 273 \times$ 467 mm ) ; hardware furnished for conversion to rack mounr $19^{\prime \prime}$ wide, $10-15 / 3$ ? " $^{\prime \prime}$ high, $163 / 8$ " deep behind pane! ( $483 \times 266 \times$ $4(6 \mathrm{~mm})$.
Price: HP 312A, 54275.

## Specifications for 312A, Option 001

(Same as Standard Model 312 A with following exceptions)
Bandpass: 3100 Hz with carrier rejection notched at $\pm 2 \mathrm{kHz}$ from the center of passband.
Rejection notehes: down $>55 \mathrm{~dB}$ at 2 kHz above and below center of passband; down $>45 \mathrm{~dB}$ at $\pm 7.5 \mathrm{~Hz}$ from center of rejection natch.
Price: 312A Option 001. add $\$ 100$.

## Speclifications, 313A

## Frequency range

As tracking oscillator: same as $312 \mathrm{~A}(18 \mathrm{MHz}$ ) or ( 22 MHz ). Refer to data sheet.
As signal source: 1 kHz to 22 MHz in one band, continuous tuning.

## Frequency accuracy

As tracking oscillator: $35 \mathrm{~Hz} \pm 4 \mathrm{~Hz}$ above 312 A runing.
As slenal source: $\pm 1 \%$ of maximum dial setting fenm 10 kH \% to $2 \mathrm{MHz} ; \pm 3 \%$ of maximum dial setting from 2 to 8 MHz ; $\pm 5 \%$ of maximum dial setting from 8 to 22 MHz .

## Frequency stability

As tracklng oscillator: same as $3!2 \mathrm{~A}$ time base $\pm 100 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}$.
As slgnal source: short term ( 5 min ) drift $<1 \mathrm{kHz}$ in stable environmenc after wirmup.
Frequency response: $\pm 0.1 \mathrm{~dB}, 10 \mathrm{kHz}$ to 22 MHz .
Amplitude stability: $\pm 0.1 \mathrm{~dB}$ for $90 \mathrm{days}\left(0\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$.

## Meter mode

312A Expand: meter expands any 2 dB range of 312 A meter indication from -7 to +3 dB using 312A recorder output. Meter range, -1 to +1 dB ; tracking error, $=0.05 \mathrm{~dB}$ over full 2 dB range (operates with any $1 \mathrm{~V}, 1 \mathrm{k} \Omega$ recorder output).
Output monitor: meter indicates voltage level at the input of the atrenuator and can be calibrated from the front panel.
Maximum output: 0 or $+10 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$, selectable at front panel.
Output attenuator: 3 -section attenuator provides 0 to 99.9 dB attenuation in 0.1 dB steps.
Attenuator accuracy: 0.9 dB section ( 0.1 dB steps), $\pm 0.02 \mathrm{~dB}$ : 9 dB section ( 1 dB steps). $\pm 0.1 \mathrm{~dB}: 90 \mathrm{~dB}$ section ( 10 dB steps), $\pm 0.1 \mathrm{~dB}$ in 50 dB , $\pm 0.2 \mathrm{~dB}$ to 90 dB .
Output impedance: $75 \Omega$ unbalanced ( $30 \Omega$ optional. see Option 001 below).
Output connector: BNC female.
Harmonic distortion: $>34 \mathrm{~dB}$ below fundamensal
Non-harmonit distortion
As tracking oscillator: $>40 \mathrm{~dB}$ below fundamental.
As slgnal source: $>50 \mathrm{~dB}$ below fundamental.
Recorder output: +0.3 V for full-scale deflection. Oupput impedance : $\mathrm{k} \Omega$, BNC female connector.
Power: Ils or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz}, 35 \mathrm{VA}$ maximum.
Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ( $425 \times 140 \times$ 467 mm )
Weight: net. $25 \mathrm{lbs}(11,3 \mathrm{~kg}$ ) ; shipping, $30 \mathrm{lbs}(13,6 \mathrm{~kg}$ ).
Accessorles furnished: 11086 A interconnecting cables for use with HP 312A, each cable 2 fr ( 610 mm ) long with BNC male connectors (3).
Price: HP 313A, s1400.
Option O01: output impedance son unbalanced; no additional charge.
*For other special 312A's. refer to your nearest Kewlett. Packard Sales Office.

昜


The HP Model 3591A Plug-in Selective Voltmeter is designed specifically for communications systems. The input bal. anced impedances and the input functions, in addition to all of the features of the 3590 A , make it outstanding as a communications test instrument.

## Specificakions $\ddagger$

Frequency range: 20 Hz to 620 kHz .
Amplitude ranges: $3 \mu \mathrm{~V}$ to 30 V full scale in 15 ranges.
Amplitude accuracy with input terminated
Meter switch In normal position: overall accuracy: $\pm 0.43$ dB to $\pm 0.67 \mathrm{~dB}$ of reading depending on frequency, in. cluding:
Frequency response flatness, total deviation: 600 ohm: 20 Hz to $100 \mathrm{~Hz} \pm 0.53 \mathrm{~dB}( \pm 5 \%): 100 \mathrm{~Hz}$ to 620 kHz $\pm 0.26 \mathrm{~dB}( \pm 3 \%)$.
All other terminations: 5 kHz ro $620 \mathrm{kHz} \pm 0.26 \mathrm{~dB}$ ( $\pm 3 \%$ ).
Meter tracking: $\pm 0.1 \mathrm{~dB}$ or $\pm 1 \%$ of reading, 0 dB to -10 dB .
Meter switch in linear dB position: overall accuracy: $\pm 1 \mathrm{~dB}$.
Internal calibrator: frequency, $100 \mathrm{kHz} \pm 10 \mathrm{~Hz}$; Amplitude,
full scale on 0 dB range in CAL mode: accuracy, $\pm 0.1 \mathrm{~dB}$.
Dynamic range: (IM and harmonic distortion products).
$>85 \mathrm{~dB}$ below zero dB reference level when ABSOLUTE measurements are being made ( $>70 \mathrm{~dB} 20 \mathrm{~Hz}$ to 50 Hz ).
$>80 \mathrm{~dB}$ below zero dB reference level when RELATIVE adjustment is used ( $>70 \mathrm{~dB}$ for 20 Hz to 50 Hz ).

## Residual responses

$>80 \mathrm{~dB}$ below zero reference ( $>70 \mathrm{~dB}$ for 20 Hz to 50 Hz ). Return loss: 100 Hz to $620 \mathrm{kHz}, 600 \Omega>30 \mathrm{~dB}$; s kHz to 620 $\mathrm{kHz}, 150 \Omega, 135 \Omega, 75 \Omega,>35 \mathrm{~dB}$.

## Nolse level:

Bandwidits	Inout nolse lavel ( 6000 ? Indul Imaedance $)$
10 Hz and 100 Hz	
1 kHz and 3.1 kHz	$<-125 \mathrm{dBm}$ or $0.44 \mu \mathrm{~V}$

Selectivity:

		Bandwidits		
Rel anton	10 Hz	100 Hz	$1 \times \mathrm{Hz}$	3.1 kHz
3 dB	10 Hz	100 Hz	1 kHz	3.1 kHz
60 dB	35 Hz	320 Hz	3.1 kHz	9.5 kHz

(Frequency accuracy $\pm 10 \%$ )
Automatic frequency control
Capture threshold: 75 dB below 0 dB reference.
Dynamic hold-in range: $>3$ bandwidths.
Tracking rate proportional to bandwidth.
lnputs: balanced or single-ended, not floating; term. or brdg. input functions
dBm: levels calibrated in dBm for impedances selected.
Abs Vm: level calibrared in volts.
Rel: input level can be set arbitrarily to 0 dB Ref. ( 10 dB ser level sange).
Cal: internal level calibrator.
Input impedances ${ }^{*}$
Resistances: $75 \Omega, 135 \Omega, 150 \Omega, 600 \Omega$ rerminated: $50 \mathrm{k} \Omega$ (single ended bridging) and 100 kn (balanced bridging).
Capacitance (each terminal to ground): $10 \mathrm{mV}, 30 \mathrm{mV}$ ranges $<55 \mathrm{pF} ; 100 \mathrm{mV}$ to 30 V ranges $<40 \mathrm{pF}$.
Common mode rejection: 20 Hz to $620 \mathrm{kHz},>40 \mathrm{~dB}$.
Automatic ranging: 8 ranges, 0 dB to -70 dB . Ranging rate proportional to bendwidth.
Output: amplitude: adjustable 0 to 1 V ems open circuit. BFO frequency response flatness: $\pm 0.2 \mathrm{~dB}$ or $\pm 2 \%$. Resistance: 6000.
L.O. output: frequency, 1.28 MHz to $1.90 \mathrm{MHz}(1.28 \mathrm{MHz}+$ tuned frequency) ; amplitude, 0.65 V rms $\pm 20 \%$ open circuit; resistance, 2 50n.
Recorder outputs:

$\begin{gathered} x-A x / s \\ (3693 A / 3694 A \text { on }(y) \\ \hline \end{gathered}$	${ }_{82}^{\text {Plua-ln Frequanay Rangef }}{ }_{820} \mathrm{kHz}$	
axis linear output:	$010-12.4$	$010-12.4$
(1) kn source resistance)	<200 mV/kHz $\pm 5 \%$ )	( $20 \mathrm{mV} / \mathrm{kHz}=5 \%$ )
$x$-axis log output:	5 V /decade $=5 \%$	$3 V \text { decade }=5 \%$
(I k』 source resistance)	( $50 \mathrm{~Hz}-62 \mathrm{kHz}$ )	$(500 \mathrm{~Hz} \cdot 620 \mathrm{kHz})$

Y-Axis:
Linear $Y$ axis output: +10 V de $\pm 2 \%$ for full scale meter indication, $1 \mathrm{k} \Omega$ source resistance.
Log Y axis output: +1 V to +10 V dc, proportional to linear dB meter indication ( -90 to $0 \mathrm{~dB}, 0.1 \mathrm{~V} / \mathrm{dB}$ ) $1 \mathrm{k} \Omega$ source resistance.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ to $400 \mathrm{~Hz},<70 \mathrm{~W}$.
Dirnensions: $163 / 4^{\prime \prime}$ wide, $81 / 4^{\prime \prime}$ high (without removable feet), $163 / 8^{\prime \prime}$ deep ( $425 \times 210 \times 416 \mathrm{~mm}$ ).
Weight: net, $37 \mathrm{lbs}(16,8 \mathrm{~kg})$; shipping, $47 \mathrm{lbs}(21,3 \mathrm{~kg})$.
Accessories furnlshed: rack mounting kit for $19^{\prime \prime}$ rack. (Reler to page 447 for plug. in information. The 3591A must have a plug-in to operate.)
Price: HP 3591A, 33435.
Plug-Ins: HP 3592A, \$80; HP 3593A, $\$ 1130$; HP 3594A, $\$ 1640$.

[^51]
## COMMUNICATIONS TEST EQUIPMENT

ERROR RATE MEASUREMENT<br>Error detection up to $150 \mathrm{Mb} / \mathrm{s}$<br>Models 3760A, 3761A



The 3760A/61A Error Rate Measuring system is a generator and a receiver operating at rates up to $150 \mathrm{Mb} / \mathrm{s}$. The 3760 A Data Generator provides a variable length PRBS to the item under test, the outpu: of which is analyzed by the 3761 A Error Detector.

The Error Detector has a built-in counter with two modes of operation: Bit Error Rate (BER) and Total Error Counk (COUNT). In BER mode, the measurement is displayed in the form $\mathrm{a} \cdot \mathrm{b} \times 10^{-x}$. In COUNT mode, the errors accumulated in a chosen interval are displayed as a four digit number with leading zeros blaoked.

The 3760 A Data Generator is a $150 \mathrm{Mb} / \mathrm{s}$ versatile PRBS and WORD generator having many fearuses wohich make it especially attractive for high frequency digital communications. Its fearures are described fully in the Data Generator Model 3760A Data Sheet, and only those which apply to Bit Error Rate Measurement are described here.

The Data Generator has a versatile clock input which will accept regular wiaveshapes in the frequency range 1.5 to 150 MHz , and an output is available of the clock of its comple. ment, clock. It produces pseudo random binary sequences, variable in length from $2^{3}-1$ to $2^{10}-1$ bits, with an additional long sequence of $2^{18}-1$ bits. This dara and its complement, data, are provided as separate outputs, and can be delayed with respect to the clock by up to 100 ns .

Both the clock and data outputs are continuously variable in amplitude and offset to provide the capability of directly interfacing with a wide range of systems. For back-to-back testing of the Data Generator and Eiror Detector, one error can be introduced every 2000 sequences.

The 3761A Eiror Detector has been specifically designed
for operation with the pseudo random sequences produced by the Data Generator. It requires both clock and data inputs, and performs error detection using bit-by-bit comparison with an internally generated, closed loop, reference sequence. This technique ensures detection of every error, random or systematic, and avoids the problems associated with open loop reference sequence generation.

The BER measurement is computed from more than 100 errors, and has a range of $9.9 \times 10^{-1}$ to $0.1 \times 10^{-9}$. The tota! error coune, COUNT, which has a range of 0 to 9999, is provided with both internal and external gating. The internal gating period can be selected within the range $10^{5}$ to $10^{11}$ clock decades and can be single shot or repetitive in operation. A TTL compatible external gate input is provided, and manual gating is controlled with a front pancl stop/start switch. In both BER and COUNT modes, the display is continually updated at a rate which may be set by the operator.

The 3761A Error Derector clock input (impedance 305, op. tionally $75 \Omega$ ) accepts regular waveshapes in the frequency range 1.5 to 150 MHz . Ic has a sensitivity of betrer than 500 $\mathrm{mV} p k$ - pk and can be triggered manually or automatically on the + ve or - ve slope of the input waveform. The range of the manual trigger control is +3 to -3 V , and indication of correct trigger is given by a front panel lamp. The auto trigger will accept mark: space ratios in the range $10: 1$ to $1: 10$ subject to a 3 as minimum pulse width.

The data input condicions for frequency range, waveshape, impedance and sensitivity are identical to those for the clock. The data input triggering is automatic with compensation for dc offsets in the range +3 to -3 V . The input can be inversed with a data/data switch to allow for an inversion in the item or system under test.

A front panel variable piase control is used to ensure that coincidence between clock and data edges is avoided. At frequencies up to 50 MHz the control range is 0 to $180^{\circ}$ and from 50 to 150 MHz it is 0 to 12 ns . A lamp indicates when a correct phase relationship between the clock and data has been attained.

Synchronization of the 3761A Error Detector to the incoming data can be accomplished automatically, manually, or externally. In the automatic mode, correct synchronism is ensured by continually monitoring the average error rate over a period
long enough to remove the effect of error bursts. In the manual synchronization mode the Error Detecior searches for synchronism on command from a front panel switch, and in the external mode by command from an external TTL signal.

A $B C D$ output of the current display is available from a rear panel socket. This output is in 8421 format and includes the sync loss and overfow flag indications. An output of one pulse per error is also available at the rear panel for further analysis.

## Specifications

## Measurements

Bit Error Rate, BER
Range: $9.9 \times 10^{-1}$ to $0.1 \times 10^{-9}$, automatically scaled.
Gating: Automatic, at least 100 errors before compuration.
Total Error Count, COUNT
Range: 0 to 9999.
Gating:
Internal: Repentive or single shot.
Interval: $10^{\circ}$ clock periods ahere integer $n=5$ to 11 .
External: Logic level TTL.
Manual: Front panel switch.
Sequences: Maximal length PRBS.
Lengths: $2^{*}-1$ where $N=$; to 10 and 15 .

## Data generator

Clock Input
Rate: 1.5 to 150 MHz .
impedance: $50 \Omega \pm 5 \%$ dc coupled ( $75 \Omega$ optional).
Trigger
Slope: + ve or -ve.
Manual: Level range: -3 to +3 V .
Auto: Input mark: space ratio cange $10: 1$ to $1: 10$.
Sensitivity: Better than $500 \mathrm{mV} \mathrm{pk} \cdot \mathrm{pk}$.
Amplitude: $\pm 5 \mathrm{~V}$ maximum.
Pulse Width: 3 ns minimum at $50 \%$ pulse amplitude.
Clock Output
Outputs: CLOCK or CLOCK.
(mpedance: Source impedance $50 \Omega \pm 5 \%$ ( $75 \Omega$ optional).
Amplitude: Continuously variable in 5 ranges from 0.1 to 3.2
$V$ into 50 n symmetrical about offset level.
Rise/fall time: $<1$ ns ( $10 \%$ to $90 \%$ level).
DC Offset: Variable, 0 to $\pm 3 \mathrm{~V}$.

## Data Output

Outputs: DATA and DATA.
Impedance: $50 \Omega \pm 5 \%$ ( $75 \Omega$ optional).
Amplitude: Continuously variable in 5 ranges from 0.1 to 3.2
$V$ into $50 \Omega$ symmetrical about offser level.
Rise/fall time: $<1$ ns ( $10 \% 1090 \%$ level).
DC offset: Variable, 0 to $\pm 3 \mathrm{~V}$.
Delay: Data (and sync) delayed with respect to clock con. tinuously in 10 ranges from 0 to 100 ns .
Sync Output
Rate: Once per PRBS,
Position: Front Panel selectable.
Amplitude: +1 V into son.

## Error detector

## Clock Input

Specifications as for Data Generator Clock Input.
Data Input
Input: DATA or DATA, selectable.
Rate: 1.5 to $150 \mathrm{Mb} / \mathrm{s}$.
Impedance: $50 \Omega=5 \%$ dc coupled ( $75 \Omega$ optional).
Trigger Level: Automatic. Input mark: space ratio range 10:1 to $1: 10$.

Sensitivity: Better than $500 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$.
DC Offset: $\pm 3 \mathrm{~V}$ maximum.
Amplitude: $\pm 5 \mathrm{~V}$ maximum.
Pulse Width: 5 ns minimum at $50 \%$ pulse amplitude.
Phasing
Control: Clock phase variable relative to data.
Indication: Lamp off when clock and data edges coincide.
Range: 1.5 to $50 \mathrm{Mb} / 5: 0$ to $180^{\circ}$.
so to $150 \mathrm{Mb} / \mathrm{s}$; 0 to 12 ns .

## Synchronization

Modes: Auto, Manual, External External and Manual initiate single shot Auto syne.
Auto: Automatically searches for synchronism if more than 20,000 errors in 100,000 bits.
External: Resynchronization commanded by TTL input.
Manual; Resynchronization commanded from front panel.
Display
BER: Two digits plus exponent a.b $\times 10^{-x}$.
COUNT: Four digits.
Flags: Sync loss, overflow and gating.
Outputs
Printer: 8421 BCD.
BER and COUNT: Current display on command.
Flags:
Syne loss: 0 printed in column 1.
Overfiow: Outpur inhibited.
Print command: pulse at display change.

## Error Output

Rate: One pulse per error.
Amplitude: +1 V into 508.
Accuracy
BER: Computation based on at least 100 errors.
COUNT: Internal gating, $\pm 1$ error.

## Options

3760A Data Generator
Option 001; $75 \Omega$ CLOCK and DATA input/output impedances.
Option 002: Internal variable frequency clock.
Option 003: Options 001 and 002 combined.
3761A Error Detector
Option 001: 75 ClOCK and DATA input impedances.
Option 002: Printer interface cable.

## General

## Data Generator

Power: 90 to 125 V or 200 to $250 \mathrm{~V}, 40$ to $400 \mathrm{~Hz}, 90 \mathrm{~W}$.
Dimenstons: $163 / 4$ in wide, $51 / 2$ in high, $183 / 4$ in deep. ( 425 $\mathrm{mm} \times 140 \mathrm{~mm} \times 467 \mathrm{~mm}$ ).
Weight: $30 \mathrm{lbs}(13,6 \mathrm{~kg})$.

## Error Detector

Power: 90 to 125 V or 200 to $250 \mathrm{~V}, 40$ ro $400 \mathrm{~Hz}, 70 \mathrm{~W}$.
Dlmenslons: $163 / 4$ in wide, $33 / 4$ in high, $183 / 4$ in deep. ( 429 $\mathrm{mm} \times 95 \mathrm{~mm} \times 467 \mathrm{~mm}$ ).
Welght: 23 lbs ( 10.4 kg ).

MICROWAVE LINK ANALYSIS
At BB, IF \& RF
Models 3710A/3702B, 3730A


The Microwave Link Analyzer, Down Converter and Communications Sneep Oscillator, as a package, enables the full BB, IF \& RF capability of tecrestrial and celestial radio lioks to be realized. The Microwave Link Analyzer (3710A. 3716A/ 3715A. 3702B, 3705A/3703B) is a combined Baseband (BB) and Intermediate Frequency (IF) analyzer, allowing the various iorms of distortion occurring in a link to be identified. measured and localized to BB and IF devices. The Down Converter: ;"30A) and Communications Sweep Oscillator (8605A Opt. 0:0. see page 4.10), which is used as an Up Converter, ensure that this capatility is extended into the RF range. The Domn Converter may he used independently of the HewletrPackard Microwave Link Analyzer.

## Beroflts

An easy to operate, four inctrument package.
Comprehensive BB frequency coverage. 83.3 kHz to 8.2 MHz .
Comprehensive IF coverage, 45 to 95 MHz .
Comprehensive RF coverage, 1.71011 .7 GHz .
Minimum cabling interconnections and alterations for changes in measurement.

MLA: seven selccted baseband rest tones up to 8.2 MHz
Internal demodulation up to 56 MHz .
Inbuilt CRT with dual erace display.
Receiver can be remote from transmitter for between station measurements. Slave facility for local display of remote measurements.
IF frequency stability of $\pm 100 \mathrm{kHz}$.
If frequency markers of 70 MHz .2 MHz "comb" and sliding symmetrical pair.

RF capabifity: permits separate characterizarion of transmitter and receiver by BB. IP, or RF so RF tests. No plotting and differentiating-easy equalization. Permits active and passive component tests-avoids the problems of other systems.

## Specifications

MLA
IF frequency range: is to 95 MHz centered on 70 MHz .
IF flatness (residua!): $\pm 0.05 \mathrm{~dB}$ from 45 to 95 MHz .
BB linearity and differential gain (residual): $0.1 \%$ (BB-BB), $0.4 \%$ (IF-IF) from is to 95 MHz .
Group delay (residual): 0.1 ns (BB.BB). 1 ns (IF-IF) from 45 to 95 MHz .
Differentlal phase (residual): $0.1^{\circ}$ (BB-BB), $0.6^{\circ}$ (IF.IF) from is to 95 MHz .
IF power range: +12 dBm to -10 dBm .
BB power range: $-10 \mathrm{dBm} 10-49 \mathrm{dBm}$.
Modulator sensitivity: -49 dBrn to 0 dBro .
Demodulator sensilivity: -10 dBm to -49 dBm .
Impedances: $75 \Omega$.
Power: 115 or $230 \mathrm{~V}( \pm 10 \%), 48$ to 66 Hz , approx 190 VA . Dimensions:

3710A: 163/4" wide, $61 / /^{\prime \prime}$ bigh. $18^{\prime \prime}$ deep ( $425 \times 172 \times 457$ mm ).
3702B: $163 / /^{\prime \prime}$ wide, $81 / 2^{\prime \prime}$ high, $18^{\prime \prime}$ deep ( $425 \times 216 \times 457$ mm ).
Price: complete MLA systems, approx $\$ 10,500$ to $\$ 12,000$.

## Down converter

RF input
RF frequency range: 1.7 to 12 GHz .
Minimum input level: -20 dBm ( -1.4 dBm with Opt 010). Impedance: son.
Minimum operating range (with MLA): +2 dBm to -16 dBm; with Opt. 010: +2 dBm to -41 dBm .
IF output
Meter accuracy: $=0.5 \mathrm{MHz}$ at $70 \mathrm{MHz},( \pm 2 \mathrm{MHz}$ f.s.) .
Return loss: 28 dB min.
Impedance: 758.
Power: 115 or $230 \mathrm{~V}( \pm 10 \%)$, 48 to 66 Hz .
Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ( $425 \times 141 \times$ 467 mm ).
Price: mainframe, $\mathbf{\$ 2 8 5 9}$ : osc plug-ins approx $\$ 1500$ to $\$ 2000$.

## OPTION SELECTION CHART

Instuirents to sull customer requrements may de compiled from the iolowing yroups	3710 A	37164	3715A	3702 B	3705A	37038	$8605 A$	$3730 \mathrm{~A}$
Specily oniy ONE aption fromedeh group								
CONNECTOAS								
	$5 T D$	STD	STO	STO	$\sim$	-	050.051	STD
Sierrens large	002	002	002	002	-	-	-	002
Siemens small	003	003	013	003	$\checkmark$	-	,	003
Commercal equwalent of WECO 477e	004	004	004	OCA	-	-	*	9104
$n$ ¢ 75.1230 bal	004	-	-	004	-	-	-	-
Troen N flor AFS	-	-	-	-	-	-	STD	STD
BB FREOUENCIES								
83.3 250, 500xH2	-	-	Sto	-	-	STD	$\sim$	-
日3 3, 250, 500 kHz and $244435 . \overline{6}$, 2 2 $\mathrm{MH}_{2}$	-	STO	-	-	STr.	-	-	-
$92593277778,555556 \mathrm{kHz}$ with phase lock control	-	-	009	-	-	009	-	-
$92593,277776,555556 \mathrm{k}, \mathrm{Hz} 24358,56,82 \mathrm{MHz}$	$\checkmark$	010	-	-	010	-	-'	-
32593, 277778,555 550̂kHz, 24, $358,4.43,82 \mathrm{MHz}$	-	011	-	-	011	-	-	-
SWEEP FREQUENCIES		OPTIONS						
$7 \mathrm{COHz}_{2}$ internal	STD	-	-	STD	-	-	-	-
50 Hz internal	006	-	-	STD	-	-	-	-
100hz internal	007	-	-	STO	-	-	$\checkmark$	-
18H: internal with dandwisths of 90 and $100 \mathrm{H}_{2}$	STD	-	-	STD	015	015	-	-
VARIABLE Phase sweep		OPTIONS						
$0^{\circ} \pm 100^{\circ}$ and $180^{\circ}=100^{\circ}$ from 45 to $\overline{100 H z}$	008	-	-	-	-	-	-	-
mFfREQUENCIES		DOWN CONVERTER PLUG-INS						
	31314		3736A	3737A		3739A	3739A	
$1710 \pm 2 \mathrm{GHz}$	-		ST0	-		-	-	
3310656 Hz	-		-	STD		--		
5910656 Hz	\$70		-	-		-		
6310906 GHz	-		-	-		STD		
107101170 Hiz			-			-		

SYSTEM SELECTION CHART

Mieasurement	MLA				UP CONVERTER	DOWN CONVERTER	
	37104	37164/37154	3702B	3705A/37038	8605a, Opt 070	3730 A	3731, 6-9A
B3 to BB				$\Gamma$			
BE colf							
B8 to RF				1			
1F1089							
IF 10 lF							
IF 10 AF							
AF to 咟							
RF: 10 F			-				
RF to FF							

## Description

The Model 3750 A Attenuator is a general purpose $75 \Omega$ attenuator, being particularly suitable for the large value attenuation of radio frequency signals. The 3750A is symmerrical in design so that either port can be used as the input or outpur.

Specifications
Attenuation: 0 to 99 dB in 1 dB steps.
Frequency ranga: dc to 100 MHz .
Cumulative attenuation accuracy: $\pm 2 \mathrm{~dB}$ for 99 dB .
Impedance: $75 \Omega$.
Power dissipation: +24 dBm ( 250 mW )
Price: $\$ 180$.


## Description

The Hewlett Packard Model 8605A Communications Sweep Oscillator is an all solid state CW and swept source which offers 47 to 100 MHz IF coverage and multiband RF coverage. Multiband RF coverage is available anywhere in the microwave region, 1.7 to 13.25 GHz . While 4,6 and 11 GHz bands are standard options almost any other band or bands are avail. able upon request.

The instrument is easy to use and features excellent frequency accuracy and extremely flat power output characteristics ( 0.01 dB ). The 70 MHz IF sweep generator controls are on the right of the mainframe, the multiband RF (microwave) controls are separate and on the left of the mainframe. The multiband RF section features a band switching lever for convenient control of RF frequency range and a highly adaptive multiband, modular design that enables Hewlett-Packard to offer self-contained multiband capacity anywhere in the 1.9 to 13.25 GHz region. The 8605 A option 070 can also be used as a baseband to RF upconverter for the Hewlett-Packard Link Analyzer. For a description of this system see page 438.

## General instrument specifications

Sweep frequency; adjustable from 20 to 40 soreeps per second.
Sweep output: direct.coupled sawwooth, zero to approx. +10 V . Blanking output. o V during trace, +15 V during recrace.
Furnished: $71 / 2^{\prime}(2290 \mathrm{~mm})$ power cable with NEMA plug, rack. mounting kit, and accessory kit.
Power: 113 or $230 \mathrm{~V}=10 \%$, 3010400 Hz ; approx 150 walts.
Dímonslons: $51 / 4^{\prime \prime}(133,4 \mathrm{~mm})$ high, $163 / 8^{\prime \prime}(416,0 \mathrm{~mm})$ deep. $163 / 4$ " ( $425,5 \mathrm{~mm}$ ) wide.
Waight: (including RF section) $33 \mathrm{lbs}(15,0 \mathrm{~kg})$; shipping, 48 lbs ( $21,8 \mathrm{~kg}$ ).

## 70 MHz IF Section Specifications

Fraquency range: 47 to 100 MHz .
$\Delta F$ sweep width range: 0 to 33 MHz .
Frequency accuracy ( $29^{\circ} \mathrm{C}$ ): CW mode; $\pm 2 \mathrm{MHz}$; Cardinal markings every s $\mathrm{MHz}_{\mathrm{H}}$ rear panel BNC counter monitor jack provided.
Residual FM-CW mode: <1 kHz peak.
Linearity: $\Delta \mathrm{F}$ sweep mode, $\pm 2.9 \%$, as a $\%$ of sweep widh.
Maximum lovaled power outpuk: $>+10 \mathrm{dBm}$; internally leveled.
Power output variation (internally lavalad)i 35 to 85 MHz : $<0.01 \mathrm{~dB}$ peak to peak; 47 to $100 \mathrm{MHz}:<0.02 \mathrm{~g} \mathrm{~dB}$ peak to peak.
Power output slope adjustment range: 0 to +0.2 dB slope control.
Spurlous signala: (down from fundamental output at +10 dBm ): harmonics, more than 40 dB ; non-harmonics, more than 50 dB .
IF output; 75 ohm WECO 367A jack; other connectors available.

## Ordering information

Model 8605A Communicatlons Sweep Oscillator: price includes 70 MHz IF section and RF bands specified optionally below.
Optional RF bands (ordor only one option)

4 GHz band,	Option 001;	Price: $\$ 4185$
6 GHz band,	Option 002;	$\$ 4450$
11 GHz band,	Option $003 ;$	$\$ 4650$
$4 \& 6 \mathrm{GHz}$ bands,	Option $004 ;$	$\$ 5075$
$4 \& 11 \mathrm{GHz}$ bands,	Option 005;	$\$ 6225$
$6 \& 11 \mathrm{GHz}$ bands,	Option 006;	$\$ 6425$
$4,6 \& 11 \mathrm{GHz}$ bands.	Option 007;	$\$ 6775$
Other bands,	Request Hevect-Packard quotation	

## Connector and modulation options

Option 050: 78.0hm BNC in place of WECO-567A for IF outpur; Price: no charge.
Option 070: external FM input for use as up-converter with Hewlett-Packard Microwave Link Analyzers; Price: add S250.
Model 11675A Leveling Cable Assembly; Price: $5 s 0$.
Madel 7B4A Directional Detector; Price: 5625.

Band	Fraquaney Ranga	Fraquamoy Acourapy CW.Mada	Linanity\% olswasp Width	Mix, Levelad Pawne Inol. 7044	Power Virlation		ssurloue Slgnalo down from fondamental		$\begin{aligned} & \text { External } \\ & \text { FM-Opilon 070: } \\ & \text { Rete } \end{aligned}$
					$\begin{gathered} \text { Ovir } 30 \mathrm{MHz} \\ \text { Chanal } \end{gathered}$	Over aparifiad Band			
							Harmonio	\|Non- Harmante	
4 CHz	$\begin{aligned} & 3.85 \text { to } \\ & 4.25 \mathrm{GHz} \end{aligned}$	= 5 MHz	- $1.0 \%$	$\begin{aligned} & >+13 \mathrm{~d} 8 \mathrm{~m} \\ & (>20 \mathrm{mw}) \end{aligned}$	< +0.0188	< $=0.15$ dB	>-40 88	$>-60 \mathrm{~dB}$	DC to 8 MHz
6 GHz	$\begin{aligned} & 5.9 \mathrm{to} \\ & 6.5 \mathrm{GHz} \end{aligned}$	= 8 MHz	= $1.0 \%$	$\begin{aligned} & >+13 \mathrm{dBm} \\ & (>20 \mathrm{mw}) \end{aligned}$	< $\pm 0.01$ d8	$< \pm 0.15 \mathrm{~dB}$	> -40 $\mathrm{dB}^{\text {d }}$	>-60 d8	OC 108 MKz
11 CHz	$\begin{aligned} & 10.7 \mathrm{to} \\ & 11.7 \mathrm{GHz} \end{aligned}$	$=10 \mathrm{MHz}$	$\pm 2.0 \%$	$\begin{aligned} & >+10 \mathrm{dBm} \\ & (>10 \mathrm{mw}) \end{aligned}$	$<* 0.01 \mathrm{~dB}$	$< \pm 0.2 \mathrm{d8}$	$>-4088$	$>-60 \mathrm{d8}$	DC to 8 MHz
Other	$\begin{aligned} & \text { Portion of } \\ & 1.7-13.25 \\ & \text { GHz } \end{aligned}$	$-0.5 \%$   of band width	$\begin{aligned} & =1.0 \% \\ & 10 \\ & =2.0 \% \end{aligned}$	depends on band	$<\pi 0.01 \mathrm{~dB}$	$\begin{aligned} & \text { depends } \\ & \text { on } \\ & \text { band } \end{aligned}$	$\begin{aligned} & \hline \text { depends } \\ & \text { on } \\ & \text { band } \end{aligned}$	$\begin{aligned} & \text { typically } \\ & >-60 \mathrm{~d} \end{aligned}$	OC to 8 MHz

## Distortion analyzers

The goal of audio and communications equipment is to reproduce input signals faithfully at the output. System nonlinearity distorts the waveshape of the signals. Poor reproduction brought about by distortion will appear to the user of sudio equipment as a change in the quality or as noise; to the user of communications gear, it appears as channel crosstalk.
Distortion in amplifiers, created by nonlinear circuits, consists of components present in the output that are not contained in the input signal. An ac signa! that appears to be a pure sine wave as viewed on an oscilloscope (Figare I) may have some harmonic distortion. The total of these frequency components present in the signal, in addition to the fundamental frequency, can be measured quickly and easily with Hewlett-Packard distortion analyzers.

One type of distortion analyzer con. tains a narrow band rejection filter which, when properly tuned, removes the fundamental frequency so that the amplitude of the remaining components can be measured simultaneously. Hewlett-Packard distortion analyzers are used for fast quantitative measurements of total harmonic distortion and noise.


## Total harmonic distortion analysis

This measurement technique compares the amplitude of the harmonics to that of the original signal at the output where the original signal becomes the fundamental frequency of the harmonios. The defining equation is:
(1) total harmonic distortion $=$

$$
\frac{\sqrt{\sum(\text { harmonics })^{2}}}{\text { fundamental }}
$$

A frequency-selective voltmeter is needed to measure the fundamental, and either a selective voltmeter with a wide dynamic range or a frequency rejection circuit with a true rms detector is needed to measure the harmonics. The frequency
rejection sircuit nulls the fundamental and passes its harmonics to the detector with no attenuation so that the ratio besween the fundamental and harmonics can be determined.

A less expensive way to measure the total hamonit distortion, however, is to use a rejection filter and a broadband detector. Since the fundamental is not directly measured, the equation becomes (2) THD $=$

$$
\sqrt{\Sigma(\text { harmonics })^{2}}
$$

$$
\sqrt{(\text { tundamental })^{2}}+(\text { harmonics })^{2}
$$

If the distortion is less than $10 \%$, the denominaror of equation 2 will be within $1 / 2 \%$ of the denominator in equation 1 , which is as accurate as any frequency selective voltmeter.

There are two difficulties in making total harmonic distortion measurements. First, to get a measurement within the desired accuracy, the harmonic content of the test signal must not be more than $a$ third of the distortion expected to be caused by the system. Second, the chore of nulling the fundamental can be time. consuming. Oscillators that meet the distortion requirements and nulling equipment, which has recently become available, can overcome the difficulties.

## Automatic mull

Since the nulling of the fundamental is normally the time-consuming portion of total hamonic distortion measure. ment, great savings can be realized, especially in production line testing with an analyzer which automatically rejects the fundamencal. The time saved is as much as $2 s$ seconds of a 30 -second measure. ment. With automatic nulling, the accuracy of the null achieved is no longer a function of operator training, manual dexterity, or signal source frequency drift.

The analyzer will maintain a null even chough there is a slow drift in the inpur frequency. This ability to "pull" the null has opened the door to a number of ap-
plications where the total harmonic distortion measurements were not ceadily applied in the past. Among them are:

1. Single-frequency production line testing of such components as integrated. circuit amplifiers or eransformers. As long as the long term drift of the signal source is less than $+1 \%$, a good null will be achieved.
2. Optimizing the performance of an oscillator. Here, any variation in the pasameters causes the frequency to shift slightly. The automatic nulling of the analyzer allows the oscillator performance to be improved on a continuous basis rather than by relying on a point. to-point check which may or may not find the optimum point.
3. Correcting distortion in signal generarors which produce sine waves by mixing or by nonlinear shaping. The small frequency shifts would cause the loss of the null if it were not for the automatic null feature.

## Selecting an analyzer

Distortion analyzers may be regarded as the inverse of wave analyzers. Distortion analyzers remove any signal component to which they are tuned, having the rest of the signal for measurement. In practice, distortion analyzers are tuned to the fundamental frequency and, by mea. suring the amplitude of the remaining harmonic components all at once, they provide an indicarion of percentage total harmonic distortion. Distortion analyzers do not provide information about individual distortion products-wave analyzers (see page 444) and spectrum analyzers (see page 450) do this job, but they do not provide fast readings of the signal's rotal departure from sine wave purity.

Table 1 describes the models and features of Hewlett-Packard distortion analyzers.

Option 001, for each model. features VU meter characteristics conforming to FCC requirements.

Table 1

Model No,	Auto Nulling	H\|-Pass Filter	Lo-Pass Fllter	AM Defactor	Gear Reduclion Tuning
331A					X
332A				$x$	X
332A Opt. 405			X	X	X
333 A	X	$X$			
334A	$X$	$X$		$X$	
334A 0pt. H05	X		X	X	

Optional, for each model, features VU meter charactaristlcs conforming to fEC requirements.


## Description

Models 331A, 332A, 333A and 334A Distortion Analyzers measure total distortion down to $0.1 \%$ full scale at any frequency between 5 Hz to 600 kHz ; harmonics are indicated up 103 MHz . These instruments measure noise as low as so microvolts and measure voltages over a wide range of level and frequency. All four models may be used as sensitive wide range transistorized voltmeters for general purpose voltage and gain measurements. The transistorized ac voltmeter provides 13 ranges from $300 \mu \mathrm{~V}$ to 300 V cms full scale.

The HP Models 332A, 332A Option H05, 334A and 334A Option H0S Analyzers are provided with an amplitude modu. lation detector having a frequency range from 550 kHz to greater than 65 MHz .
The Model 334A is similar to Model 332A, but is provided with automatic fundamental nulling and a high pass filter. A switchable low-pass filter is available in the 332A Option HOs and 334 A . Refer to Table 1 on Page $4 \mathrm{~h}_{1}$ for available features.

## Specifications, 331A

Distortion measurement range: any fundamental frequency, 5 Hz to 600 kHz . Distortion levels of $0.1 \% \cdot 100 \%$ are measured full scale in 7 ranges.
Distortion measurement accuracy Harmonic measurement accuracy (full scale)

Fundamental Input Less Than 30 V			
Ranpe	$\pm 3 \%$	- $6 \%$	$\pm 12 \%$
100\% - $0.3 \%$	$10 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$	$10 \mathrm{~Hz} \cdot 3 \mathrm{MHz}$	
0.1\%	$30 \mathrm{~Hz} \cdot 300 \mathrm{kHz}$	20 Hz - 500 kHz	$10 \mathrm{~Hz} \cdot 1.2 \mathrm{MHz}$
Fundamental Inpul Grealer Tham 30 V			
Range	=8\%	$\pm 6 \%$	$\pm 12 \%$
100\% - $0.3 \%$	$10 \mathrm{~Hz} \cdot 300 \mathrm{kHz}$	$10 \mathrm{~Hz}-500 \mathrm{kHz}$	$10 \mathrm{~Hz} \cdot 3 \mathrm{MHz}$
0.1\%	$30 \mathrm{~Hz} \cdot 300 \mathrm{kHz}$	$20 \mathrm{~Hz}-500 \mathrm{kHz}$	$10 \mathrm{~Hz} \cdot 1.2 \mathrm{MHz}$

## Elimination characteristics

Fundemental rejection: $>80 \mathrm{~dB}$.
Second harmonic accuracy for a fundemental of: 5 to 20 Hz : better than +1 dB . 20 Hz to 20 kHz : berrer than $\pm 0.6 \mathrm{~dB}$. 20 kHz to 100 kHz : better than -1 dB . 100 kHz to 300 kHz : better than -2 dB . 300 kHz to 600 kHz : better than -3 dB .

Distortion introduced In Instrument: $<0.03 \%$ from 5 Hz to $200 \mathrm{kHz} ;<0.06 \%$ from 200 kHz to 600 kHz .
Meter indication is proportional to the average value of a sine wave.

Frequency calibratlon accuracy
Better than $\pm 5 \%$ from $s \mathrm{~Hz}$ to 300 kHz .
Better than $\pm 10 \%$ from 300 kHz to 600 kHz .
Input impedance: distortion mode: $1 \mathrm{Ma} \pm 5 \%$ slyunted by less than $70(* 90) \mathrm{pF}$ ( $10 \mathrm{M} \Omega$ shunted by $<10 \mathrm{pF}$ with HP 10001A 10:1 Divider Probe).
Voltmater mode: $1 \mathrm{M} \Omega \pm 5 \%$ shunted by $<35 \mathrm{pF} 1$ to 300 $V \mathrm{rms}$; $\mathrm{I} \mathrm{M} \Omega \pm 9 \%$ shunted by $<70 \mathrm{pF}, 300 \mu \mathrm{~V}$ to 0.3 Vims.

Input level for distortion measurements: 0.3 V rms for $100 \%$ set level or 0.245 V for 0 dB set level (up to 300 V may be allenuated to set-level reference).

DC Isolation: signal ground may be $\pm 400 \mathrm{~V}$ de from external chassis.

Voltmeter range: $300 \mu \mathrm{~V}$ to 300 V rms full scale ( 13 ranges) 10 dB per range.

Voltmeter accuracy (using front panel input terminals)

fange	$\pm 2 \%$	$\pm 6 \%$
$300 \mu \mathrm{~V}$	$30 \mathrm{~Hz}-300 \mathrm{kHz}$	$20 \mathrm{~Hz} \cdot 500 \mathrm{kHz}$
$1 \mathrm{mV} \cdot 30 \mathrm{~V}$	$10 \mathrm{~Hz} \cdot 1 \mathrm{MHz}$	$5 \mathrm{~Hz} \cdot 3 \mathrm{MHz}$
$100 \mathrm{~V} \cdot 300 \mathrm{~V}$	$10 \mathrm{~Hz} \cdot 300 \mathrm{KHz}$	$5 \mathrm{~Hz} \cdot 500 \mathrm{kHz}$

Noise measurements; voltmeter residual noise on the $300 \mu \mathrm{~V}$ range $<25 \mu \mathrm{~V}$ rms, when terminated in 600 s (shielded), $<30 \mu \mathrm{~V}$ rms terminated with a shielded $100 \mathrm{k} \Omega$ resistor.
Output: $0.1 \pm 0.01 \mathrm{~V}$ rms open circuit and $0.05 \pm 0.005 \mathrm{~V}$ ims into $2 \mathrm{k} \Omega$ for full scale meter defiections.

Output impedance: $2 \mathrm{k} \Omega$.

Power supply: 115 or $230 \mathrm{~V} \pm 10 \%, 50$ to 400 Hz , approximately 4 W . Terminals are provided for external battery supply. Positive and negative voltages between 30 V and 50 V are required. Current drain from each supply is $\mathbf{4 0} \mathrm{mA}$.

## Model 332A

(Same as Model 331A except as indicated below.)
AM detector: high impedance dc restoring peak detector with semiconductor diode operates from 550 kHz to greater than 65 MHz . Broadband input, no tuning is required.
Maximum input: 40 V p-p or 10 V peak transient.
Distortion introduced by detector: carrier frequency: 550 $\mathrm{kHz}-1.6 \mathrm{MHz} ;<50 \mathrm{~dB}(0.3 \%)$ for 3.8 V ems carriers modulated $30 \%$. $1.6 \mathrm{MHz}-65 \mathrm{MHz}:<40 \mathrm{~dB}(1 \%)$ for 3.8 V rms carriers modulated $30 \%$.

NOTE: distortion introduced at carrier levels as low as 1 V is normally $<40 \mathrm{~dB}(1 \%) 550 \mathrm{kHz}$ to 65 MHz for carriers modulated $30 \%$.
332A Option H05: same as 332A except low'pass fiter is added (four-pole, 3 dB dorn at 30 kHz ); merer reads in dBm .

## Model 333A

(Same as Model 331A excepl as indicared below.)

## Automatic nulling mode

Set level: at least 0.2 V rms.
Frequency ranges: X 1 , manual null toned to $<3 \%$ of set level; rotal írequency hold-in $\pm 0.5 \%$ about true manual null. X 10 through X 10 k , manual null tuned to $<10 \%$ of set level; rotal frequency hold-in $\pm 1 \%$ about true manual null.

Automatic null accuracy: $S \mathrm{~Hz}$ to 100 Hz ; merer reading within 0 to +3 dB of manual null. 100 Hz to 600 kHz ; meter reading within 0 to +1.5 dB of manual null.
High-pass filter: 3 dB point at 400 Hz with 18 dB per octave roll off. 60 Hz rejection $>40 \mathrm{~dB}$. Normally used only with fundamental frequencies greater than 1 kHz .
Power supply: same as Model 331A except current drain from each supply is 80 mA .

## Model 334A <br> (Same as Model 333A except includes AM Decector described under Model 332A.)

334A Option H05: same as 334 A except a low pass filter is substituted for the high-pass filter; meter reads in dBm .

## General

Weight: ner. $173 / 4 \mathrm{lbs}(8 \mathrm{~kg})$; shipping, $26 \mathrm{lbs}(11,8 \mathrm{~kg})$.
DImensions: $163 / 4^{\prime \prime}$ wide. $5^{\prime \prime}$ high (without removable feet), $131 / 4^{\prime \prime}$ deep ( $426 \times 126 \times 337 \mathrm{~mm}$ ).

Accessories furnished: rack mounting kit for $19^{\prime \prime}$ rack.
Price: HP 331A. \$680; HP 332A, \$710; HP 333A, \$920; HP 334A, 8550; 332A Option H0s, add \$110; 334A Option H05, add $\$ 85$; Option 001, indicating meter has VU characteristics conforming to FCC requirements for AM/FM and TV broadcasting, add $\$ 15$.

## WAVE \& DISTORTION ANALYZERS

## GENERAL INFORMATION

## What is a wave analyzer?

Wave Analyzer, Frequency Selective Voltmerer, Carrier Frequency Voltmeter, Tuned Voltmeter . . . they're all the same thing. just different names.

A wave analyzer can be thought of as a finite bandwidth window filter which can be tuned throughout a particular frequency range.

figure 1. Wave analyzer tunable filter.
Signals located on the frequency specrum will be selectively measured as they are framed by the window. Thus, for a particular signal, the wave analyzer can indicate its frequency (window position) and amplitude. Amplitude is read on an analog meter: frequency is read on either a mechanical or elecrronic readour. It has the advantage of accuracy, resolution, ease of operation and low cose.

The uses of wave analyzers can be categorized into three broad areas; 1) amplitude measurement of a single component of a complex frequency spectrum, 2) amplitude measurement in the presence of noise and interfering signals and, 3) measurement of signal energy appearing in a specified, well defined bandwidrh.

## Time-to-frequency domain conversion

The primary difference between wave analyzers and oscilloscopes is that the analyzers present information in she frequency domain while oscilloscopes display in the time domain. Since most information can be displayed in either domain, the user must decide which presentation is most meaningful for his application. As an example, when look. ing at an amplitude-modulated signal on an oscilloscope, it is difficult to extract frequency and amplitude information about the carrier and sidebands. But by using a trave analyzer, carrier and sideband information can be accurately and clearly obtained, as seen in Figure 2.


Figure 2. Carrier and sideband information can be accurately and clearly obtained by using a wave analyzer.

## Wave analyzer considerations

## Frequency characteristics

Range: should be selected with the future in mind as well as present require. ments.

Accuracy and resolution: should be consistent with available bandwidths. Narrow bandwidths require frequency dial accuracy to place the narrow window in the proper position for measurement. Accuracy of instruments with selectable bandwidths is determined by the basic center frequency accuracy of the IF bandwidth filters in addition to the local oscillator frequency accuracy. Accuracy is usually specified as a fied frequency efror at any point on the dial meaning poorer percentage accuracy at the low frequency sertings.

Readout: usually a frequency dial but newes instruments use a frequency counter as a dial. Although digital read. out is more expensive, its accuracy and ease of use outreigh the increased cost.

Stability: frequency stability is important when using narrow bandwidths and for long eerm signal monitoring. Stability is achieved by phase locking and frequency counters, but the best stability is with automatic frequency control (AFC). AFC locks the locil oscillator to the in. coming signal and eliminates any relative drift betreen the two. It serves as a kuning aid to pull the signa! to within the passband eliminating peaking the frequency control. The AFC always tunes within the passband improving accuracy on repetitive measurements.

Sweep; some instruments are equip. ped with a sweep arrangement to allow use as a spectrum analyzer. Readout is a CRT or X.Y recorder. Some inseruments sweep the local oscillator while others use an external spectrum analyzer to sweep a broadband IF.

## Amplitude characteristics

Range: the amplitude range is determined by the input attenuator and the internal noise of the instrument. Sensitivity is defined as the lowest measurable signal level equal to the noise level for a unity signal-to-noise ratio (often called rangential sensitivity). Sensitivity will vary with bandwidrin and input impedance.

Dynamic range: defined as the dB ratio of the largest and smallest signals that can be simultaneously accommodated withour causing an error in the measurement of the smaller.

Attenuators: the amplitude range switch is an attenuator in the input and IF stages. Instruments are available rith a single control which switches inpur and IF range in predetermined steps or with two switches for independent control of input and IF range. Intermodulation disrortion is lowest when the input amplifier has the minimum signal applied and the IF gain is greatest. Conversely the internal noise. important when making sensitive measurements, is lowest with maximum input signal and lorest IF gain. The two attenuator instruments allow this ransfer of gain between input and IF to be accomplished easily.

Accuracy: amplitude accuracy is a function of ercquency, input atrenuator response, IF attenuator performance. calibration oscillator stability and aceuracy, and meter tracking. Often specifications are broken up to separately describe each coneributor.

Readout: amplitude readout is usually a meter calibrated in dB and/or volts. Linear voltage meters are used to allon the user to see down into the noise at the bottom of the scale. Digital readouts are not used because of their slon re. sponse and lack of directional and positional information. This is important since the zeadout is used as a tuning indicator to show presence of a signal in the passband and when it has reached ${ }^{3}$ peak. Expanded scale meters allowing expansion of any 1 or 2 dB portion of the scale into a full scale presentation, allow resolution of input level changes of a few hundredths of a dB . This is useful when the wave analyzer is used as a sensitive indicator in bridge or comparison measuremenrs. The expanded scale meter is included in some instru. ments and is an exrernal accessory on others.

## Input characteristics

Impedance: may be high impedance
bridging input of terminating impedance to match standard transmission lines. High frequency measurements require matched systems to avoid error-producing standing waves on interconnecting cables. The measure of impedance accuracy is usually return loss or reflection coefficient (RL $=20 \log \mathrm{p}$ ). In lower frequency instruments, percent accuracy is used. High input impedance instru. ments are usually poorer in frequency and noise performance and are usually low frequency instruments. High imped. ance at high frequencies is accomplished by using a bridging probe to place the impedance at the point of measurement. The probe may be active with unity gain or passive with $20-50 \mathrm{~dB}$ insertion loss.

Input arrangement: input may be bal. anced-to-ground or unbalanced. Communications system usage typically re. quices balanced input. Standard 600 and 133/150 0 balanced inpurs are limited in frequency to less than 1 MHz and $124 \Omega$ balanced to less than 10 MHz in most instruments. The impedance may be bal-
anced to ground with the center point grounded or may be complerely isolated from ground. Unbalanced inputs do not have frequency range limitations.

## Typical application Frequency response testing

With its BFO output, the arave ana. lyzer is particulariy useful for measucing filter and amplifier frequency responses. An alternative approach is to drive the device with a flat oscillator and measure its outpur with an accurate broadband voltmeter. However, this technique can lead to some very misleading results. If a notch filter is being measured, the rejection can only be as great as the largest distortion component of the driving sig. nal. Reasoning shows that when the driving signal's fundamental is tuned to the notch center frequency, it will be filtered out, allowing all of its harmonits to be passed and measured.

A similar problem exists when trying to measure the response of a high-pass
filter. The fundamental is again rejected while the harmonic distortion components are being passed and measured.

To be sure that the measurement will be accurare, Hewlett-Packard wave analyzers track and detect only its BFO ouiput fundamental as it is tuned across its frequency range. The notch of the filter will then be accurately measured to its full depth.


Figure 3. Only signal detected by wave aralyzer, for example, the notch of a filter can be accurately measured to its full depth.

Table 1. HP wave analyzers.


## WAVE \& DISTORTION ANALYZERS



3595A

## Description

The Hewlett-Packard Model 3590A Wave Analyzer offers sutornatic, state-of the-art detection of signal amplitude and requency information. Over a frequency range of 20 Hz to $j 20 \mathrm{kHz}$, the analyzer can separate frequency components of in input signal to locate the fundamental, harmonics, internodulation products, or any other signals present in the specrum. Selectable bandwidths of $10,100,1000$ and 3100 Hz vermit easy location of signals and separation of closely spaced :omponents. Operation has been greatly simplified by autonatic amplitude ranging and electronic sweeping. X.Y recorder jutputs permit frequency specrium recordings to be made coverng the entire frequency range with a linear dB amplitude display of 90 dB


## Recorder outputs

Both X and Y recorder outputs are available at the rear panel of the 3590A. These ourputs produce either logarithmically or linear varying dc voltages. Any combination of X and Y log ar linear outputs (Lin $\cdot \operatorname{lin}, \operatorname{lin} \cdot \log , \log -\operatorname{lin}$, or $\log \cdot \log$ ) can be thosen to provide maximum flexibility. Recordings can also be nade on standard semi-log graph paper to produce direct plots.
Y-axis iog and linear outpurs occur simultaneously, but the X-axis output is switched to choose the ourput function. When he switch is in LINEAR (RAMP ONLY), the dc offset proJuced by the statt frequency location is blocked out. This
oermits wide expansion of a narrow sweep segment without having to buck our the offset voltage.

A contact closure drops the pen during the sweep. During retrace and standby, the pen is lifted.

## Plug-ins

## 3592A Auxiliary Plug-in

The 3592 A is made for the situation where two or more nain frames are slave tuned. This situation occurs when two iignals are to be analyzed simultaneously. An example of this $s$ reading X and Y axis sensors in a vibration test. The other olug-ins can also be slave tuned

## 3593A/4A/5A Sweeping Local Ostillator

The 3993A was designed for last sweeping for short periods of time. It represents a price savings over the other sweeping olug-ins.
The 3594A has a nixie tube readout for accurate setting of itart frequencies and readout of frequencies during sweep. The $j$-digit readout represents an order of magnitude improvement n resolution over the mechanical readouts of the other plug-ins.
The 3595A was designed to fulfill the requirement of slow iweeping for long periods of time. Using the $2 \mathrm{~Hz} / \mathrm{s}$ sweep ipeed the 3595A can sweep the entire audio spectrum ( 20 Hz $20,000 \mathrm{~Hz}$ ) with a 10 Hz bandwidth. It is also possible to ;neep a baseband signal from 312 kHz to 552 kHz with a 1000 Hz bandwidrh. These Iongrime sweeps can be made autonatically with no resetting or manual ranging.

## jpecifications <br> 3590A Wave Analyzer

'requency range: 20 Hz to 620 kHz .
"requency accuracy: reíer to plug-in specs.
tmplitude ranges: $3 \mu \mathrm{~V}$ to 30 V full scale in 16 ranges.
implitude accuracy (meter switch in normal position)
Jvarall accuracy: $\pm 0.5 \mathrm{~dB}$ or $\pm 9 \%$ of reading, including the following: frequency response flamess: $\pm 0.2 \mathrm{~dB}$ or $\pm 2 \%$ total deviation; meter tracking: $\pm 0.1 \mathrm{~dB}$ or $\pm 1 \%$ of reading, 0 dB to -10 dB indication.

Amplitude ancuracy (meter switch in ilnear aB position)
Overall accuracy: $\pm 1 \mathrm{~dB}$; internal calibrator: frequency: $100 \mathrm{kHz} \pm 10 \mathrm{~Hz}$; amplitude: full scale on 0 dB range in CAL mode; amplitude accuracy: $=0.1 \mathrm{~dB}( \pm 1 \%)$ with 90 day calibration cycle.
Dynamic range (IM and harmonic distortion products)
$>85 \mathrm{~dB}$ below zero dB reference level when ABSOL UTE measurements are being made ( $>70 \mathrm{~dB}$ for 20 Hz to 50 Hz ). $>80 \mathrm{~dB}$ below zero dB reference level when RELATIVE adjustment is used ( $>70 \mathrm{~dB}$ for 20 Hz to 50 Hz ); (residual responses) : $>80 \mathrm{~dB}$ below zero reference ( $>70 \mathrm{~dB}$ for 20 Hz to 50 Hz ).
Noise level (on . 01 V max input voltage range at 20 kHz )

Bandwitths	Input Noise Level ( $600 \Omega$ iSource Impedance)
10 Hz and 100 Hz	$<0.3 \mu \mathrm{~V}$
	or at least 90 dB below 0 dB reference
1 kHz and 3.1 kHz	$<1.0 \mu \mathrm{~V}$
	or at least 80 dB below 0 dB reference

## Selectivity (shape factor) Bandwidths

Pajection	10 Hz	100 Hz	1 kHz	3.1 kHz
-3 dB Point	10 Hz	100 Hz	1 kHz	3.1 kHz
-60 d 8 Point	35 Hz	320 Mz	3.1 kHz	9.6 kHz

Automatic frequency control: capture threshold: 75 dB below 0 dB reference, AFC will lock on trace signal; dynamic hold-in range: $>3$ bandwidths. Tracking tate proportional to bandwidth.
Input impedance
Resistance: $100 \mathrm{k} \Omega$ all ranges.
Capzeitance: $<50 \mathrm{pF}$ for $10 \mathrm{mV}, 30 \mathrm{mV}$ ranges $<30 \mathrm{pF}$ for 100 mV to 30 V ranges.
Automatle ranging: 8 ranges, 0 dB to -70 db . Ranging rate proportional to bandwidth.
Mode outputs: amplitude: adjustable 0 to 1 V rms open cir-
cuit; BFO frequency flatness: $\pm 0.2 \mathrm{~dB}$ or $\pm 2 \%$; resistance: $600 \Omega$, BFO frequency is equal to tuned frequency.

## L.O. output

Frequency: 1.28 MHz to 1.90 MHz ( $1.28 \mathrm{MHz}+$ tuned frequency): amplitude: $0.65 \mathrm{~V} \mathrm{rms} \pm 20 \%$ open circuit; resistance: $250 \Omega$.
Recorder outputs

X-Axis	Plus-in Frequency Ranges	
(3593A/3594A only)	62 kHz	620 kHz
$X$-axis linear output: (1 $\mathrm{X} \Omega$ source resistance)	$\begin{aligned} & 0 \pm 0 \cdot 12.4 \mathrm{~V} \\ & (200 \mathrm{mV} / \mathrm{kH} 2 \pm 5 \%) \end{aligned}$	$010-12.4 \mathrm{~V}$   ( $20 \mathrm{mV} / \mathrm{kHz}+5 \%$ )
$X$-axis log output:	$5 \mathrm{~V} / \mathrm{d} \mathrm{e}$ eade $\pm 5 \%$	$5 \mathrm{~V} /$ decade $\pm 5 \%$
$11 \mathrm{k} \Omega$ source resistance)		

$Y$-axis: linear $Y$ axis output: +5 V dc $\pm 4 \%$ for full scale meter indication, $2.5 \mathrm{k} \Omega$ source resistance; $\log \mathrm{Y}$ axis output: +1 V to $+10 \mathrm{~V} \mathrm{dc}, \pm 0.1 \mathrm{~V}$ proportional to linear dB meter indication ( -90 to $0 \mathrm{~dB}, 0.1 \mathrm{~V} / \mathrm{dB}$ ) $1 \mathrm{k} \Omega$ source resistance.
Pen lift: contact closure during sweep, open during reset (3593A/3594A only).
Power: 115 V or $230 \mathrm{~V}=10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 115 \mathrm{VA}$ (includes plug-in).
Dimensions: $163 / 4^{\prime \prime}$ wide, $83 / 4^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep ( $425 \times 221 \times$ 416 mm ).
Weight: net $38 \mathrm{lbs}(17,2 \mathrm{~kg}$ ); shipping, $55 \mathrm{lbs}(24,9 \mathrm{~kg})$.
Accessories turnished: rack mounting kit for $19^{\prime \prime}$ rack.
Price: HP 3590A, $\$ 3280$.

## Specifications

Model 3592A Auxliary Plug.in
Externa! L.O. Input: $0.65 \mathrm{~V} \pm 0.2 \mathrm{~V} \mathrm{rms}, 1.28$ to 1.90 MHz ( 1.28 MHz + tuned frequency).
Welght: net, 2 libs ( .9 kg ); shipping, $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Dimensions: $8^{\prime \prime}$ high, $4.5^{\prime \prime}$ nide, $11^{\prime \prime}$ deep ( $20 \times 11 \times 28 \mathrm{~cm}$ ).
Price: HP 3592A, $\$ 80$.

	MODELS 3593A and 3594A		MODEL. 3595A	
Ranges:	20 Hz to 62 kHz	500 Hz to 620 kHz	20 Hz 1062 kHz	500 Hz 10620 kHz
Frequency   Accuracy:	$\begin{aligned} & 3593 \mathrm{~A}: \pm(1 \%+20 \mathrm{~Hz}) \\ & \text { of dial setting } \\ & 3594 \mathrm{~A}: \pm(1 \mathrm{~Hz}+\text { time } \\ &\text { bese accuracy }) \end{aligned}$	$\begin{aligned} 3593 \mathrm{~A}: & \pm(1 \%+200 \mathrm{~Hz}) \\ & \text { of dial setting } \\ 3594 \mathrm{~A}: & \pm(10 \mathrm{~Hz}+\text { time } \\ & \text { bese accuracy }) \end{aligned}$	$\begin{aligned} & \pm(1 \%+20 \mathrm{~Hz}) \\ & \text { of disl setting } \end{aligned}$	$\begin{gathered} \pm(1 \%+200 \mathrm{~Hz}) \\ \text { of dial setting } \end{gathered}$
Frequency Resolution:	3593A:10Hz/minor div. 3594A: $1 \mathrm{~Hz} /$ minor div.	3593A: $100 \mathrm{~Hz} /$ minor div. 3594A: 10Hz/minor div.	$10 \mathrm{~Hz} / \mathrm{minor}$ div.	$100 \mathrm{~Hz} / \mathrm{minor}$ div.
Ext. Freq. Contral:	$\begin{gathered} 01015.5 \mathrm{~V}(250 \\ \mathrm{mV} / \mathrm{xHz} \pm 5 \%) \end{gathered}$	$\begin{aligned} & 0 \text { to } 15.5 \mathrm{~V}(25 \mathrm{mV}) \\ & \mathrm{kHz} \pm 5 \%) \end{aligned}$	$\begin{aligned} & 0 \text { to } 15.5 \mathrm{~V} \\ & (250 \mathrm{mV} / \mathrm{kHz} \pm 5 \%) \end{aligned}$	$\begin{aligned} & 0 \text { to } 15.5 \mathrm{~V} \\ & (25 \mathrm{mV} / \mathrm{kHz} \pm 5 \%) \end{aligned}$
Bandwidth Specified:	$\begin{gathered} 10,100,1000 \\ 3100 \mathrm{~Hz} \end{gathered}$	100, 1000, 3100 Hz	$\begin{gathered} 10,100,1000 \\ 3100 \mathrm{~Hz} \end{gathered}$	100, 1000, 3100 Hz
X-axis   Recorder   Ourput:	Linear output: 0 to-12.4 V			
	$200 \mathrm{mV} / \mathrm{kHz} \pm 5 \%$	$20 \mathrm{mV} / \mathrm{kHz} \pm 5 \%$	Same as 3593A/94A	
	Log'output: $5 \mathrm{~V} /$ decade $\pm 5 \%$			
	50 Hz calib, point	500 Hz calib. point	20 Hz calib. point	200 Hz calib. point
Y-axis:	Refer to main frame specifications			
Sweep Rates:	1. $10,100,1000,3100 \mathrm{~Hz} / \mathrm{s}$.		1. 2, 10, 100, $1000 \mathrm{~Hz} / \mathrm{s}$.	
Sweep Ramp Linearity:	$\pm 1 \%$ of tinal value		$\begin{aligned} & \pm 2.5 \% \text { of final value for first } \\ & 10,000 \mathrm{~s} \text {. } \end{aligned}$	
Max Sweap Time:	$6205 \pm 15 \%$		60,000 s.	
Start Freq:	determined by frequency setting			
Pan Lift:	contact closure during sweep, open during reset.			
External L.O. Output:	$0.65 \mathrm{~V} \pm 0.2 \mathrm{~V}$ (ms, 1.28 to $1.90 \mathrm{MHz}(1.28 \mathrm{MHz}+$ tuned frequancy).			
Dimensions:	$8^{\prime \prime}$ high, 4.6" wide, $11^{\prime \prime}$ deep ( $20 \times 11 \times 28 \mathrm{~cm}$ ),			
Weight:	net $7.5 \mathrm{lbs}(3,4 \mathrm{~kg}$ ); shipping $12 \mathrm{lbs}(5.5 \mathrm{~kg}$ ).		net $9.5 \mathrm{lbs}.(4,3 \mathrm{~kg})$; shipping $14 \mathrm{lbs} .(6,3 \mathrm{~kg}$ )	
Price:	HP 3593A, \$1130; HP 3594A, S1640.		HP 3595A, \$1250	

WAVE \& DISTORTION ANALYZERS


## Description

The Model 302A Wave Analyzer separates a complex input signal into individual frequency components such as harmonic, intermodulation products, and other spectral components. By runing the 302 A across the spectrum, the components can be individually measured and evaluated. Frequency is read in Hz from the dial, and amplitude is read in volts, percent or $d B$ from the meter,

The 302A is also an oscillator-runed voltmeter combination. This feature is particularly useful for measuring input-output characteristics of filters, amplifers, and active devices. The oscillator output (BFO) and the analyzer's input tuning track cogether over the entire range of 20 Hz to 30 kHz and is controlled by the tuning dial. Because one control tunes both the oscillator output and the analyzer input simultaneously, onestep response measurements are made simply, quickly and conveniently. And, since the analyzer has a very narrow bandpass, any signal distortion has negligible effect on the meter reading, making measurements highly accurate even at very low levels.

Specifications, 302A
Frequency range: 20 Hz to 90 kHz .
Frequency accuracy: $\pm(1 \%+5 \mathrm{~Hz})$.
Frequency resolution: 10 Hz per division.
Amplitude ranges: $30 \mu \mathrm{~V}$ to 300 V full scale in 15 ranges.
Amplitude accuracy: $\pm 5 \%$ of full scale.
Internal level callbrator
Amplitude accuracy: $\pm 2 \%$.
Amplitude: ) V full scale.
Frequency: $5 \mathrm{kHz} \pm 1 \mathrm{kHz}$.
Dynamic range
IM and harmonic distortion products: $>75 \mathrm{~dB}$ below D dB reference.
Residual responses: $>75 \mathrm{~dB}$ below 0 dB reference.
Selectivity

Rojertlan	Bandwlddi
0.1 dB	$>2 \mathrm{~Hz}$
3 dB	$7 \mathrm{~Hz} \pm 10 \%$
60 dB	$80 \mathrm{~Hz} \pm 10 \%$
80 dB	$140 \mathrm{~Hz} \pm 10 \%$

## Input impedance

Resistance: $30 \mu \mathrm{~V}$ to 1 mV input ranges, $100 \mathrm{k} \Omega ; 3 \mathrm{mV}$ to 300 V input sanges, $1 \mathrm{M} \Omega$.
Capacitance: $30 \mu \mathrm{~V}$ to 1 mV input ranges, $<100 \mathrm{pF} ; 3 \mathrm{mV}$ to 300 V input ranges, $<20 \mathrm{pF}$.

## Mode outputs

AFC and NORMAL outputs: 0 to 2 V rms open circuit proportional to merer defection. Frequency is exactly the same as the measured component's frequency.
AFC holdin range: $> \pm 100 \mathrm{~Hz}$.
BFO: constant-level amplitude, adjustable 0 to 2 V rms open circuit. Output frequency tracks the tuned frequency.
Frequency response flatness: $\pm 2 \%$.
Source resistance: 600 n .
Recorder output: 1 V open circuit; source resistance, $1 \mathrm{k} \Omega$.
Power: 115 or $230 \mathrm{~V}=10 \%$, 48 to 440 Hz , approx, 10 VA ; terminals are provided for powering instrument from external battery source; battery supply range, 28 V to 18 V .
Dimenslons: cabiner $203 / 4^{\prime \prime}$ wide, $121 / 2^{\prime \prime}$ high, $141 / 2^{\prime \prime}$ deep behind panel ( $527 \times 318 \times 368 \mathrm{~mm}$ ).
Welght: cabinet: ner, $43 \mathrm{lbs}(19,5 \mathrm{~kg}$ ) ; shipping, $51 \mathrm{lbs}(23$ kg ) : rack mount: ner, 35 lbs ( 16 kg ); shipping, 49 lbs ( 22,1 $\mathrm{kg})$.
Price: HP 302A (cabinet), 52195. HP 302AR (rack mount), 52180

## Sweep tuning

Hewlett-Packard Models 302A, 310A or 312A Wave Analyzers can be swept through all or any part of their ranges with the HP Model 297A Sweep Drive. The 297A, which attaches to the front panel of the analyzer, drives the frequency conroll at either 17 or 170 Hz per second. This instrument also provides an ourput voltage proportional to the sweep which, in conjunction with the recorder output from the analyzer, permits automatic plots of amplitude vs. frequency on an X-Y recorder.

## Specifications, 297A

Sweep Ilmits: any interval from 64 revolutions to $10^{\circ}$.
Sweep speed with 302A: 170 and $17 \mathrm{~Hz} / \mathrm{s}$.
Shaft speed: $10 \mathrm{rpm}, 1 \mathrm{rpm}$, and neutral; other shaft speeds available on special order; neutral permits manual opera. tion.
Sweep voltage output: at least 12 V maximum; full output is obtained with either 2.1 or 50 rpm of the shaft.
Torque: 9 in/oz at 10 rpm (approx. 22 in/oz max. at 1 rpm ).
Power: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 40 \mathrm{VA}$ running or stalled.
Weight: net, $41 / 4 \mathrm{lbs}(1,9 \mathrm{~kg})$; shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: HP $29^{\circ} \mathrm{A}, \mathrm{St}+5$.
HP 297 A option H03, power: $230 \mathrm{~V}, 50 \mathrm{~Hz}$.

## WAVE ANALYZER Measure harmonics, intermodulation products Model 310A

## WAVE \& DISTORTION ANAL YZERS



## Description

Model 310A High Frequency Wave Analyzer separates the various frequency components of an input signal so that the fundamental, harmonies, or intermodulation products can be determined and analyzed. Any signal component between 1 kHz and 1.5 MHz may be selected for measurement. Model 310A also functions as an efficient tuned voltmeter for accurately measuring relative or absolute signal levels, as a signal source for selective response measurements, and as either an AM receiver or carrier insertion oscillator for demodulating single sideband signals.

## Specifications

Frequency range: 1 kHz to 1.5 MHz ( 200 Hz bandwidth): 5 kHz to 1.5 MHz ( 1000 H 2 bandwidth) ; 10 kHz to 1.5 MHz (3000 Hz bandwidth).
Frequency accuracy: $\pm(1 \% \div 300 \mathrm{~Hz})$.
Frequency scale: linear graduation, 1 div per 200 Hz .
Selectlulty: 3 IF bandwidths, $200 \mathrm{~Hz}, 1000 \mathrm{~Hz}$ and 3000 Hz , midpoint of the passband ( $f_{0}$ ) is readily distinguished by a rejection region 1 Hz wide berween the 3 dB points.

	$\begin{gathered} 200 \mathrm{~Hz} \\ \text { bandwldah } \end{gathered}$	$\begin{gathered} 1000 \mathrm{HI}_{1} \\ \text { bendwldth } \end{gathered}$	$\begin{aligned} & \text { 30W0 } \mathrm{Hz} \\ & \text { bandwldth } \end{aligned}$
Rejeollon*	frequestay ( $\mathrm{H}_{1}$ )	frequanoy (Hz)	frequanoy $(H z)$
$\geq 3 \quad 88$	$\mathrm{f}_{0} \pm 108$	$\mathrm{f}_{0}=540$	$1_{0}=1550$
$\geq 50 \mathrm{~dB}$	$f_{0} \pm 500$	$\mathrm{f}_{0}=2400$	$\mathrm{f}_{0} \pm 7000$
$\geq 75 \mathrm{~dB}$	$f_{0}=1000$	$t_{0}=5000$	$10 \pm 17000$

*Rejection Increases smoothly beyond the -75 de points.
Voltage range: $10 \mu \mathrm{~V}$ to 100 V full scale, ranges provided by input attenuator and meter range switch in steps of $1: 3$ or 10 dB .
Voltage accuracy: $\pm 6 \%$ of full scale.
Internal callbrator stabllity: $\pm 1 \%$ of full scale.
Dynamic range: $>75 \mathrm{~dB}$.
Nolse and spurious response: at least 75 dB below a full-scale reference set on the $0 d B$ position of Range switch.

Input resistance: determined by input attenuator; $10 \mathrm{k} \Omega$ on most sensitive range, $30 \mathrm{k} \Omega$ on next range, $100 \mathrm{k} \Omega$ on other ranges; shunt capacitance $<100 \mathrm{pF}$ on three most sensitive ranges, $<50$ pF on orker ranges,
Automatic frequency control: dynamic hold-in range is $\pm 3 \mathrm{kHz}$ minimum at 100 kHz ; tracking speed is approximately 100 Hz / s; locks on signal as low as 70 dB belon a full-scale reference set on the 0 dB position of the Range switch.
Restored-frequency output: restored signal frequency maximum output is at least 0.25 V (merer at full scale) across $135 \Omega$, with, approximately 30 dB of level conerol provided; outpui impedance approximately $135 \Omega$.
BFO output: 0.5 V across $135 \Omega$ with approx. 30 dB of level conerol provided; output impedance approx. $135 \Omega$,
Recorder output: 1 V de into an open circuit from 1000 § source impedance for single.ended recorders; ourput of $1 \mathrm{~mA} d c$ inco $1500 \Omega$ or less arailable on special order.
Receiver function (Aural or Recording provision); intemal car. rier reinsertion oscillator is provided for demodulation of either normal or inverted single sideband signals; AM signal also can be detected.
RFI: conducted and radiated leakage limits are below those specified in MIL-I.6181D.
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to $400 \mathrm{~Hz} ; 20.5 \mathrm{~W}$ max.
Dimenslons: $16^{3} / 4^{\prime \prime}$ wide, $103 / 4^{\prime \prime}$ high, $183 / \mathrm{B}^{\prime \prime}$ deep ( $426 \times 274 \times$ 467 mm ) ; hardware furnished for conversion to rack mount $19^{\prime \prime}$ wide, $10.15 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panel ( $483 \times 266 \times 416$ mm )
Weight: nei $45 \mathrm{lbs}(20,3 \mathrm{~kg})$ : shipping $52 \mathrm{lbs}(23,4 \mathrm{~kg})$.
Accessories available: [1001A Cable Assembly, 813 : 10503A Cable Assembly, $\$ 13$; 10111A Adapter, $\$ 10$; 207A Sweep Drive, 5445: 11505A Bench Stand for 297A, 525.
Price: HP 3LOA, $\$ 2835$.

## Optlons

001: internal frequency calibrator providing check points every 100 kHz ; interpolation accuracy (between check points): $\pm 2 \mathrm{kHz}$ up to $1.4 \mathrm{MHz}, \pm 3 \mathrm{kHz}$ between 1.4 and 1.5 MHz; add \$110.
002: dB scale uppermost on meter face and extended to -25 dB ; add $\$ 30$.

## Spectrum Analyzers

Basically a spectrum analyzer is a swepr receiver that provides a CRT display of amplitude versus frequency. It shows how energy is distributed as a function of frequency, displaying the Fourier components of a given waveform. With it you can measure frequency response; characterize mixers, doublers, and other frequency conversion devices. You can measure signal purity or see directly the bandwidth needed to pass a given signal.


CW Signal. This is a calibrated display of a -30 dBm CW signal at 60 MHz . The zero frequency indicator appears at the far left of the display; the horizontal scan is $10 \mathrm{MHz} /$ div. The $\log$ reference level (top graticule line of the display) is 0 dBm .

Oscillators


Oscillator spectral purity. The spectrum analyzer may be used to measure the spectral purity of oscillators. Above, a 70 MHz carrier has line related sidebands ( 60 Hz ) which are 65 dB down. These sidebands may be the result of ripple on the power supply. The spectrum analyzer scan is 50 Hz per division, and a 10 Hz bandwidth was used to allow resolution of the close in sidebands.

Frequency converters


Mixer. Driving a double-balanced mixer with an L.O. of 50 MHz at 0 dBm and with a $5 \mathrm{MHz},-30 \mathrm{dBm}$ sig. nal, results in the output shown. The $\log$ reference level is -10 dBm and the frequency scan is 10 MHz division centered at 50 MHz . The two sidebands at 45 MHz and 55 MHz have a conversion loss of $6 \mathrm{~dB}(6 \mathrm{~dB}$ below the $-30 \mathrm{dBm}$ graticule line). The local oscillator ( 50 MHz signal) has 50 dB isolation. 5 MHz signal leak-through is at -71 dBm , i.e., 41 dB isolation. Second order distortion products at 40 and 60 MHz are 40 dB down.

## Modulators



50 percent AM. Figure A shows a time domain photograph of an amplitude modulated carrier. The percent modulation is: $\mathrm{M}=(6-2) /(6+2)=$ $4 / 8=50 \%$. (Scope calibration 0.1 msec ) division, $50 \mathrm{mV} /$ division.) The same waveform is measured in the frequency domain in " $B$ " since the carrier and sidebands differ by $12 \mathrm{~dB}, \mathrm{M}=50 \%$. Fre. quency scan is $10 \mathrm{kHz} /$ div centered at 60 MHz , and the $\log$ reference level is +10 dBm . You can also measure the 2nd and 3rd harmonic distortion on this waveform. 2nd harmonic sidebands ar fc $\pm 2 \mathrm{fm}$ are 28 dB down.

## Amplifiers



8


Harmonic distortion. Overdriving an anplifier results in a severely distosted waveform easily observed with the oscilloscope; however, quantitative measurements of distortion levels are difficuls to obtain. The scope calibration is 0.05 volt/ division vertical, $0.1 \mu \mathrm{sec} /$ division horizontal. The spectrum analyzer easily gives quantitative information about the distortion of the two signals. The frequency scale is 5 MHz /division centered at 25 MHz , and the log reference level is 0 dBm .

Filters


Filter frequency response. Using a track. ing signal source and a spectrum ana. lyzer. filter frequency response is easily measured and recorded. In this case, an audio filter used in a communications system is being measured. The spectrum analyzer scan is 0 to 10 kHz . The $\log$ reference level is -10 dBV , and the input to the filter was at -13 dBV . Therefore, the insertion loss at 2.4 kHz is 4 dB . Extremely high-Q devices can be measured with this system.

## Spectrum Analyzer Capabilities

To be useful in making measurements in the frequency domain, the analyzer must be capable of making quantitative measurements. To make guantitative measuremeots, an analyzer must:

1) make absolute frequency measure. ments
2) make absolute amplitude measurements
3) operate over a large dynamic range
4) have frequency and amplitude high resolution capability
5) have high sensitivity
6) provide means of observing signals at the slow sweep rate high resolution scans i.e. variable persistence.
Hewlett-Packard spectrum analyzers ex. cel in these six measures of performance.

Let us consider each of these petformance standards in greater detail.

## Absolute frequency measurements

There are two ways to measure absolute frequency with an Hewlett-Packard spectrum analyzer. The absolute frequency can be read off the slide-rule type of frequency dial. Accuracy in this case is approximately $1 \%$ of full scale. It is also possible to use a counter and tracking generator to measure the frequency of signals on the CRT to much better accuracy.

The tracking generator is a source that tracks the spectrum analyzer runing response. Hence, the tracking generator frequency is equal to the frequency the spectrum analyzer is tuned to. Counting the rracking generator frequency results in precision frequency measurements.

## Absolute amplitude measurements

All Hewlet-Packard spectrum analyzers are absolurely calibrated for amplitude measurements. This means the spectrum analyzer indicates to the user what the $\log$ ref level or linear sensjtivity is regardless of control settings. In addition, a warning light is available to signal any combination of control settings that leads to an uncalibrated condition. This makes operation of the analyzer easy and foolproof.

## Dynamic range

The dynamic range of a spectrum analyzer is defined as the difference between the inpur signal level and the average noise level or distortion products whichever is greater. Hence, dynamic range
can be either distortion limited or noise limited.

## Frequency and amplitude resolution

Prequency resolution is the ability of the analyzer to separate signals closely spaced in frequency. The frequency resolution of an analyzer is a function of three factors;

1) minimum IF bandwidth
2) IF filter factor
3) spectrum analyzer stability

The minimum IF bandwidth ranges from 10 Hz to 300 Hz on Hewlett. Packard spectrum analyzers.

IF filter factor is the ratio of 3 dB bandwidth to 60 dB bandwidth. Filter factor specifies the selectivity of the $I E$ filter. Hewlett-Packard spectrum analyzers have IF filter factors as low as 11:1.
Analyzer frequency stability also limits resolution. The residual FM (short term stability) should be less than the nacrowest IF bandwidth. If not, the signal would drift in and out of the IF pass band. Hewlett-Packard analyzers have excellent scabilicy. The residual FM ranges from $<1 \mathrm{~Hz}$ at low frequency, to $<100 \mathrm{~Hz}$ at microwave frequencies. The stabilization circuirry is completely automatic and foolproof. No signal recenter. ing, phase-lock loop manual search, or checking is required.

Amplitude resolution is a function of the vertical scale calibration. HewlettPackard analyzers offer both log calibration for observing large amplitude variations ( $10 \mathrm{~dB} / \mathrm{div}$ and $2 \mathrm{~dB} /$ div) and linear calibration for observing small am. plitude variations.

## Sensitivity

Sensitivity is a measure of an analyzer's ability to detect small signals, and is often defined as the point where the signal level is equal to the noise level. Since noise level decreases as the bandwidth is decreased, sensitivity is a func. tion of bandwidth. The maximum attain. able sensitivity ranges from -140 dBm to - -125 dBm with Hewletr.Packard analyzers.

## Variable persistence

High resolution and sensitivity both require nartow bandwidths and consequently slow sweep rates. Because of these slow sweeeps, variable persistence is virtually indispensable in providing a bright, steady, flicker-free trace. (In effect, variable persistence allorws one to
vary the length of time a trace remains on the CRT.)

## Tracking preselector

Spurious responses are generated when the analyzer is over-driven. In addition if an analyzer urilizes harmonic mixing. multiple and image responses can occur.

The only way to simultaneousiy avoid spurious, multiple, harmonic and image responses, is to filter the RF signal through a tracking preselector. This is an electronically tuned bandpass filter that automatically tracks the analyzer's tuning. A preselector improves the dynamic range of the analyzer from 70 dB to 100 dB .

## Tracking generator

A tracking generator is a tracking sig. nal source which tracks the runing response of a spectrum analyzer. The tracking generator expands the measurement capability of the spectrum analyzes.
A tracking generator/spectrum analyzer is ideal for frequency response and recurn loss measurements. Inserting a test device between the tracking generator and analyzer results in a display of the insertion loss versus frequency or frequency response of the device. Return loss measurements versus frequency are also possible with a directional coupler or hybrid. The tracking generator also makes precision frequency measurements possible as described in "Absolure Frequency Measurements" above. In addition, the tracking generator is an excellent stable sweeping signal generator. The residual FM ranges from $\pm 1 \mathrm{~Hz}$ for low frequency fracking generators to $\pm 400$ Hz for microwave tracking generators.

## Wave analyzers

Wave analyzers offer another method of measuring both the amplitude and frequency of an input signal's component. A wave analyzer is similar to a spectrum analyzer. How'ever, the characteristics of a wave analyzer ase optimized for low frequency narrow band measurements.

The electronic sweeping and amplitude aucoranging of the new HP 3590A wave analyzer permit $X . Y$ and strip chart plors of amplitude versus frequency over a frequency range of 20 Hz to 620 kHz and a dynamic range of more than 85 dB .

A BFO ourput is available with Hew. lect-Packard wave analyzers. This outpur corresponds to a tracking generator output in a spectrum analyzer. With a BFO output swept frequency response mea. surements are possible.

## The high value Spectrum Analyzer Family . . .

- Coves 20 Hz to 40 GHz with just a change of tuning section.
- Select a system from a wide choice of configurations.
- Add measurement capability to your system as it is needed.
- Enjoy the advantages of a fully calibrated solid state system.

Your Choice of .. .
tuning sections... and companion
instruments.


The Family Features...


SPECTRUM ANAL YZERS cominizd
Tunling Section, IF Sections and Bisplay Sections

The Tuning Sections...


8556A-20 Hz to 300 kHz

- Absolute Amplitude Accuracy to $\pm 0.6 \mathrm{~dB}$.
- 20 Nanovalt Sensitivity ( $\rightarrow 142 \mathrm{dBm} 508$ ).
- High Resolution 10 Hz Bandwidth $<1 \mathrm{~Hz}$ Residual FM (with 8552B).
- Selectable Scan Widths-Preset from 0 or Symmetrical Abour Center Frequency.
- Built-in 0.01\% Crystal Markers for Frequency Accuracy.
- Two Frequency Scales Selectable ( $0.30 \mathrm{kHz}, 0.300 \mathrm{kHz}$ )
- Fully Isolated High Impedance Input Useful with Compensated. Oscilloscope Probes.
- Built-in Tracking Generator for Swept Frequency Response. Measurements Over 120 dB Range.
- Counter Output for Precision Frequency Measurements.
- Price: $\$ 1,690$.


## $8553 \mathrm{~B}-1 \mathrm{kHz}$ to 110 MHz

- Absolute Amplitude Accuracy to $\pm 0.8 \mathrm{~dB}$.
- Maximum Sensitivity - 140 dBm ( 10 Hz Bandwidth).
- 10 Hz Resolution to See 60 Hz Sidebands 60 dB Down (with 8552B).
- Scan Widths from 200 Hz to 100 MHz .
- Frequency Accuracy $\pm 10 \mathrm{~Hz}$ with Tracking Generator.
- Two Frequency Scales Selectable ( $0.11 \mathrm{MHz}, 0.110 \mathrm{MHz}$ ).
- Probe Power Provided for Use with High Impedance Active Probes.
- All Distortion Products 70 dB Down with -40 dBm to Mixer.
- Price: \$2,275.


## 8554 L - 500 kHz to 1250 MHz

- Absolute Amplitude Accuracy to $\pm 1.6 \mathrm{~dB}$.
- Sensitivity to - 117 dBm ( 300 Hz Bandwidth)
- Residual FM Less Than 300 Hz .
- Scan Widths from 20 kHz to 1250 MHz .
- Frequency Accuracy $\pm 10 \mathrm{MHz}$.
- All Distortion Products 65 dB Down with -40 dBm to Mixer.
- Price: $\$ 3,500$.


## $8555 \mathrm{~A}-10 \mathrm{MHz}$ to 40 GHz



- Absolute Amplitude Accuracy to $\pm 1.6 \mathrm{~dB}$.
- Direct Coax Input to 18 GHz .
- Maximum Sensitivity -125 dBm (Fundamental Mixing. 100 Hz Bandwidth).
- High Resolution 100 Hz Bandwidth ( 30 Hz First LO Residual FM).
- Full Scans of 2, 4, 6, and 8 GHz Free of Unwanted Responses with Preselection.
- Frequency Accuracy $\pm 15 \mathrm{MHz}$ (Fundamental Mixing)
- Price: \$6,179.


## The IF Sections

## 8552日-High Resolution

- 11:1 IF Filter Factor (5-Stage Crystal Filter).
- 10 Hz Minimum Bandwidth.
- $10 \mathrm{~dB} /$ Div Log, $2 \mathrm{~dB} /$ Div Log. and Linear Displays.
- Video Filter $10 \mathrm{kHz}, 100 \mathrm{~Hz}$, and 10 Hz Positions.
- Calibrated Logarithmic and Linear Display Sensitivity Controls.
- Base Line Clipper for Betrer Viewing of Display.
- Price: $\$ 2,950$.



## 8552A-Economy

- 25:1 IF Filter Factor.
- 50 Hz Minimum Bandwidth.
- Log and Linear Displays (Log is $10 \mathrm{~dB} / \mathrm{Div}^{\text {}}$ ).
- Video Filter 10 kHz and 100 Hz Positions.
- Calibrated Logarithmic and Linear Display Sensitivity Controls.
- Base Line Clipper for Berter Viewing of Display.
- Price: $\$ 2.275$.


## The Display Sections

## 141T-Variable Persistence

- Variable Persistence for Those High Resolution Slow Scans.
- Storage for Signal Comparison and Sudy.
- Conventional Standard Persistence Operation Available.
- Internal Graticule to Eliminate Parallax Reading Errors.
- Accepts Time Domain Oscilloscope Plug-ins as Well as Any Spectrum Analyzer Frequency Domain Tuning or IF Sec. tion.
- 8-Division Linear Display and 70 dB Logarithmic Display.
- Price: $\$ 1,800$.


## 140T-Standard Persistence

- Standard Persistence P-7 Phosphor.
- Internal Graticule to Eliminare Parallax Reading Errors.
- Accepts Time Domain Oscilloscope Plug-ins as Well as Any Spectrum Analyzer Frequency Domain Tuning or IF Sec. tion.
- 8-Division Linear Display and 70 dB Logarithmic Display.
- Price: $\$ 950$.


## 143S—Large Screen

- Large Screen Vierving for Demonstration, Lectures, Etc.
- Internal Graticule to Eliminate Parallax Reading Errors.
- Accepts Time Domain Oscilloscope Plug ins as Well as Any Spectrum Analyzer Frequency Domain Tuning or IF Section.
- 8-Division Linear Display and 70 dB Logarithmic Display.
- Price: $\$ 1.700$.



## Tracking Generators

100 kHz .110 MHz

$500 \mathrm{kHz} \cdot 1300 \mathrm{MHz}$


With the 8443, the 8553B system becomes a:

- SWEPT FREQUENCY RESPONSE MEASUREMENT SYSTEM
Frequency Resolution $<10 \mathrm{~Hz}$
Amplíude Resolution 0.1 dB
Dynamic Range $>120 \mathrm{~dB}$
- SWEEP GENERATOR

Residual FM	$<1 \mathrm{~Hz}$ peak•to-peak
Calibrated Output	$-120 \mathrm{dBm} t 0+10 \mathrm{dBm}$
Output Flatness	$\pm 0.5 \mathrm{~dB}(8443 \mathrm{~A}$ only)
Frequency Accuracy	10 Hz
SELECTIVE FREQUENCY COUNTER (8443A ONLY)	
Sensitivity	$25 \mathrm{nV}(-140 \mathrm{dBm})$
Selectivity	10 Hz
Resolution	10 Hz

With the 8444A (use with 8554L or 8555A), the spectrum analyzer system becomes a:

- SWEPT FREQUENCY RESPONSE MEASUREMENT SYSTEM

Erequency Resolution 1 kHz Amplitude Resolution 0.1 dB Dynamic Range $>90 \mathrm{~dB}$

- SWEEP GENERATOR

Residual FM	400 Hz peak-to-peak (8554L)
	$200 \mathrm{~Hz}(8555 \mathrm{~A})$
Calibrated output	0 dBm to -10 dBm
Flatness	$\pm .75 \mathrm{~dB}$

Perform precision frequency measurements:

- EXTERNAL COUNTER OUTPUT Unknown signals $\pm 10 \mathrm{kHz}$ accuracy Frequency response $\pm 400 \mathrm{~Hz}$


## Automatic Preselectors

8445A
$10 \mathrm{MHz} \cdot 18 \mathrm{GHz}$, Standard $1.8 \mathrm{GHz} .18 \mathrm{GHz}, 0 p t .010$


Price: Standard, \$2,000; Opt. 010, \$1,400
8445A
$10 \mathrm{MHz}-18 \mathrm{GHz}$, Opt. 020
$1.8 \mathrm{GHz}-18 \mathrm{GHz}$, Opt. 030


Price: Opt. 020. \$2,200; Opt. 030, \$1,600

With the 8555A tuning section, the 8445A preselector:

- ELIMINATES ALL UNWANTED RESPONSES.
- IMPROVES DYNAMIC RANGE by Eliminating Harmonic Distortion Products.
- IMPROVES ANALYZER INTERMODULATION DIS. TORTION Characteristics for Signals Spaced Down to 50 MHz .
- Prevents Analyzer LO Power from Interfering with Sensitive Circuitry,
- Allows Use of 2, 4, 6, AND 8 GHZ SCANS for Signal Measurement Not Just Observation.
- Completely AUTOMATIC OPERATION Leaves User Free to Concentrate on Measurement Itself.
- DISCONNECTS FROM ANALYZER for Critical Mea. surements So That Maximum Analyzer Sensirivity and Best Frequency Response Are Available.

SPECTRUM ANALYZERS

High Impedance Probes
For making signal measurements without disturbing circuitry. (See Pages 419 and 173.)

## Passive Fitters

To improve the performance of the analyzer by eliminating unwanted responses. (See Page 394.)

## External Mlxer

To extend the frequency range of the analyzer to 40 GHz , Taper sections for $12.4-18 \mathrm{GHz}$ (11518A), 18-26.5 GHz (11519A) or $26.5-40 \mathrm{GHz}$ (11520A) bands are required.
Price: $\$ 200$ (Mixer only).
\$125 (Taper sections each).

## Directional Bridge

For making return loss measurements from 100 kHz to 110 MHz . (See Page 420.)

## Preamplifiers

Improve noise figures of $8553 \mathrm{~B}, 8554 \mathrm{~L}$ and 8555 A by 16 dB and more. (See Page 34.)

## Comb Generator

For precision frequency measurements to $.01 \%$ accuracy. Usable up to 5 GHz .
Price: $\$ 675$.


10020A


11517A


## AUTOMATIC SPECTRUM ANALYZERS Spectrum monitoring, component testing Model 8580 B



- The workable answer for spectrum monitoring and management
- The economical solution for test. ing RF/microwave components and subsystems.
- The new approach to a broad range of signal analysis needs


## Description

The 8580B Automatic Spectrum Analyzer is a Aexible measurement system for applications in spectrum monitoring and network characterization from 10 kHz to 18 GHz . This system consists of a variety of programmable instruments that are controlled from a small instrumentation computer. The measurement heart is a calibrated receiver with programmable tuning and bandwidth. This receiver can be tuned from 10 kHz to 18 GHz by simple one line statements in BASIC measurement programs. Receiver bandwidth is selectable from 10 Hz to 300 kHz . Other programmable system functions include input selection (up to 8 ports) and sensitivity (down to -130 dBm ).

Optional signal sources expand the capability of the 8580 systems. Precision RF sources, with programmable level and frequency, supply signals required to excite test devices for network analysis measurements.

## Applications

The 8580 B Automatic Spectrum Analyzer is a valuable tool for gathering spectral density data on signals present in complex electronic equipment or in a geographic region. RFI testing, for example, is enhanced by the automatic system's ability to correct for sensor transfer functions and compare measured data against specification limits. Performance of a complex communication network can be continually
monitored to report network performance on a regular basis. Similarly, radiation in a particular locale can be surveyed to gather statistics on available spectrum or unauthorized transmissions. These applications emphasize an important feature of the Automatic Spectrum Analyzer; totally unattended operation. The 8580 may be programmed to measure, analyze, and record results, and hence run without human intervention, for long periods. This makes comprehensive monitoring a practical tool for spectrum management.

Network characterization is also greatly advanced through use of an Automatic Spectrum Analyzer. An 8580 can measure the magnitude of reflection and transmission coefficients of linear networks, as well as the distortion parameters (harmonic, intermodulation, cross-modulation) of non-linear devices such as amplifiers. Frequency translators such as mixers, modulators, and frequency multipliers are also readily characterized. Additionally, oscillators can be evaluated for output level, distortion, and spurious output signals.

For both surveillance and network characterization applications, the 8580's absolute calibration (frequency and power), broad frequency coverage, high frequency accuracy, wide measurement range, speed, and ease of programming. combined with the Rexible hardware option list, offer a measurement system that can be tailored to your application. Contact your local Hewlect.Packard office for complete technical information.

- Analyze frequencies down to dc.
- Completely characterize random signals.
- Peform statistical analysis on-line.
- Get accurate results, using digital techniques.

These are some of the unique characteristics of the Hewlett-Packard line of Digital Signal Analyzers. These instruments are finding extensive use in situations where low frequency signals (below about 250 kHz ) need to be analyzed in detail, on line, at a reasonable cost. The Digital Signal Analyzers are described on the following pages, $460-467$.

## What is DSA?

The signal analyzers described on the preceeding pages are ideally suired to characterizing coherent or relatively noise-free signals. There are certain mea. surement problems, however, which they cannot solve. "Traditional" instrumentation typically is incapable of:

> Analyzing candom signals or signals obscured by noise.
> Measuring the joint properties of two or more signals.
> Computing complex statistical functions of a signal.
> Analyzing very low frequency sig. nals (below about 20 Hz ).

In the past, these problems could be tackled only by a general purpose digital computer which w'as usually off-line and expensive, and required special training to operate. The DSA line offers the ad. vantages of digital computation without these drawbacks, at considerably less cose than custom-built systems.
Figure 1 shows the basic functional components of a Digital Signal Analyzer. One or more inpuls are sampled at regu. lar intervals, $\Delta t$. A number of sampled amplitude values are converted to digital form and fed to the memory. The desired function is compured in the arithmetic unit using a series of input samples, and the result is again stored in memory. The content's of the memory cao be read out ro a display, allowing observation of the results during analysis. The whole operation is overseen by a controller.

## Advantages

The use of digital techniques gives these analyzers several advantages over analog instruments. They are able to

analyze very low frequency signals, down to dc, with high accuracy and stability. They are also flexible, being able to compure many different statistical functions with a wide variety of averaging times.

Equally important, digital signal analyzers are easy to use. They can be operated without special programming, and they have built-in, calibrated CRT displays for easy interpresation of results. Outputs to X.Y recorders for hard copy are standard, and each analyzer can be easily interfaced to a computer for further analysis of data.

These advantages have opened up several new applications for signal analysis, many of them in fields which are not traditional users of electronic instiamen. tation.

## Applications

Here are just a few applications in which the benefits of digital signal analysis are particularly significant.

Bearing fault detection: Local vibra. tions of a bearing are detected using an accelerometer mounted on the bearing housing. The output of the accelerometer is fed to a Fourier Analyzer which can identify spectral "signatures" of the vibration signal. Such puantities as roughness, out of round, or lack of centering can modify the signature of a good bear. ing. Interpreting these signatures may require complex manipulation of the spectra; this is greatly simplified by use of the Fourier Analyzer's computer.

Certain localized faults, such as cracks or pits in the bearing surface, emit "clicks" each time they pass the point of contact. These are best detected by time averaging, which separates vibrations which are synchronous with shaft rota-
tion from those which are not. This averaging can be performed best by the 54805 Signal Analyzer which is a special purpose signal averager. The user there. fore has a choice between the low cost unit for this specific operation, or the general purpose Fourier Analyzer, which can perform more complex analysis in addition to signal averaging.

Study of aerodynamic turbulence: Researchers in this area are very familiar with the advantages of statistical analysis for extracting information from low frequency random signals. In particular, the cross-correlation function between the outputs of two rransducers down stream from a model in a wind tunnel can measure the way in which turbulence decays as it progresses down the stream. Model 3721 A Correlator can measure this correlation function much more rapidly and conveniently than an off-line computer.

Measurement of dynamic system response: New rechniques of testing such systems as aircraft servos, process control systems, and voice communication channels involve the use of noise as a test signal. The advantages of noise are that it contains all frequencies in the band of interest, and it simulates the kind of signals which perturb these sys. tems duting normal operation. Measure. ment of the cross-correlation, transfer, and coherence functions between the noise input and the output of these sys. tems can characterize them very rapidly even during normal operation, in the presence of other signals.

There are many other areas in which DSA is proving a useful measurement tool. Further information is available in the form of application notes for each instrument in the line.

FOURIER ANALYZER 4 Input Channels. DC to 100 kHz Model 5451A

Features

- Increased Frequency Range. DC to 100 kHz
- Expandable $A D C$ to 4 Channels, 12 Bits
- Relocatable Softrare
- 80 dB Dynamic Range
- Keyboard Control-no softrare knowledge needed
- Real Time Analysis-three speeds to choose from


5466A (4 channel option)

## Description

The 5551 A is an integrated system which includes an ana. log-to-digital converter (ADC), display unit, digital processor. complete softrare package, and a user-oriented keyboard, and can provide the complete answer to low frequency signal analysis problems. The system employs powerful mathematical techniques such as the Fourier Transform and statistical averaging to calculate: transfer function. coherence function. auto power spectrum (with double precision preserving wide dynamic range), cross power spectrum, auto and cross correlation, to name a few. Complete digital operation assures maximum accuracy with system flexibility, yet no computer programming knowledge is required to operate the system. The user simply presses keys on the keyboard to perform the measurement desired.

The Relocatable Softorare and a "U'ser Program Key" allor's user written programs in Forrran or Assembly language to be easily integrated into the system, providing almost unlimited Hexibility and measurement power.

Threc speeds of Real-Time Analysis are offered with the 5451A. Optional 5470A Fast Fourier Processor and 5471A FFT Arithmetic Unit offer real-time power spectrum calculations to 18 kHz and 2.0 kHz respectively, with the standard 5451 A providing this calculation real-time to 375 Hz . These increased performance options may be added at any time with. our affecting the keyboard operation of the system. Since the digital processor is an HP 2100A computer, the 5451 A can optionally include peripherals such as digital magnetic capes, discs, etc. for expanded system performance.

The new 5466 A ADC provides the capability for thannel simultaneous measurement to $100 \mathrm{kHz}, 10$ or 12 bit resolution and remote programmability.

## Measurement application areas

- Mechanical Impedance
- Vibration Modal Analysis
- Acoustics
- Transfer Functions
- Communications
- Signature Analvsis


## Major specifications

Amplitude Range: 125 to 8 V peak in steps of 2
Inout Impedance: 1 M a shunted by 75 pF max.
Conversion Gain (per channel)
Accuracy: $\pm 1 \% \pm .16 \times 10^{-5} \% / \mathrm{Hz}$ of full scale.
Number of Channels: 2 , optionally 4 .
Resolution: 10 bits, oprionally 12 bits.
Input Frequency Response:
Small signal. $>1 \mathrm{MHz}-3 \mathrm{~dB}$.
Large signal, 500 kHz .

## Sample Rate Control:

Max. frequency mode: 0.1 Hz to 100 kHz in steps of $1.2,5$. $\Delta F$ mode: 0.002 Hz to 1000 Hz in steps of $1,2,5$.
Data Word Size: 16 bit real and 16 bit imaginary, 32 bits preserved for double precision functions.
Dynamic Range: 80 dB ( 72 dB with 5470 A or 5471 A ).
Computational Speed (with HP 2100A Computer):

Canflquratlon	Fourier Transform		Power Speotrum Averapa	
	12 sts .	1024 pts.	12 tapts .	1024 pts.
5451A	75.0 ms	980.0 ms	133.0 ms	1360.0 ms
5451A/5471A	15.4 ms	160.0 ms	33.5 ms	250.0 ms
5451A/5470A	3.3 ms	15.2 ms	11.5 ms	28.9 ms

```
 5471A Arithmetic Unit
Low cost, hardwired fourier transform arithmetic unit
Features:
 - Fourier Transform (1024 poinr) in 160 ms*
 - Plug-in for all HP 2100 series computers
 - Lon Cost
 - 4 to 2048 point transform (8192 optional)
 - Extend HP Fourier Analyzer capability
```


## Description:

The 5471A Fast Fourier Transform Arithmetic Unit is a special-purpose, high-speed arithmetic unit designed to perform the necessary array manipulations for signal analysis based on the Fast Fourier Transform. It operates on blocks of 16 -bit data woods representing either time or frequency domain data. The 5471A performs the following array manipulations: forward and inverse Fourier transform, Hanning, real, complex and complex conjugate block multiplication, scaling and block addition. Block scaling, block addition and self complex conjugate block multiplication can be single or double precision, yielding up to 72 dB dynamic range for auto power spectrum averaging.

For stand-alone use, the 5471A is supplied with a driver callabie from HP Assemoly language or from HP Fortran.

When the 5471A FFTAU is incorporated in the HP 5451 A Fourier Analyzer, the processing speed can be increased a fac. tor of six without affecting the standard keyboard operation of the system.


Operation times with 2100A computer (1024 word block size) * Fourier Transform 161 ms Hanning 19 ms Black Mulisly 29 ms Addition 31 ms Self Complex Coniugare Block Multiply 21 ms
Memory requirements: driver: 1536 w'ords; data: 4 to 204 s words.
Power requirements: $\div 4.83$ volts $=8$ amps, -2 volts $=.25$ amps.
Price: $\$ 4500$.
-With 2100. A.

## 5470A Fast Fourier Processor

High speed signal analysis at an attractive cost

## Features:

- Fourier Transform ( 1024 point) in 15.2 ms
- Internal 4 K Mernory, 8 K optional
- Parallel Processing with host computer


## Descriptions:

The 5470A Fast Fourier Processor is a special-purpose, stand-alone digital processor designed to perform routines for FFT signal analysis. The fast processor operates under the functional control of any 2100 series Hewletr. Packard computer and is especially designed to be compatible with the HP s451A Fourier Analyzer System.

The 5470 A accepts either rime or frequency domain data in single or dual channel form into a $\$ 096$ - or 8192 -word memory and performs these array manipulations:

Forward and Inverse Fourier Transform,
Time Domain Weighring by Hanning,
Rea! and Complex Block Mulriplication,
Complex Conjugate Block Multiplication,
Block Addition, and
Block Scaling.
The S470A also performs complete spectrum analysis functions of:

Power and Cross Power Spectrum, and
Auto and Cross Correlation.
By doing division routines in the host computer, the system can use the fast processor options to accomplish coherence function and transfer function operations at extremely high speeds.


The 5470A operates through two I/O channels, and with the general purpose driver callable in Fortran or Assembly language, the full power of the 5470 A becomes available through user written routines.

When the s470A is installed in an HP s415A Fourier Analyzer system, the system software is configured to include the 5470 A driver, allowing keyboard control of the 5470 A . Processing speeds can be increased up to 100 times with no change in user operations.
Options are available for additional 4 K memory, and for 4096 point block size.

Prices start at $\$ 25,000$.

## DIGITAL SIGNAL ANALYZERS

## SIGNAL ANALYZER

Signal averaging and statistical analysis
Models 5480S, 5481A, 5494A


## 5480 S Signal Analyzer

Signal averaging provides an unparalleled method of recovering a signal buried in background noise. Featuring true and weighted averaging, real time variance, and the ability to measure correlation functions and histograms, the 5480 S brings a new dimension to the analysis of noisy signals.

True Averaging: Display aloway represents true average calibrated in volts per centimeter; the display does not "grow" as in conventional summation but remains stable as the noise disappears.

Weighted Averaging: A time varying signal may be observed in this mode which exponentially de-emphasizes old information in favor of new.

Summation Averaging: Algebraic summation process. Sig. nal will grow from stable base line. If placed in AUTO mode, display will be automatically calibrated at the end of the preser number of sweeps.

Fficker Free: Continuous display for all sweep speeds allows viewing the accumulated data while acquisition takes place.

Varlance: The statistical variance is a measure of the deviation of a signal about its mean. The 5480 S gives you, point by point. the real time variance of Channel $A$ by averaging the square of the noise present in the signal. This allows you to spot variations in your signal or tells you exactly when the display represents the true average.

Multiple Inputs: The 5485A Two Channel Input and the 5487A Four Channel Input plug-ins offer multiple channel capability.

HIstograms: The 5480 S provides frequency and time in. terval histograms, and multi-channel scaling.

Time Interval: Time between synchronization pulses. Horizontal calibration by time base.

Frequency: Start and stop determined by time base. Horizontal calibration by time base. This capability can be extended with the H15.5326B, to include trend analysis, such as post stimulus histograms, and dwell and latency histograms.

H15-5326B Counter: A modified 5326 B (catalog page 264), this unit can set precise threshold levels for dwell and latency histograms, and provides a gated output for time interval trend analysis.

Mult-Channel Scaling: The analyzer sweeps through memory remaining at each channel for a preset time. A plot of the number of input pulses versus time is displayed.

Correlation: With the 5488A plug.in, the frequency of a noisy signal can be obtained by auto-correlation, while the common frequency and relative phase difference of two noise signals can be obtained by cross-correlation.

Input Filtering: Each 5480S System includes the 5489 A Two Channel Input Filtec; in addition to removing high frequency noise to reduce averaging time, the X10 gain provided by the 5489 A increases resolution (page 465).

## 5481A Signal Analyzer System

Combining the 54805 with the HP 2100 A Digital Computer, the 5481 A Signal Analyzer System permits extensive on-line analysis of gathered data. Fourier transforms, power spectra, curve integration, smoothing, and differentiation, and many other data manipulating functions are possible. Or the 5481A System may be used for automating your other instrumentation providing you with multiplexed ana$\log$ to digital conversion, display output on built-in 5480 Oscilloscope, a 1000 word buffer memory, and controlling software.

## Prices

All 5480 S Signal Amalyzer Systems include the 1042 word, 24 bit Memory/Display mainframe, the 5486B Control Plug-in, and the 5489A Two Channel Low-Pass Filter/ Amplifier: the digitizing plug-in is chosen by option.

5480S Signal Analyzer	$\$ 9050$
Opt 001 5485A Two Channel Input	N.C.
Opt 002 5487A Four Channel Input	$+\$ 375$
Opt 003 5488A Cortelation/Average Input	$\$ 475$
5489A Low-Pass Filter	$\$ 425$

The basic 5481A Signal Analyzer System includes the 5480S, the 2100A Digital Computer, the 2752A Teleprinter, and the 10625A Interface with complete software.

5481A Signal Analyzer System
$\$ 26,200$
Complete specifications availaole on the 5480 B Technical Data Sheet. Consult Ordering Information Guide for pricing details.

## dIGITAL SIGNAL ANALYZERS

## 3721 A Correlator

The Model 3721 A Correlator is a digital statistical signal analyzer covering the range dc to 250 kHz . It computes autocorrelation, crosscorrelation, and amplitude probability functions. In addition, a signal recovery facility uses signal averaging to improve the signal-to-noise ratio of a repetitive signal buried in noise. The resultant functions are displayed on a built-in CRT.

The versatile analysis and averaging capabilities combined with portability, automatic calibration, built-in CRT and real-time operation make the 3721 A an ideal analyzer for both laboratory and field use.

## Major Specifications

Input signal bandwidth; dc to 250 kHz .
Input range: 40 mV rms to 4 V rms.
Functions: Autocorrelation, Crosscorrelation, Probability (Density and Integral), Signal Recovery.
Number of points; 100 points computed and displayed for each function.
Sampling interval: 15 to $1 \mu s$ ( 1 Hz to 1 MHz sampling rates). External clock lacility allows any incerval $\geq 1 \mu s$ to be selecred. In Correlation and Signal Recovery the time between displayed points is equal to the sampling interval.
Averaging: two modes are provided:
Summation: computation automatically stopped after a fixed number of samples has been taken. Number of samples selectable from 128 to $128 \times 1024$.
Exponential: continuous averaging with time constant selectable from 36 ms to over $10^{5}$ seconds.
Calibration: vertical calibration is automatically displayed on an illuminated panel (except Probability).
Outputs:
All computed functions are displayed on the built-in CRT.
Analog outputs are provided for use with an $\mathrm{X} \cdot \mathrm{Y}$ recorder and external oscilloscope.
Digital outputs allow the transfer of computed data to any hp digital computer or hp paper tape punch (2753A, 2895 A or 8100 A). Extra plug-in assemblies are required, lype depending on the peripheral used.
Price: Model 3712A, $\$ 8500$.

## 3720A Spectrum Display

The 3720 A Spectrum Display is an unique add.on unit for the Correlator, to complement and extend its capability by Fourier transforming any time display on the 3721 A and presenting its equivalent frequency function on a built-in display.

The 3720A performs the Real and/or Complex transformation of autocorrelation and crosscorrelation functions to produce the Power and Cross Spectral Density functions respectively, and converts signal recovered data into frequency information.

Together the 3721A Correlator and 3720A Spectrum Display, each with its own CRT display, form an analysis system giving both time and frequency information simultaneously.


## Major Specifications

Input data; digital data is transferred from the Correlator and held in either of two stores, labelled 1 and 2.
Computed transforms: either the Real or Complex transform can be computed of the contents of the store 1 , the contents of store 2 , or the contents of stores 1 and 2 together.
Frequency range: 0.005 Hz to 250 kHz using internal 3721 A clock. Extendable down to dc with external clock.
Displayed frequency range: two decades of frequency are dis. played, the highest frequency being $1 / 2 \Delta t \mathrm{~Hz}$ ( $\Delta t$ is the 3721A Timescale setting).
Dynamic range: ratio of full scale signal to noise level, for fixed integrator gain, is better than 50 dB .
Gain: continuously variable over a 2 decade, 40 dB , range in seven discrete steps, with intermediate vernier.
Window: two choices are arailable:
OFF-natural window, nominal bandwidth $1 / 200 \Delta t$.
ON-triangular window, nominal bandwidth $1 / 100 \Delta t$.
Interpalations two modes available:
MANUAL-computes and displays 100 frequency points. Frequencies of all 100 points can be simultaneously and equally varied over a frequency interval, $1 / 200 \mathrm{\Delta t}$.
AUTO-automates the manual interpolation, calcularing 10 equispaced points across each frequency inverval.
Transform presentation: all combinations of the following axes are a vailable for display.
Vertical axis-Phase, Log Mod, Modulus, Imaginary, Real. Horizontal axis-Frequency, Log Freq, Real, Phase.
CRT display: built-in variable persistence CRT with storage facility.
X-Y recorder: separate horizontal and vertical analog outputs corresponding to the CRT display.
Price: $\$ 9995$.


The Model 3722A Noise Generator uses digital techniques to synthesize binary and Gaussian noise patterns. These 'pseudo-random' patterns, which are of known content and duration, are repeated over and over without interruption. Since one pattern is identical with the next, each pattern has the same effect on the system under test: for this reason, pseudo-random noise signals cause no statistical variance in test results. The Model 3722A also generates truly random binary and Gaussian noise.

The basis of the Model 3722 A is a binary waveform gen-erator-a shift register which operates under the control of either a feedback mechanism (pseado-random mode) or a random noise source (random mode). The shift register is clock triggered, with the result that transitions between output levels of the binary waveform can occur only in time with beats of the clock-although whether or not a transition occurs on a given beat is determined by the feedback mechanism or random noise source. The binary output has a $(\sin x / x)^{2}$ shaped spectrum and the Gaussian output, which is derived from the binary signal by precision low-pass filtering, has an almost rectangular spectrum. Both binary and Gaussian outputs are controllable in bandwidth, but the out. put power remains constant regardless of selected bandwidth -a particularly useful feature, of importance in applications where usable noise power must be made available in a very restricted frequency band. The frequency of the first null in the binary spectrum is selectable from 0.003 Hz to 1 MHz , and the bandwidth (at -3 dB point) of the Gaussian noise is seleciable from 0.00015 Hz to 50 kHz .

Outputs from the Model 3722A are available at fixed amplitudes of $\pm 10 \mathrm{~V}$ (binary) and 3.16 V rms (Gaussian), and a precision amplitude control provides a variable output of either signal tanging from 0.1 V rms up to the level of the fixed outputs.

## Specifications

Binary output (fixed amplitude)
Amplitude: $\pm 10 \mathrm{~V}$.
Output impedance: < 105 .
Load impedance: 1 ks minimum.
Rise time: <100 ns.
Power density: approximately equal to (clock period x 200) $\mathrm{V}^{2} / \mathrm{Hz}$ ar low frequency end of spectrum.
Power spectrum: $(\sin x / x)^{2}$ form: first null occurs at clock frequency, and -3 dB point occurs at 0.45 x clock frequency.

Gaussian output (fixed amplitude)
Amplitude: 3.16 V rms.
Output impedance: $<1 \Omega$.
Load impedance: $600 \Omega$ minimum.
Zero drift: $<5 \mathrm{mV}$ change in zero level in any $10^{\circ} \mathrm{C}$ range from $0^{\circ}$ to $+55^{\circ} \mathrm{C}$.
Power density: approximately equal to (clock period x 200) $\mathrm{V}=/ \mathrm{Hz}$ at low frequency end of spectrum.
Powes spectrum: rectangular, lorv-pass: nominal upper frequency $f_{0}(-3 \mathrm{~dB}$ point) equal to $1 / 20$ th of clock frequency. Spectrum is flat within $\pm 0.3 \mathrm{~dB}$ up to $1 / 2 \mathrm{f}_{8}$, and more than 25 d 8 down at $2 f_{0}$.
Crest factor: up to 3.75. dependent on sequence length.

## Variable output (Binary or Gausslan)

Amplitude (open circuit)
Binary: 4 ranges: $\pm 1 \mathrm{~V}, \pm 3 \mathrm{~V}, \pm 3.16 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$, with ten steps in each range, from $\times 0.1$ to $\times 1.0$.
Gaussian: 3 ranges: 1 V rms, 3 V rms and 3.16 V rms, with ten steps in each range, from $\times 0.1$ to $\times 1.0$.
Output impedance: $600 \Omega \pm 1 \%$.

## Main controls

Sequence length switch: first 17 positions seleci diferent pseudorandom sequence lengths: final position selects random mode of operation (INFINITE sequence length). Sequence length ( N ) is number of clock periods in sequence: possible values of N are $15,31,63,127,255,511,1023$, 2047, 4095, 8191, 16383. 32767, 65535, 131071. 262143, 524287, 1048575.
$N=2^{n}-1$, where $n$ is the range 4 through 20 .
Clock period switch: selects 18 frequencies from internal clock:

Clook period	Clook Irequenty	Gausslan noise bandwidth
333 s	0.003 Hz	0.00015 Hz
100 s	0.01 Hz	0.0005 Hz
33.3 s	$0.03 \mathrm{H2}$	0.0015 Hz
$\begin{aligned} & 10 \mathrm{~s} \\ & \downarrow \\ & 3.33 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~Hz} \\ & 300 \mathrm{kHz} \end{aligned}$	
$1 \mu \mathrm{~S}$	1 MHz	$50 \mathrm{4Hz}$

## Internal clock

Crystal frequency: 3 MHz nominal.
Frequency stability: $< \pm 25 \mathrm{ppm}$ over ambient temperature range $0^{\circ}$ to $+55^{\circ} \mathrm{C}$.
Output: +12.5 V rectangular wave, period as selected by CLOCK PERIOD swirch

## External clock

Input frequency: usable BINARY output (pseudo random on. ly) with extemal clock frequencies up to 1 MHz .
Input level: negative-going signal from +5 V to +3 V initiates clock pulse.
Maximum Input: $\pm 20 \mathrm{~V}$.

## Secondary outputs

Sync: negative-going pulse ( +12 V to +1.5 V ) occurring once per pseudo-random sequence; duration of pulse equal to selected clock period.
Gate: gate signal indicates start and completion of selected number of pseudo-random sequences ( $1,2,4$ or 8 , selected by front panel control). Two outputs are provided:

1. Logic signal: output normally +12.5 V , falls to +1 V at start of gate interval and returns to +12.5 V at end of interval.
2. Relay changeover contacts: gate relay switching is synchronous with logic signal.
Binary relay: relay changeover contacts operate in sync with binary output signal.

## Remote control

Control inputs: remote control inputs for RUN, HOLD, RESET and GATE RESET functions are connected to 36.way receptacle on rear panel
Sequence length indleation: 18 pins plus one common pin on the 36 -way receptacle are used for remote signalling of selected sequence length (contact closure between common pin and any one of the 18 pins).

General
Dimensions: $163 / 4$ in. wide, $57 / 32 \mathrm{in}$. high, $163 / 8 \mathrm{in}$. deep ( $425 \times 132.6 \times 416 \mathrm{~mm}$ ).
Weight: net $23 \mathrm{lbs}(10,5 \mathrm{~kg})$; shipping, $30 \mathrm{lbs}(13,5 \mathrm{~kg})$.
Price: Model 3722A, noise generator, $\$ 2975$.

## Option 001

Zero moment option: shifts relative position of sync pulse and pseudo-random binary sequence such that first time moment of sequence, taken with respect to sync pulse, is zero (sequence shift mechanism is operative only when se. lected sequence length is $\leq 1023$ ): option 001 also provides facility for inverting binary outpur signal. $\$ 58$

## Model 3722A Option H01

Model 3722A Option HO1 is a standard Model 3722A Noise Generator modified to provide a second binary output which can be delayed by a selectable number of clock periods with respect to the main binary output. The delayed binary output is available only when the instrument is in the pseudo-random mode, that is, generating repeated noise patterns.

The delay introduced between the two binary outputs is selected by three decade switches on the front panel. These switches, which are set according to a conversion table supplied with the instrument, provide almost all possible delays ranging from zero to the number of bits $(N)$ in the sequence in use.

## Specifications

Delayed binary output
Typical performance figures for the delayed output are:
Amplitude: switches berween +1.5 V and +12 V .
Maximum sink current at 1.5 V level: 10 mA .
Impedance: $50 \Omega(+1.5 \mathrm{~V})$ and $600 \Omega(+12 \mathrm{~V})$.
Rise time: < 50 ns.*
Fall time: <20 ns.*
Price: Model 3722A Option H01, \$3255.

- Measured with +10 probe shunted by $10 p \mathrm{p}$.


## 5489A Low Pass Filter/Amplifier

## Specifications <br> General;

Cutoff Frequency ( 3 dB attenuation): 1 Hz to $30,000 \mathrm{~Hz}$. Selectable in 1, 3, 10 steps and OUT (by-pass). Frequency accuracy $\pm 10 \%$ except $30,000 \mathrm{~Hz}$ setting.
Maximum Attenuation: 80 dB .
Passband Gain: X1 $(0 \mathrm{~dB}) \pm 1 \%$ or $\mathrm{X} 10(20 \mathrm{~dB}) \pm 3 \%$.
Noise and Hum (Referred to input, with $1 \mathrm{~K} \Omega$ source impedance ) : $100 \mu \mathrm{~V}$ rms in 50 kHz band. $250 \mu \mathrm{~V}$ rms in 500 kHz band.
DC Offset Drift (Referred to inpur with $1 \mathrm{~K} \Omega$ source impedance) : $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
input:
Range: $\pm 10$ Volt P.P on X 1 gain, $\pm 1$ Volt P-P on X10 gain. Protection: Protected to $\pm 30$ Volts.
impedance: 1 megohm shunted by 75 pF , Single-ended.

## Output:

Level: $\pm 10$ Volts, maximum, at $\pm 5 \mathrm{~mA}, \mathrm{DC}$ through 10 kHz . Slew Rate: $0.6 \mathrm{~V} / \mu \mathrm{s}$. maximum.
Protection: May be shorted to ground indefinitely.
Overload Recovery: $50 \mu \mathrm{~s}$ for $100 \%$ overload.
Output Impedance: 50 ohms, nominal, single-ended.

## Physical:

Environmental: Operating Range, 0 to $55^{\circ} \mathrm{C}$.
Power: $115 / 230 \mathrm{~V} \mathrm{ac}, 50-400 \mathrm{~Hz}, 10 \mathrm{~W}$ atts.
Weight: Net $2 \mathrm{lbs}, 4 \mathrm{oz}$ ( $1,1 \mathrm{~kg}$ ).
Size: $11 / 2^{\prime \prime}$ high $\times 51 / \mathbf{s}^{\prime \prime}$ wide $\times 6^{\prime \prime}$ long ( $3.8 \times 1.3 \times 15.2 \mathrm{~cm}$ ) .
Price: 5489A Low Pass Filter/Amplifier


H51-180AR Oscilloscope with 54318 Display Plug.In

54228 Dlgital Processor

54168 Analog.to-Digital Converter in 5410A Power Supply/Interface

## 5401B Multichannel Analyzer

- Performs Pulse Height Analysis. Sampled Voltage Analysis, and Multichannel Scaling
- 8192 Channel Analog-to-Digital Converter, 200 MHz Clock.
- ADC has precision upper and lower discriminators, dc input offsec capability, base line monitor, coincidence and anti-coincidence gating, dead time and count rate meter, rarious output channel and digital offset ranges.
- Standard memory sizes of 1024, 4096, and 8192 channels available.
- 10 MHz Up/Up and Up/Down Multichannel Scaling.
- Interfaces to various peripherals, including Parallel Printer, Teletype, Tape Punch, Tape Reader, Incremental Magneric Tape, HP 9810A Calculator, HP 2100 Computers.
- 5586A Spectrum Stabilizer available to compensate for gain and baseline drifts.
- Application Note 138 available which describes applications of Multichannel Analyzers.


## Other nuclear products

5586A Spectrum Stablizer: to compensate for gain and baseline drifts of nuclear systems. Application Note 139 describes how the spectrum stabilizer is used. Price: $\$ 2400$.

5554A Preamplifler: charge-sensitive preamplifier with selectable sensitivity and voltage gain, is combination preamp and amplifier. Price: $\$ 360$.
55808 NIM Power Supply: provides the output voltages required by the AEC.NBS Standards (TID 20893).
Price: \$1150.
5582A Linear Ampsifier: amplifier with variable pulse shaping capability and suitable for scintillation and gas fiow nuclear detectors, NIM unit. Price: $\$ 750$.

5583A Single Channel Analyzer: operates in Single Channel Analyzer Mode or Dual Integral Mode, NIM unit. Price: $\$ 650$.

For complete dasa sheets, prices, application notes, etc., please consult your local Hewlett.Packard ollice.


5401 日 with Option 800


5402A


5406B

## 5401 B Option 800 MCA/Calculator System

Performs computer-type functions without computer-type costs. Automates data accumulation and reduction with programs you can learn to write in an aftemoon (or use ours). The Multichannel Analyzer (MCA) and highly versatile Hewlett-Packard calculator can be used independently. Includes 5401B MCA, 9810A Calculator. 10651 A Interface.

## 5402A MCA/Basic System

A Multichannel Analyzer (MCA) System with control and data reduction by 8 K 1G-bit HP 2100A Compurer. Operates in Hewlett-Packardis BASIC, a computer language that's powerful yet very easy to learn. The versatile general purpose computer can be used alone for other tasks 000.

## Programmable operations:

 Erase, Accumulate, Display, Parallel Output, Serial outpur, Serial Input, Transfer (Region A to Region B), Start. Stop MCA/Computer Data Transfer, MCA Status Check, Computer Paper Tape Input/Output, Teleprinter Inpur/Output.This system is ideal for the investigator who has a unique data reduction job to do and who wishes to have the computer system output formatted reports, withour requiring the services of a professional programmer. Hewlett-Packard provides a starter set of BASIC-language applications programs, including peak analysis, radioassay, spectrum smoothing, peak search, spectrum stripping, log conversion.

## 5406B Nuclear Analyzer System

- Computer-Based Nuclear System
- Single Parameter, Multiplex Single Parameter, and Multiparameter Analyzer
- Multiparameter Analyzer Operations Include Digital Gating. List (Address) Recording with Magnetic Tape, and Delayed-Time Totalizing
- Analog-to-Digital Converter and Display Subsystem Connect Directly to 2100 A Computer
- DMI, DMA, and Program Control ADC-to-Memory Data Transfer Modes
- Up to 32,000 16 - Bit Words of Memory Avalable in 2100A Computer
- Data Channel Size Can Be 16, 20, 24 or 32 Bits
- Wide Range of Peripheral Devices
- Complete Operating System
- Executive Software that Controls:

Analyzer Functions
Programmed Automatic Operations
Foreground, Background, and Interrupt Operations Data Reduction

- Modular Hardware and Software Design
- Data display in slice, isometric, and contour modes
- Single Parameter Peak Analysis, Spectrum Stripping, Background Subtraction, Spectrum Smoothing, and Iwo Parameter Peak Analysis Subroutines Available with the Srandard 5406B System
- Extremely Easy to Incorporate User-Written Subroutines into 5406 B

For complete dats sheets, prices, stc., please consult your local HewleftPackard office.

## COMPUTERS \& PERTPHERALS



## MINICOMPUTER

General-purpose digital computer
Model 2100A


The Thoroughly Modern Mini
The Hewlett-Packard 2100 A is a general-pucpose digital computer designed for a wide range of small computer applications.

Features built into the 2100 A include extended arithmetic instructions, power fail interrupt with automatic restart, memory parity check with interrupt and memory protect. Besides the standard built-in features, dual-channel Direct Memory Access (DMA), Floating Point Hardware and Writeable Control Store (WCS) are also available. Under DMA control, data can be transferred to or from computer memory at cates greater than one million 16 -bit words per second. Floating Point Hardware provides a typical ten-fold speed increase for scientific, compute bound algorithms. WCS lets the user add instractions or roukines to those of the 2100 microprocessor. Hewlett-packard provides a microassembler, utilities, $I / O$ routines and drivers that greatly simplify development of microprograms.

A minimum 2100 A provides 4096 words of core memory, self-contained power supply and 14 input/output channels.

You can select a wide range of memory sizes up to 32 K words, all in mainframe. By including an HP 2155A. Extender, you add another 31 input/output channels and power supply.

The 2100A automatically inherits a comprehensive range of proven software packages, including assemblers, compilers, operating systems and subroutines. A complete line of standard computer peripherals and $1 / O$ interface kits are also available, permitting complete systems to be tailored around the 2100 A . The result is a cost-effective computer that can meet your data processing problems today and continue meeting them as your needs expand.

## Memory

Type: folded planar core.
Word size: 16 bit with 17 th parity bit.
Page 5ize: 1024 words.
Direct addressing: 2 pages.
Indirect addressing: all pages.
Modular sizes: 4 K and 8 K word memory modules provide 4 , $8,12,16,24$ and 32 K configurations all in the 2100 A mainframe without additional power supply or cabinetry.
Cycle time: 980 nsec.
Losder protectlon: switch protects last 64 words.

## Registers

Accumulators: two (A, B), 16 bits each. Directly addressable. Memory control: three (T, P, M), 16 bits each. Supplementary: two (Overflow and Extend), one bit each. Manual data: one 16 -bit switch register.

Floating Point Hardware Execution Times (Optional)		
	Minimum	Maximum
Add:	$23.5 \mu \mathrm{sec}$	$59.8 \mu \mathrm{sec}$
Subtract:	$24.5 \mu \mathrm{sec}$	$60.8 \mu \mathrm{sec}$
Multiply:	33.3 Msec	$41.1 \mu \mathrm{sec}$
Divide:	$51.9 \mu \mathrm{sec}$	$55.9 \mu \mathrm{sec}$
Fix:	$5.9 \mu \mathrm{sec}$	8.8 \% sec
Float:	$9.8 \mu \mathrm{sec}$	$24.5 \mu \mathrm{sec}$
Input/Output		

Multilevel automatic priority interrupt: determined by interface location.
1/O channels in 2100A Computer: 14.
1/0 channels in 2100A Computer plus 2155A Extender: 45.
I/O compatiblity: HP 2114/2115/2116.

## Memory Parity Check With Interrupt (Standard)

Priority: second highest priority interrupt (shared with Memory protect).
Operakion: monitors al! words read from Memory.
Interrupt: to trap cell for user written routine when parity error is detected.
Violation register: contains memory address where error oc. curred.

## Memory Protect (Standard)

Priority: second highest priority interrupt (shared with Memory Parity).
Operation: initiared under program control; protects any amount of memory.
Fence register: set under program control; memory below fence is protected.
Violation register; contains memory address of violating instruction.

Writeable Control Store (Optlonal)
Words Aveilable: 256 per module.
Maximum WCS Modules: 3 per 2100A.
Word Size: 24 bits.
Maximum Primary Entry Addresses: 16 .
Microinstruction Time: 196 usec.

## Physlca!*

Dimensions
Width: $163 / 4$ " with adaptors for mounting in $19^{\prime \prime}$ rack
Height: $121 / 4^{\prime \prime}$ (rack mounted).
Depth: 2100A-26" ( $23^{\prime \prime}$ behind rack mounting ears); 2155A-231/2" ( $23^{\prime \prime}$ behind rack mounting ears).
Welght
Minimum: 91 lbs ( 41 kg ).
Maximum: $111 \mathrm{lbs}(50 \mathrm{~kg}$ ).

## Electrical*

Power requirements: $115 \mathrm{~V} / 230 \mathrm{~V} \pm 10 \%$. $47.51066 \mathrm{~Hz}, 800$ watts maximum.

## Environmental*

Operating temperature: $0^{\circ}$ to $55^{\circ} \mathrm{C}\left(+32^{\circ}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$.
Relative humidity: to $95 \%$ at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$.
Ventilation
Intake: sear panel.
Exhaust: sides of front panel and cabinet.
Heat disslpation: 2700 BTU/hr. maximum.

- Exceot as noted, applies to both the 2100 A Computer and the $2155 \mathrm{~A} 1 / 0$


# DIGITAL TAPE RECORDER OEM, On-Line, and Off-Line Applications 7970 Series 

## s <br> COMPUTERS \& PERIPHERALS

The 7970 Series Digita! Magneric Tape Units provide 800 , 556, or 200 cpi NRZI and 1600 cpi phase-encoded electronics with the same superior operational and reliability characteristics usually associated with higher priced and more complex digital recorders. The 7970 was especially designed as a modular unit to enhance serviceability and reliability. All major cransport assemblies are easily accessible for service and/or replacement, when required. The complete dara electronics assembly is made up of plug-in type cards, neatly packaged in card cages within the 24 -inch transport.

## For the OEM

Model 7970B/C option configuration table (NRZI only)

5pood	9 Traok			7 Traok			$\begin{aligned} & 7 / 9 \\ & \text { Trajok } \\ & \text { R/0 } \end{aligned}$
	RAW	R/0	BasE	RAW	R/0	BASE	
10-20.9 ips	121	122	123	130	131	132	139
21-37.5 ips	Sto	125	126	133	134	135	140
37.6-45 ips	127	128	129	136	137	138	141

Model 7970E optlon configuration table

Spsed   (1pg)	9 Traok						$\frac{7 / 9 \text { Traok }}{\text { PE/NRZI }}$	
	PE Dily				PE/NRZI			
	$\begin{aligned} & \text { RAW } \\ & \text { Slave } \end{aligned}$	RAW   Master	R/O   Sleve	$R / 0$ Master	R/O   Slaye	$\mathrm{R} / 0$   Master	$\begin{gathered} \text { R/O } \\ \text { Slavo } \end{gathered}$	Mastor
$10 \cdot 20.9$	142	143	144	14	154	15	156	15
21.37 .5	146	Sto	148	149	158	159	160	16]
37.6-45	150	151	152	53	162	183	104	65

## For use with HP computers

For Hewlert-Packard computer users, the 7970 with interface kit and software kit may be used as a peripheral to configure a magnetic tape operating system. Systems available are:

## 12970A Magnetic Tape Subsystem

9 -track NRZI, 800 CPI, 45 ips, read-after-write, [BM compatible, 115 volts, 60 Hz . Inciudes: 7970 B Tape Drive, controller interface, head cleaner, 2400 ft . of tape, and operating system software.
Option 001: add 37.5 ips unit, delere 45 ips unit.
Option 002: add 25 ips unit, delete 45 ips unit.
Option 010: addicional 45 ips unit, plus multi-unit cable, less controlles and software.
Option 011: same as Option 010, bur 37.5 ips unit.
Option 012: same as Option 010, but 25 ips unit.
Option 015: 230-volt, $50-\mathrm{Hz}$ operation.

## 12971A Magnetic Tape Subsystem

7-track NRZI, 200/556/800 CPI, 45 ips, read-after-write, IBM compatible, 115 volts, 60 Hz . Includes: 7970B Tape Drive, controller interface, head cleaner, 2400 ft . of tape, and operating system softrase.
Options: same as those listed above for 12970A Subsystem.


## 12972A Magnetic Tape Subsystem

9-track Phase-Encoded (PE), $1600 \mathrm{CPI}, 45 \mathrm{ips}$, read-afterwrite, IRM compatible, 115 volts, 60 Hz includes: 7970E Tape Drive, controiler interface, head cleaner, 2400 ft . of tape, and operating system softruare.
Options: same as those listed above for 12970 A Subsystem.
Note: a maximum of four tape drives on one controller.

## Specifications ${ }^{\text {a }}$

Tape speed range: 10 to 45 ips .
Reel diameter: up to $101 / 2^{\prime \prime}(26.7 \mathrm{~cm})$.
Tape: computer grade. Width: 0.5 ". Thlckness: 1.5 mils.
Tape tenslon: 8.5 ounces, nominal.
Tape format: IBM/ANSI compatible.
Rewind speed: 160 ips.
Start/stop travel: Read-After-Write: $0.187^{\prime \prime} \pm 0.020^{\prime \prime}$.

## General specifications

Power requirements: 115 or $230( \pm 10 \%)$ VAC, 48 to 440 Hz single plase. 400 VA , maximum (on high line).
Size: $24^{\prime \prime} \mathrm{H}, 19^{\prime \prime}$ W, $15 \frac{1}{4} 4^{\prime \prime} \mathrm{D}(610 \times 483 \times 400 \mathrm{~mm}$ ). Depth from mounting surface: $12^{\prime \prime}$ ( 305 mm ).
Weight: 140 lbs, maximum ( $63,5 \mathrm{~kg}$ ).
Operating environment (hardware)
Ambient temperature: $+32^{\circ}$ to $+131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.+55^{\circ} \mathrm{C}\right)$. Relative humidity: $20 \%$ to $80 \%$, noncondensing.
Altitude: 10,000 feet ( $30-18$ meters).
Price:** Model 7970B-Std, $\$ 4600$. Model 7970E-Std, $\$ 8100$. Model 12970A Subsystem, $\$ 9900$.
Model 12971A Subsystem, $\$ 10,600$.
Model 12972A Subsystem, $\$ 13,400$.

[^52]

## 7200A, 7201A, 7202A Graphic Plotters

These Hewlert-Packard Graphic Ploters offer the user an opportunity to produce graphs of computer-generated data. They operate with terminals which communicate with a computer directly or in a time sharing environmenc. Simple pneumonic commands. which can be generated by any computer in any language, are used to feed dara and control the plotter.

The ploners connect directly to most communications terminals. and any of the newer terminals operating up to 30 chafacters/sec which utilize the EIA interface. Each features the same ease of use, and the same paper and pen systems as other Hexilet.Packard ana. log recorders (see pape 20). Merric and English paper can be handled incerchangeab)y.

Data is supplied in pairs of four-digit X and Y condinates, 50 each new data point is tolally defined and not dependent upon the accuracy of previous points. As crue reconr plotters, the 7200 series interpolate seraight lines betreen data points, eliminating the need For the compuler to generate intermediate points.

The plotiters may be used on-line with a computer, or off-line with input directly from a paper or magnetic tape reader, a card reader, or cien from a terminal keyboard. The 7200 Series apcrates in parallel with most terminals, they have the capability to silence the terminal as the plorter's data is being received.

Graphic plotters are particularly useful for the graphing of functions, curve ficting, regression analysis, transfer functions, prob. ability distribution, shear and moment diagmms, checking of numerical control machine programs, or anything else that can be graphed. BASIC routines for curve and alphanumeric generation are available to be used on maior time-sharing systems.

Models are available for 10 char/s ASCII code, for 14.9 char $/ \mathrm{s}$ Correspondence, BCD or EBCD code, and a switchable speed unit accepts up in 30 char/s from ternuinals using EIA interface and ASCII code. The type of terminal must be specified on order; ask your local Hewlect-Packard Sales Office for complete specifications.

## Price5:

$$
\begin{array}{lll}
\text { Model } 7200 \mathrm{~A} \text { (for celetypes, others ar } 10 \text { char } / \mathrm{s} \text { ) } & \$ 3300 \\
\text { Model } 7201 \text { A (for IBN } 2741, \text { A-J } 841 \text { or Datel } 30) & \$ 3300 \\
\text { Model } 7202 \mathrm{~A}(10,15,30 \text { char/s switchable. ElA, ASCII) } & \$ 3575
\end{array}
$$

Note: rentals begin at $\$ 200 / \mathrm{mo} ; 2$-year leases from $\$ 159$ mo.
OEN discounts asailable on purchases.


## 7210A Digital Plotter

The 7210A Digital Plotter is an output peripheral designed for use with computers and computer systems. The plotter's performance surpasses even that found in the traditional high orerhead; high priced incremental plotiers. Yer, the exceptional speed, resolucion. and accuracy of the 7210 A are a ailable at the low cost normally associated with analog plotters.

Additionally, the 72i0A can be added easily to either your com. puter or intelligent terminal. Accepting either Binary or BCD codes under full program contonl, the pen can make up sn 20 moves per second at any angle. The 7210A contains an internal miero-processor that interpolates between dara points. As a result, the data is interpreted ver, efficiently and the burden placed on the computer is minimal. The plotrer will draw lines of any length and at any angle without computer interrupt during the move. A typical driver requires only 250 16.bit words of memery. Annotated graphs and title blocks can be provided by a drixer of less than 1000 wrods, Any two poinrs on tine chart can be connected in one more with a pen speed of up to 12 inches $/$ second $(30.3 \mathrm{~cm} / \mathrm{sec})$ and a resolution un to 0.001 inches $(0,025 \mathrm{~mm})$.

Any sheer type graph paper, up to $11 \times 17$ inches ( $27.9 \times 43,2$ cm) in size and with or without preprinted grids, may be used.

Only end coordinate information is required to draw a line. The 7210A auromatically computes all the intermediate points that are required to dran a stepless straight line-at any angle and any length. No computer interrupt is required during the move. Status lines allow the computer an fully monitor the plotter's status.

The tro choices to define coordinate locations on the ploting area, selected under full program conrrol, are:

Absolute Coordinates-Ali points on the chart are defined by absolute coordinate pairs, lines can be dravn any length and at any angle by specifying only the end coordinate. Each plotred point is independent of the accuracy of preceding points.
Relative Coordinates-Each new position is defined relative to the last. Ideal for relative position information in applications such as character generation and other repetitive aperations.
Error detection is employed to eliminate plotting of improperly formatted and off-scale data. When absolute coordinates are used. no data is lose besond the point in error.

The computer/ploter interface employs a "hand shake' interface sypical in computer systems. The plotter can be driven with any computer or intelligent terminal thac has an $8 ., 12$ or 16 -bir parallel word $\mathrm{T} / \mathrm{O}$ channel. Logic is DTL and TTL compatible.
Price: Model 7210A
$\$ 3400$
Option 001 (Interface for HP 2100 Series Computers) \$ SSO

The 2761 series Optical Mark Readers are low cose, desktop remote data-transmission terminals which read punched and marked tabulating cards. They are designed for use with standard telephone data sets in communication netaorks where limited information must be gathered from many sources, or where it is desirable to use the original document as direct input to the system, rather than paper tape, magnetic tape or manual entry from a keyboard. Each unit provides the convenience of automatic card feed for up to 300 cards.

The input is a standard rabulating card, with pee.printed clock marks, coded by marking lines chrough pre-prined boxes with a regular soft lead pencil. Up to 80 columns of alphanumeric information may be marked or punched on a single card. Marking and punching may be intermixed on the same card.

Since the tab cards can be hand marked, and are read directly as marked, keypunch operations are bypassed. Cards can be pre-punched or pre-printed with identificrs and routine information for turn-around applications. reducing the amount of hand-entered dara, and assuring correct identification of the turn-around document. Immediate data rransmission can speed the input of orders, payroll charges. inventory entries, shipments, billings and similar operating data to a central processor. The Optical Mark Reader is easy to use, and operation requires no special skills or training.


The 2761A is designed to read data directly into a computer or other data acguisition system in 12 -bit parallel form as rates up to 250 cards/nin. The 2761 B gencrates a bit-serial ASCII code output from either the Hollerith punch format or the Hewlect-Packard Dial Code formar. Data rates of 10,30 , or 105 char/s are available by option.

## Specifications

## Performance specifications-2761A

Data Rate: 200 cards per minute externally controlled, or 250 cards per minute when operated at the internal read rate. Maximum of 80 marked or punched columns per card, exact requirements being determined by computer software. 80 column cards: $455 \mathrm{char} / \mathrm{sec} \pm 10 \%$. 40 column cards: 227 char/sec $\pm 10 \%$.
Card Timing: Minimum interyal feed command to first data; $90+40-10 \mathrm{msec}$.
Card Reading Time; $190 \pm 10$ msec.
Time between cards; feed control, $90-10+40$ mser, no control. $50 \pm 25 \mathrm{msec}$.

## Performance specifications-2761B

Code Capacity: Recognizes 64 different characters using either Hollerith or Dial code (sperified by option choice).
Code Transitlon: Translates characrer-serial Hollerith or Dial codes to hir-serial transmission code (ASClI). Ali cards must have clock marks.
Parity: Generates and transmits even parity for use by receiving terminal.
Data Rates: Either 10. 30, or 105 characters/second (specified by option choice).
Interface Connector: Cinch or Cannon DBM-2SS on rear panel.
Data Set Interface: Data Set Interface is compatible with requirements of EIA Standard RS.232C.

## General specifications

Card Dimensions: Standard $31 / 4$ by $73 / 8$ inch tab cards.
Hopper Capacitles: Input hopper for 300 cards. Output hopper capacity of 300 cards.

Environmental Conditions:
Operating temperatures: $0^{\circ}$ to $55^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$.
Relative humidity: $95 \%$ at $40^{\circ} \mathrm{C}$ (nor applicable to cards).
Storage temperatures: $-10^{\circ}$ io $+75^{\circ} \mathrm{C} \quad\left(-.10^{\circ}\right.$ to $\left.+167^{\circ} \mathrm{F}\right)$.
Input Powar Required: $115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, \pm 5 \%, 130 \mathrm{~W}$ or $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz} \pm 50 \%, 130 \mathrm{~W}$. single phase.
Weight: Net: $28 \mathrm{lb}(12,7 \mathrm{~kg})$ : shipping: $37 \mathrm{lb}(16,8 \mathrm{~kg})$.
Dimensions: Reader is fully enclosed for desk top use, $123 / 4$ iaches ( 324 mm ) wide by 20 inches deep ( 508 mm ) including cable clearances, and $91 / 4$ inches ( 235 mm ) high.
Prices
Model 276IA (12.bir parallel output)
$\$ 2950$
Model 2761B ( $64 \cdot$ character Hollerith Code) $\$ 3300$
Model 2761B (64-character Dial Code) $\$ 3350$
Note: OEM discounts a vailable.

## Options

2761A:

Power	Option
$115 \mathrm{~V}, 60 \mathrm{~Hz}$	007
$230 \mathrm{~V}, 50 \mathrm{~Hz}$	008

2761B:

(Char/S00)	Power		
$\begin{array}{r} 10 \\ 30 \\ 105 \end{array}$	$115 \mathrm{V}$.	$\begin{aligned} & 002 \\ & 003 \\ & 004 \end{aligned}$	$\begin{aligned} & 005 \\ & 006 \\ & 009 \end{aligned}$
$\begin{array}{r} 10 \\ 30 \\ 105 \end{array}$	$230 \mathrm{~V}, 50 \mathrm{~Hz}$	$\begin{aligned} & 022 \\ & 023 \\ & 024 \end{aligned}$	$\begin{aligned} & 025 \\ & 026 \\ & 026 \end{aligned}$

Automatic Stop: Hopper empty/stacker full switch Opt 036.

## COMPUTERS \& PERIPHERALS



## Description

The role of minicomputers in real-time system applicarions is often limited by the computer's inability to control and monitor large numbers and varied types of devices at reasonable cost. In addition, many devices used in automatic systems require control signals in forms not normally available as computer outputs.

The 6490A/6941A Multiprogrammer overcomes these limitations by providing a low-cost bidirectional data link between a single 16 -bit computer $1 / O$ channel and up to 240 individually addressable, plug-in card slots, each with a 12 bit I/O capability. Input-type plug-in cards accept inputs in the form of contact closures and various logic levels, while output cards provide programmable outputs in the form of resistance, voltage, current, contact closuces, and logic levels.

One Multiprogrammer (6940A) mainframe and up to 15 Extender ( $6941 A$ ) mainframes can be operated from a single computer $1 / 0$ channel. The 6940 A mainframe is connected to the controlling computer through a computer interface card and an input cable. The first 6941 A mainframe is comected to the 6940A mainframe through a chaining cable, and each additional 6941A mainframe is connected to the previous one through an identical cable. Each mainframe (Multiprogrammer or Extender) contains is slots into which can be plugged any combination of input and output cards.

Flexibility and expandability are bonuses of the Multiprogrammer's modular design. The wide variety of Multiprogrammer flug-in cards allow a system designer to use standard mainirames and plug-in cards in configuting a custom system to satisfy a specific set of requirements. The final product is thus a custom system with the reliability and performance of a faccory-built instrument. Additions or modifcations to the finished system can be accomplished easily at any time, without changes in operating software, by simply adding more plug-in cards and Extender mainformes.

The Multiprogrammer mainframes and plug-in cards have
been designed to function together as an integrated system possessing many built-in features of significant importance in the design and implementation of real-time computer. controlled systems. Among these features are:

- Digital data storage on all plug-in cards to reduce computer overhead.
- The ability to program specific output cards individually or in selected groups.
- The generation of a computer interrupt when digital lines being sensed change state.
- The program selection of data transfer rates between the computer and the Multiprogrammer to either proceed at the maximum possible rate or be governed by the particular device being controlled by each card.
- The ability to program all plug-in cards to a safe state in case of system alarm.
- A front-panel switch register on the 6940 A mainframe which permits manual control of the system and thus enhances serviceability.
- All outputs go to "zero state" io case of power failure.

Applications for the Multiprogrammer exist wherever one to several thousand devices must be independently controlled or monitored from a single computer $1 / 0$ channel or other single source of digital data.

## Common specifications

Input/Output Card Positions: Maximum of is plug.in input or output cards per mainframe. Side-hinged front panel pro. vides access to card slots.
Mainframe Data Connectors: Two 50 -contact, rear-mounted. female ribbon connectors.
Data Transfer Rate: 100 k word/sec. guaranteed minimum.
Maximum Data Resolutlon: 12 bits.
Accessories Furnished: Data Input Plug, Rack Mounting Kit, PC Board Extender Card.
Coollng: Natural convection.
Temperature: 0 to $+55^{\circ} \mathrm{C}$ operating, -40 to $+75^{\circ} \mathrm{C}$ storage.
Dimenslons: $16.75^{\prime \prime} \mathrm{W} \times 6.78^{\prime \prime} \mathrm{H} \times 21.25^{\prime \prime} \mathrm{D}(42,54 \times 17,22 \times$ $53,98 \mathrm{~cm}$ ).
Power: 115 or $230 \mathrm{Vac} \pm 10 \%$, 48 to 410 Hz 230 watts.

## Model 6940A Specifications

Front Panel Controls: Power ON/OFF switch and indicator lamp, REMOTE/LOCAL swirch for selecting computer or nanual convol, 19 proximity switches for manual data enery and control.
Interfacing: A 6940A mainframe equipped with the standard interlate card is designed to interface with binary sources employing TTL or DTL microcircuit logic. An interface kit ( 14543 A ) containing the necessary hardware and software to incerface the 6940A with any Hewlett-Packard computer is a vailable. An optional custom interface card (69340A) is also available to satisfy customer requirements different from those of the standard card.
Weight: $35.0 \mathrm{lbs} .(15.9 \mathrm{~kg}$.) net, $43.0 \mathrm{lbs} .(19,5 \mathrm{~kg}$.) shipping. Price: $\$ 1500$.

## Model 6941A Specifications

Front Panel Controls: Power ON/OFF switch and indicator lamp.
Welght: $33.5 \mathrm{lbs} .(15,2 \mathrm{~kg}$.) ner, 40.3 lbs . ( $18,3 \mathrm{~kg}$.) shipping.
Price: $\$ 000$.


Input/Output card's
Series Element Output Card, Model 69500A: allows customer to select and load own series-adding elements. Can be field-strapped to provide one 12 -element or two, independent, 6 -element output channels. Price, $\$ 300$.
Parallel Element Outpat Card, Model 69360A: provides pro. grammable analog output proportional to the parallel sum of user-selected resistive or reactive elements. Can be fieldstrapped to provide one 12 -element or two, independent, 6 -element output channels. Price, $\$ 300$.
Resistance Output Cards, Models 69501A.69504A: provides a single 12 -bit resistance programming channel; the programming coefficients of these models are compatible with Hewlett-Packard programmable power supplies equipped with option 040. Price, $\$ 345$.
Resistance Output Cards, Models 69510A-69513A: provides two 6-bit resistance programming channels; these models are designed for programming the current limit of Hew-lett-Packard programmable power supplies equipped with option 040. Price, $\$ 345$.
High Speed D/A Converter Card, Model 69321B: provides a high speed, bipolar output voltage that is the analog of the digital input data to the card. Output range is from -10.240 to +10.235 V , at 0.5 mA . Programming speed is $50 \mu \mathrm{sec}$ maximum to within S mV of final value. (69351A also required.) Price, 5385.
Current D/A Converter Card, Model 69370A: provides a high speed, constant current output that is the analog of the digital inpur data to the card. Output range is 0 to +20.470 mA , at 0.11 Vdc . Programming speed is 100 $\mu \mathrm{sec}$ maximum to $10 \mu \mathrm{~A}$ of final value. ( 69351 A also required.) Prica, $\$ 350$.
Relay Reglster Card, Model 69330A: provides 12 separate form A (SPST, normally open) mercury-wetted contact outputs that reflect the starus of 12 programmed data bits. Includes gate/flag circuits for exchange of control sig. nals with user's device. Price, \$370.
Relay Output/Readback Card, Model 69433A: provides 12 separate form A (SPST, normally open) mercury-wetted contact outputs. Aiso supplies 12 input data lines that can be read by the computer and which indicate the relay coil voltage status. Price, $\$ 430$.
TIL Output Card, Model 69331A; provides programmed microcircuit logic level outputs on 12 separate output lines. Card includes gate/flag circuits for exchange of control signals with user's device. Price, $\$ 200$.
Breadboard Output Card, Model 69380A: allows customer to design and build a custom analog or digital output card. Card includes basic address, storage, and control signal buffer circuits. Price, $\$ 75$.

## Input cards

Digital Input Card, Madel 69431A: monitors 12 bits of TTL,

DTL, or contack closure data from user's device. Card includes gate/Rag circuits for exchange of control signals with user's device. Outputs to computer reflect the status of 12 input bits. Price, \$200.
Isolated Digltal Input Card, Model 69430A: monitors 12 bits of input data from user's device. All input lines are isolated from one another and from the multiprogrammer power supply. Eight options of the card are available to accommodate either ground-rrue or positive-crue logic sense inputs and a wide range of input levels. Price, $\$ 200$.
Event Sense Card, Model 69434A: compares the magnitude of an external 12 -bit input word with a stored reference word and generates a computer interrupt for any of four conditions, depending on the placement of a jumper on the card. The four possible conditions are: In = Ref, In $\neq$ Ref, In $>$ Ref, In $<$ Ref. The reference word is loaded from the computer. Both the input and reference words can be read back to the computer. Price, $\$ 300$.
Breadboard Input Card, Model 69480A: allows customer to design and build a custom input card. Card includes basic address and readback circuits. Price, $\$ 75$.

## Hardware accessories

Custom Interface Card, Model 69340A: allows interfacing the 6940A with programming sowces having non-standard logic level, logic sense, or termination specifications. Price, $\$ 125$.
6940A Interface Kit, Model 14543A: contains hardware and software for interfacing the 6940A with any HewlettPackard computer. Price, $\$ 1250$.
Maln Input Cable Assembly, Modes 14540A: connects the 6940A to the 12566A Microcircuit Interface I/O Card. Price, $\$ 150$.
Chaining Cable Assembly, Model 14541A: connects 6940A to 6941 A , and 6941A's to other 6941A's. Price, $\$ 150$.
Voltage Regulator Card, Model 69351A: required in every 6940 A or 6941 A mainframe containing High Speed Voltage $D / A$ Converter or Current $D / A$ Converter Cards. Price, $\$ 125$.

## Software accessories for use with HP computers

14904A: this driver controls 6940A/6941 A Multiprogrammer Systems under the basic control system (BCS). It performs most genecal purpose software functions required for efficient operation of the Multiprogrammer.
Prices: 14904A -B01 (binary tape), $\$ 10$; . Sol (source tape), $\$ 30$ : -L01 (program Jisting), $\$ 5$; -A01 (includes B01, S01, and L01), \$45;-D00 (instruction manual), \$2.
14905A: this program provides a post-installation check of 6940A/6941A Systems using Interface Kit 14543A.
Prices: 14905A -B01, \$10: -S01, \$20: L00, 55; -A01, \$35; -D00, $\$ 2$.
14907A: this driver controls Multiprogrammer Systems via a Real Time Executive (RTE) system.
Prices: 14907A -B01, $\$ 10$; - $501, \$ 15$;-L00, $\$ 5$; A01, $\$ 30$; -D00, $\$ 2$.
14909A: this program establishes 24000 A BASIC and 20392A BASYC subroutines which control 6940A/6941A Multiprogrammer Spstems.
Prices: 14909A-B01, $\$ 10$;-S01, $\$ 15$;-L00, \$5; A01, \$30; -D01, $\$ 2$.
14913A: this driver controls 6940A/6941A Multiprogrammer systems via DOS or DOSM operating systems.
Prices: 14913A-B01, \$10;-S01, \$15;-L00, \$5;-A01, \$30; -D00, s2.

## COMPUTERS \& PERIPHERALS

## DISC DRIVE

Moving-head, front-loading
7900A and 7901A


The Model 7900A Disc Drive is a random-access movinghead dual-disc memory device, compactly designed for use as a peripheral unit in small and medium sized computer systems. It uses a permanent disc and a removable disc cartridge, both with a packing density of 2200 bits/inch. Each disc surface contains 203 tracks, divided into 24 sectors, and each sector is capable of storing approximately 6,000 data bytes. With fogur disc surfaces, data capacity totals approximately $s$ million bytes. And using removable cartridges provides an unlimited amount of shelf storage.

A photo-optical positioning system, working in conjunction with a velocity transducer and a powerful voice-coil-driven actuator, provides exceptionally fast and precise head position. ing. In fact, the actuator moves the head-carriage assembly from track to track in less than 7 milliseconds, and completely across all the tracks on the dise in less than ss milliseconds. Average access time is less than 30 milliseconds.

The fixed-removable configuration, plus very rapid cartridge changing and a fast dara transfor rate, provides a capability for making a backup copy of an on-line dara base or system The large on-line capacity allows storing and maintaining large data or program files.

The accuracy of positioning allows collecting or producing fics on a disc cartridge on one 7900A Disc Drive and then reading these files on any other 7900A or 7901A, even if it is operating in a cotally different environment.

Other significant standard features of the 7900A Disc Drive include Write Protection on either disc and use of up to four drives per controller. It also has an absolute air filtration system that minimizes environmental contamination and maintains positive pressure in the drive enclosure during cartridge changing.

Operating power for the 7900A is supplied by the Model 13215A Disc Power Supply. It provides three regulared, constant dc voltages; iwo unregulated do voltages; and the ac voltage to operate the disc drive ac motors.

## New Model 7901A Disc Drive

The Model 7901 A Disc Drive is essentially a single-dise version of the 7900A. Principal differences are an integral power supply and only one removable disc cartridge. The two drives are complecely compacible. That is, recoded dises can be inverchanged between the two drives without any loss of data or performance. This makes the 7901A extremely valuable as an add-on drive for the 7900 A.

However, a high-quality, low-cost, complete disc operating system can be built around the 7901A. This provides a fullcapability syscem that can be easily changed by removing a single disc cartridge or by adding up to three more disc drives to the same controller. In fact, a system can include any combination of four 7900A's and 7901A's on the same controller.

OEM configurations and quantity discounts are available. Contact your local Hewlett-Packard sales and service office.

## Specifications*

## Access times

Head positioning (includes settling): Track-to-track: <7 milliseconds. Average move ( 67 tracks) : $<30$ milliseconds. Maxlmum move ( 203 tracks): < $\$ 5$ miliseconds. Rotatlonal delay

Average ( $1 / 2$ revolution): 12.5 milliseconds.
Maximum (1 revalution) : 29.0 milliseconds.
Data transfer rate: 2.5 million bits/second (312.000 8.bit bytes/ second.

## General speclifications

Dimensions: $1012^{\prime \prime} \mathrm{H}, 19^{\prime \prime} \mathrm{W}, 253 / 8^{\prime \prime} \mathrm{D}(267 \times 483 \times 651 \mathrm{~mm})$. Depth from mouncing sufface: $22-15 / 16^{\prime \prime}$ ( 583 mm ).

Weight: 117 pounds ( $53,1 \mathrm{~kg}$ ).
Environment: operates within specifications over the following ranges:
Temperature: operating: $+30^{\circ}$ to $+104^{\circ} \mathrm{F}\left(+10^{\circ}\right.$ to $\left.+40^{\circ} \mathrm{C}\right)$; nonoperating: $-4^{\circ}$ to $+149^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ 10 $+65^{\circ} \mathrm{C}$ ).
Humidity: up to $80 \%$, noncondensing.
Attltude (pirch and roll): $\pm 30^{\circ}$ about either axis.
Air filtration: absolute air filter; volume is 65 CFM.
Accessories avallable: 12869A Disc Cartridge; 13211A Rack Mounting Kit; 13219A Disc Service Unit.

Prlce:** 7900A: including 13215A Power Supply and 12869A Disc Cartridge, 59975. 7901A: including 12869A Disc Cart. ridge. $\$ 5000$.

[^53]

One of the Many Configurations of an HP 9500 Series Automatic Test System.

The HP 9500 Series Automatic Test Systems offer a highly cost-effective solution to the testing requirements of modern electronic equipment. Hewlett-Packard automatic test systerns encompass a wide range of testing capability, from individual circuit modules and sub-assemblies to highly complex avionic systems.
The major system elements are a controller, plus stimulus, switching, and measurement subsystems. Jndividual instruments comprising these systems are determined by the specific testing requirements. Off the-shelf commercially available instruments are used wherever possible in the subsystems. The overall concept further includes plug.in hardorare interfacing plus an easily-learned programming language that is able to handle present-day programmable inscruments and those anticipated in the future.
A highly significant factor contributing to the cost-effectiveness of these automatic rest systems is that they do not require a full-time programmer-operator in attendance; rather, they are truly designed for operation by test technicians, or even production workers. Every system is equipped with a control panel which completely eliminates the need for the test opera. tor to handle any computer switches. A choice of software operating systems-either rape-based or disc-based-offers further operator convenience and system capabilities. The rest-oriented paper tape system (TOPTS), for example, merely requires that a test-program tape be loaded into the computer to begin a test sequence. A more flexible system, with many more operational features, is the testoriented disc system (TODS). A TODS system provides virtually unlimited program/data storage and, combined with the system control panel, offers test program and data retrieval by pushbutton selection.

In general, resting done by the 9500 systems falls into the categories of: analog-only resting, analog/digital resting, or digital-only testing. The photo shows an analog/digital system, while the illustration shows a typical analog.only system. Digital systems perform static functional resting. They are
considerably simpler in hardw'are makeup, consisting essentially of a Hewlett-Packard digital test unit and its power supplies, reference supplies, interface panel, and a controller with tape reader and disc memory.

## Flexible, test-oriented software

Hewlett-Packard has standardized on HP ATS BASIC as the programming language for the entire family of test sys. rems in the 9500 Series. Particularly important is the fact that it is an easily learned and powerful test programming language, offering all the computational capabilities needed for automatic testing. along with instrument control and timing statements. Because there are only a few rules to remember, HP ATS BASIC can be learned in a few hours, and be used effectively to wrike test programs within two or three days.

The TOPTS system offers economical test automation for applications where the frequency of changeover from one type of unit under tese (UUT) to another type is low.

Where many different types of UUTs are involved and where the types of UUTs are changed frequently, TODS avoids the need for loading tape for each program, since programs may be loaded from the dise into core memory by an operator command. The disc system also permits use of test programs of virtually unlimited length, since programs may be segmented and the segments automatically loaded into core memory for execution. An advantage of the modular 9500 systern is that a paper tape TOPTS system can be upgraded to a disc-based TODS system at any time.

## Special capabifities

The inherent fexibility and modular construction of the 9500 Series make the overall system easily expandable to handle very large resting requicements encompassing many types of stimuli and measurements. Hewlett-Packard welcomes the opportunity to offer expert engineering assistance to solve your testing needs.

A comprehensive set of literature, including an easy-tofollow selection guide, describing the 9500 Series is available from Hewlett-Packard field sales offices.


KP 95000 Automatic Test System Overall Concept. (YP 9500B with Paper Tape Controller is also available. Digital Test Capability can be added to Both Systems.)


The HP 9540D Disc-Based Transceiver Test System

The HP 9540 Series Transceiver Test Systems provide a fast, accurate, and highly repetitive means of testing communications receivers, transmitters, power supplies, as well as complete two-way radio sets. These computer-controlled systems perform all the testing requirements for $A M$ and FM two way radios operating from 25 MHz to 1300 MHz . The systems are particularly useful for production and final assembly testing applications, and for the resting needs of maintenance labs and service shops.

A direct outgrowth of the HP 9500 family of automatic test systems, the 9540 Series incorporate many features of the 9500 Series. These include a choice of software operat. ing systems-either TOPTS, the paper-tape-based system or TODS, the disc-based system. Each system also includes a control panel which completely eliminates the need for the test operator to handle any computer switches. Particularly significant, from the cost-effectiveness standpoint, is the fact that these systems do nor requice a full-time programmeroperator. in attendance; rather, they are truly designed for operation by test technicians, or even production workers. In operation, the 9540 displays all operator instructions such as "enter serial no."', "switch frequency 150.1 MHz ," etc. Also, tests can be repeated at new frequencies and amplitudes, desired results can be calculated from measured values, the system can check itself for malfunctions, show whether the unit under test has passed or failed, and repeat these functions accurately every time. In addition to a comprehensive set of technical documentation, Hewlett-Packard
also supplies, with each system, several sample test programs (measuring receiver sensitivity, audio distortion, etc.) as a guide to assist in writing programs for your specific needs.

## HP 9540 Series Test Capabilities

Transmitter tests-	
Carrier Power Output	Fim Deviation
Garrier Frequency and Stability	Audio Distortion
AM Hum and Noise	Audio Fraquency Response
FM Hum and Noise	Audio Sensitivity
AM Modulation	
Receiver tests	
SINAD Sensitivity	Audio Frequency Response
Quieting Sensitivity	FM Modulation Acceptance
Audio Sensitivity	Bandwidth
Squelch Operation	Mum and Noise Levels
Audio Power Qutput	I mage Channel Rejection
Audio Distortion	IF Rejection
Modules \& subassomblies	
Modulators and Subassemblies	Audio Amplifiers
Local Oscillators	Filters
Frequency Synthesizers	Selective Signaling Circuits
IF Amplifiers	Power Supplies

## Flexible, Modular Design

The overall 9540 system follows a modular design phjlosophy, using subsystems as building biocks. Off-the-shelf commercially available instruments are used wherever possible, thus making the system easily expandable to handle future needs. Major instruments comprising a 9540 system are organized into three functional subsystems: (1) stimulus instruments (frequency synthesizers) for inputs to the unit under test (UUT), (2) measurement instruments (digital voltmeter, frequency counter, power meter, and Rf detector) for outputs of the UUT, and (3) switching components (modular switch) to route input and output signals. In addition to the subsystem elements, each system includes a computer-controller with peripherals, to operate the system.

Presently, two versions of the 9540 Series test systems are available, differing only in the controller used. The 9540 B is a tape-based system utilizing a controller which consists of an HP 2100A Computer, control panel, high-speed punched rape input (reader), tape punch, and a system teleprinter. The HP 95400 is a disc system which includes the same basic elements plus a dual magnetic dise memory which provides an additional 2.5 million words of auxiliary memory. One of the two disc packs is removable, which offers virmally unlimited program/data storage capacity. The permanent disc keeps a running file on all stored information, thus easing the programmer's task of locating specific data.

## Expert Assistance Available

Hewlett-Packard welcomes the opportunity to offer expert engineering assistance to solve your communications equipment testing needs. A brochure, describing the HP 9540 Series Transceiver Test Systems in more detail, is available from Hewletr-Packard feld sales offices.

AUTOMATED TEST SYSTEMS


The HP 9550 Series Instrument Calibration Systems bring to the calibration laboratory a cost-effective solution to calibrating the myriad of complex instruments in use today. At the same time, these automated systems effectively reduce the costs of training skilled rechnicians, while increasing efficiency by helping to solve present and future vorkloads and other lab management problems.

Presently, wo versions of the calibration systems are available, differing only in the levels of capability. Both systems incorporate a wide variety of calibration quality instruments. easily recognized by those involved in cal lab as required for calibration purposes. The HP 9551D is a basic system for calibrating a wide variety of passive merers, multimeters, electronic meters (voltage, current, VSWR, power, etc.), differential voltmeters, digital voltmeters, frequency counters, and oscilloscopes along with their plug-ins and amplifiers. The HP 9550 D is an expanded version which will calibrate all of the foregoing plus signal sources and generators, oscillators, pulse generators, and function generacors.

## User program interchange

Industry has long recognized the fact that where applications soltorare musr be developed on an individual basis, the costs can easily exceed the costs of the hardware system itself. For this reason, Hewlett-Packard has established a library of applications programs for system users. The library will contain both user-furnished instrument calibration programs and Hewlett-Packard certified programs for the calibration of commonly-used instruments. Presently, 46 programs are to be arailable. This is an ongoing effort under which additional programs will be made available in the future.

## Easily learned programming

The automatic calibration systems incorporate the same programming language as the HP 9500 Automatic Test Sys-tems-HP ATS BASIC. The ease of learning aspect of HP ATS BASIC makes it the ideal programming language for a cal lab, because programming is done by the lab's test engineers and test technicians. Local programming gives the cal

Jab a great deal of flexibility in upgrading or converting exist. ing programs to calibrate new instruments.

Adding to the ease of programming is a test-oriented disc system (TODS)-an operating system supplied with both the HP 9550D and the HP 9551D systems. This is the same soltware system supplied with the HP 9500 Series systems which incorporate a dual disc magnetic memory. One disc is interchangeable, offering virtually unlimited program/data storage capacity. The operating system keeps a running file on all calibration programs and other stored data, thus easing the operator's task of locating specific data.

## Calibrating a meter

The automatic system uses recommended calibration procedures from instrument instruction manuals as the guidelines. The power of the computer systems, however, allows these procedures to be adapted to the use of innovative techniques which substantially reduce calibration times. As a cypical example, the HP 412A Multifunction Meter requires that the operator must switch through 13 range positions for 3 different functions of volts, milliamps, and ohms, then interpret the full-scale indication and decide wherher the instrument meets specifications. Without the automatic system much of theoperator's time is spent reading the meter (with resulcant human-interpretation error).
The automatic calibration system, on the orher hand, re. quires that only one visual interpretation be made at each of the meter's cardinal positions ( $10 \%, 20 \%, 30 \%$, etc.). At each of the ten points, the operator manually adjusts the stimulus and aligns the meter needle to the exact cardinal point. At each point, the system characterizes the meter morement in terms of the electrical outpur needed for a particular mechanical deffection. Now, the operator follow's instructions shown on the CRT display to switch ranges and functions. The system "reads" the meter movement electrically. The CRT then displays "rest failed" if that particular test does not agree arith the limits stored in memory, or jumps to the next test if the values are valid.

In the final analysis, this relatively simple technique involves a change in the calibration procedure itself by minimizing operator intecaction with the test, resulting in a savings in elapsed time and a significant reduction in overall errors.

## Future expansion capabilities

The inherent flexibility and modular construction of the automatic calibration systems make it possible to add peripherals and instrumentation to the "starter system" as future needs require. Already, the urends in automated instrument calibration systems are indicating that, for maximum efficiency, cal labs would be divided into multiple work stations with system hardware dedicated to specialized functional areas such as analog meters, scopes, or microwave equipment. Architecture for such systems would include a central computer for peripheral sharing, mass file storage, and a management data bank, all connected to a small computer at each work station. The HP 9550 Series Instrument Calibration Systems are capable of being upgraded to this type of operation. Contact HewlettPackard for expert engineering assistance to solve your calibration laboratory measurement and data management problems.

AUTOMATED DATA
ACOUISITION SYSTEMS

## COMPUTER SYSTEMS <br> For Data Acquisition and Control 9600 Series

Hewlett-Packard has for many years been an industry leader in the development, manufacrure, and supply of sensor-based, compureralutomated data acquisition and control systems.
Hewlert-Packard employs a modular concept in configuring the wide range of data acquisition and control capability offered. Modularity in the systems starts with the computer (HP 2100A) memory capacity, which is plug.in expandable from 4,096 words to 32,768 words. Input/output capacity of the system computer is expandable from the basic 14 channels in the mainframe to 45 channels with the addition of an I/O extender. Modularity goes beyond the computer to encompass a selection of 8 different data acquisition (analog-to-digital) subsystems, 15 peripheral devices, 8 different general purpose interfaces, a choice of 3 different softrare operating systems, and 3 different compurer programming languages. These subsystems and peripherals are fully hardware and softwate compatible, so they are readily assembled into a system that satis. fies present measuring needs, and yet can be easily expanded to suit future requirements.

## Applications of computerized systems

In research, development, and production applications, for example, a Hewletr-Packard compurerized system: (a) coordinates the stimulus and measurement actions of the instru. ments involved in various experiments, (b) acquires and converts analog data from physical sensors to digital form, (c) corrects the data for non-linearity and offsets, and multiplies it by known factors to convert it to meaningful scientific units, (d) calculates consequent results, (e) performs statistical analyses, and (f) logs or displays results.

Systems involving remote test sites are easily handled by rieing the sites into one unified distributed system by means of Hewlett-Packard data communications interfaces. Here a small compurer system at each remore site performs most of the data acquisition and control functions and concentrates the data prior to transmission to a central computer, up to nearly two miles distant over simple hardrare lines. Date phone inter. faces can be used for greater distances.

## System concept

Major system functions of a Hewlett-Packard system for data acquisition and control ase shorn in the diagram. Central element of the system is an HP 2100A Digital Computer. For multiplexing and digitizing analog input signals, a choice of standard subsystems provides high-resolution (dc) measurements at rates to 40 channels/second and high-speed measurements at rates to 100,000 samples $/$ second. Other instruments are available for ac voltage measurements. high frequency counting, dc stimulus output, etc.

## Interfacing with users' equipment

Many versions of bi-directional registers are available to interlace digital-type user-furnished equipment to the system computer. Also available are hard-contact relay output registers for controlling external circuits and digital-to-analog converters for controlling analog-type devices. These interface registers and converters are contained on single cards which plug into the Hewlett-Packard computer. The computer's large input/ output capacity allows many external devices to be monitored and controlled, over and above the measuring instruments and peripherals comprising the basic system.


## System software

Herrlet-Packard computerized data acquisition and control systems are supported by a very comprehensive catalog of software. Three software operating systems-Basic Control System ( $B C S$ ), Data Acquisition and Control Exccutive (DACE), and Real Time Executive (RTE)-provide an opcrational framework for data acquisition and control in real. rime. The systens are programmed in Hewlert-Packard Assem. bly language, FORTRAN, or ALGOL.
The BCS provides relocation and linking services, thus simplifying preparation of user-programs and their confgura. tion into the overall system. BCS is an interrupr-driven system that allows measurentents, processing, and logging of results to take place concurrently.

The DACE is a clock-driven system designed for applicarions in which operation of the data acquisition system must be scheduled in real-time. Data acquisition and control programs are subdivided into "rasks" such as measurements, calculations, limit checking, logging of data, and updating of control commands. The DACE enables cueing (or deleting) of tasks at desired elapsed times. Task constants and parameters can be examined and modifed without recompiling. Within a task, transducer readings can be converted to engineering units and linearized; sampling rates can be related to actual values measured and changed as a signal strays beyond limits; ocher tasks can be initiated. depending on results obtained in the current task.
The RTE is a clock-and-internupt-driven system prowiding nultiprogramming, foreground-background operation with priority scheduling, interrupr handling, and program load-andgo capabilities. Under RTE control several real-time foreground programs, e.g., multiple test stations, can run concurrently with general-purpose background programs. (Foreground and background refer to areas of core.) While data are being taken on demand, processed. and output in the foreground, the time not needed for real-time processing may be used for program de. velopment in background without interrupting the running programs.

Additional information on the 9600 Series systems is provided in a brochure, "Computer Systems for Data Acquisition and Control." The brochure, plus an easy-to-understand Selection Guide are available from Hewlett-Packard Field Sales Offices.

# DISC OPERATING SYSTEM <br> A small computing system with a lot of punch 

## COMPUTER SYSTEMS



## Description

The HP 2120 minisystem offers you maximum performance for your computing dollar. It gets its power from the narriage of hardware and software. It combines Hewlett-Packard's versatile 2100A minicomputer, the fast 7901A 2.5 megabyte disc, a teletype console, paper tape reader, and its unique disc operating system that makes the whole system tick. Best of all, it won't hurt your pockerbook either. 2120 minisystems stact at less than $\$ 27,000$.

The 2100A Digital Comprter is the heart of the 2120 minisystem. It has a submicrosecond memory, uses the latest in MSI/LSI cechnology, and is controlled by a microprogrammed read only memory. The system uses a basic 8 K of memory and can be expanded to 32 K . Standard features are direct mernory access, hardware multiply/divide, memory prorect, and memory parity check. A fioating point processor can be optionally added to give the system more computational power.

The 7900 Moying Head Disc has five million bytes of on-line storage. It can be used to store operating systems, compilers, programs, and program data. The systems' storage can be expanded to 47 million bytes-large enough for the most demanding applications.

The 2748 Paper Tape Reader and 2752 Teletype offer an economical way to access the 2120 's capabilities. Other peripherals such as CRT terminals, console/printers, card readers, magnetic tape, line printers. and punches are oprional.

The 2120 Disc Operating System was designed to give the small computer user the conveniences of a large system without a high overhead penalty. There are many features which you can choose to make more efficient use of your computer.

## Easy System Generation

A user can configure his 2120 system to meer a given 1/0 configuration. This configuration can be changed by loading memory with another executive from disc or changing the cartridge and loading it.

## Mixed Job Stream

In batch mode, multiple job decks can be stacked upon one another, and executed in a load and go environment without manual intervention. FORTRAN, ALGOL, and Assembly Language programs can be intermixed in the same chain of programs. System directives, source code, and data can be integrated into a single job deck.

## Disc and Core Memory Hardware Protection

System integrity is assured through hardware memory pro. rection.

## System Accounting

The 2120 Disc Operaring System can be equipped with a system clock which will tell the operator hore long a particular job has taken. The system clock can be also accessed by a program.

## Logical 1/0 Unit Designation

//O programming is device independent. Programs written in FORTRAN, ALGOL, and Assembly Language specify a logical unit number. Logical unit numbers are assigned to appropriate devices at system generation time, but can be changed by the operator prior to the execution of a program.

## Automatlc Systern Disc Management

The system operator can add, change, and delete files from the system disc. All references to files are by name because the 2120 File Management System keeps track of all physical locations. After any file deletion, or edit, the system automatically repacks the disc to eliminate any wasted space.

## Extended File Manager

User data files can be written under the command of an extended file manager. Files and record sizes are specified by the user at program execution time. All input/output is buffered to reduce the number of physical disc reads or arrites. Records can be accessed on a direct or sequential basis.

## Large Dise Capacity

The 2120 Basic System has 5 million bytes of storage and it can expand to 47 million bytes of on-line storage. In addition, data, source statements, and programs can be stored on removable cartridges providing unlimited capacity.

## Program Segmentation

User programs may be structured into a main program with subservient segments. The segments can be stored on the disc and called into memory by the main program when they are needed. The program can use a common area of core for its data.

## Utilities

Editing, debugging, and file maintenance utilities are available on the system disc, and they can be called in when needed.

The 2120 is designed to work in a variety of applications. It's a cost-effective system for roday and an expandable one for tomorrow.


The HP 2000E and 2000F Time-Sharing Systens uniquely combine low-cost minicomputer hardware with BASIC lan'. guage programming so provide interactive problem.solving and data handing for up to 32 users. Both systems use an HP 2100N Computer with fozting-point hardware and an HP 7900A carridge disc. The 2000F adds a second 2100A for a front-end processor. A mix of terminal speeds and types plus access to system peripherals by the user are standard fearures.
Prices: $2000 \mathrm{E}<\$ 50,000 ; 2000 \mathrm{~F}, \$ 105,000$.

## Operational features:

- 16 (2000E) or 32 (2000F) simultaneous users.
- 10. 15 , or 30 cps terminal capability ( 10 to 240 cps on 2000F).
- $2(2000 \mathrm{E})$ or $3(2000 \mathrm{~F})$ levels of libraries.
- Syscern backup on removable disc or optional magnetic tape.
- 4.8 to 9.6 Mbytes storage on 2000E; 4.8 to 188 Mbytes on 2000F.
- User/operator communication capability.
- Keyboard, punched tape, or magnetic tape user input/output.
- User programs/files movable to any disc.
- Simple system activation and de-activation procedure.
- System resource utilization and status available ro system operator.
- Operator can communicate with all users simultaneously.

Hewlett-Packard extended BASIC:

- All features of standard Dartmouth BASIC.
- Matrix manipulation capability.
- Alphanumeric string capability.
- Random and sequential file access capability.
- Program CHAINing avaidable.*
- Timed input capability.*
- Formatted output capability."
- Program access to system clock.
* 2000 F only.

HP 3000 Computer System

Hewlett-Packard now offers a disc-based computer system that offers true multiprogramming and multi-lingual capabili(ies. The HP 3000 Computer System can concurrently handle time-sharing, real-time and batch operations. These capabilities have been previously found only on systems costing three or four times as much.

For terminal-oriented processing, the 3000 can accommodate several users in both multi-lingual time-sharing and data entry/ retrieval modes. Or for real-time applications, the fast response to interrupts coupled with sophisticated real-time operating softrare opens a new level of solurions for process conerol. For day-to-day processing the system can also handle generalpurpose batch activities. The fexibility of the HP 3000 hardware/softrare lers you tailor the system to your needs.

## Operational features:

- Dynamic multi-programming for time-sharing. seal-time and general-purpose tasks.
- Stack architecture for ease of compilation and fast execution.
- Dynamic relocatability of user programs.
- Core memory expandable from 33 K to 128 K bytes.
- Variable length code segmentation for virtual memory operation.
- Concurrent I/O and CPU operations for maximum throughpur.
- Buile-in protection mechanisms for programs and files.
- 16 and 32-bit fixed-point; 32-bit foating point hardware.
- A complete range of peripherals, including terminals. card readers, card punches, magnetic tape, fixed and removable dise files, line printers and paper tape equipment.



## Software:

- Hewlett-Packard's Multiprogramming Executive (MPE) executes many different user and system functions concurrently at the response level appropriate for the job.
- Large machine operating system characteristics at a small machine price.
- Absolute user protection by use of automatic hardrate delimiters and software locknords.
- Spooling for batch input and output.
- Extended ANSI FORTRAN IV, BASIC, and Systems Programming Language (SPL)
- Symbol trace (debug), text editor, scientific routines, statistical analysis routines.
- Hardrare diagnostics for on-line or stand-alone checkout.
- Complete facilities fot system accounting and monitoring.


## Programmable calculators

Variously called a computing calculator, a maxi-calculator, a desk-top cornputer, or a micro-computer, the programmable calculator is perhaps today's most popular computing device. Combining the convenience of a calculator with the power of a computer, it employs input, memory, processor and display all in a neat, fully self-contained, desk-top package. With the ability to 'memorize' complex mathematical problems involving hundreds, even thousands, of operations and then execute them without human intervention.

What's more, the programmable calculator features extensive data handling capability through a wide range of peripheral equipment. In fact, nearly every type of peripheral device you can find for even the largest computer is available for the programmable calculator: tape drives, plotters, card readers and line printers, to name a few.

In essence, the programmable calculator is a desk-top computer that is specifically defined for problem-solv. ing. To that end, the design emphasis is placed on the interaction between the operator and the machine. So the operator concentrates on solutions instead of programming.

Many calculators have their own steporiented language, whereby, numbers are first positioned and then operated upon. Recently, 'algebraic' or 'conversational language calculators came on the scene. Problems are entered just as they are written on paper. Machines with alphanumeric capability permit the user to enter variables in the form of letters, as well as numbers. Nested pacentheses can also be used in writing equations.

Most sophisticated of the Hewlett. Packard desktop calculators uses a formal computer language-BASIC. Now a desktop calculator can talk to a computer since its language is compatible. Many programs written for computers in BASIC can also be run on the calculator.


## The electronic slide rule

Recently a new breed, the personal, pocket calculator was introduced. The HP-35 is the only scientific pocketable calculator available. It differs from the many four-function (add, subtract, multiply and divide) machines because of its built-in memory and added logarithonic and trigonometric functions. This battery-powered calculator is likened to a fast, electronic slide rule.
Because of their light weight and small size, these minicalculators find a great deal of use in field applications. They are ideal for on-the-spot checking of measurements, such as in surveying. Wherever it is used, in the Geld or in the office, the HP- 35 does away with cumbersome tables, sliderule inaccuracies and bothersome interpolation.

## Choose the power needed

Now, the engineer, educator or businessman has a choice of calculators, depending upon the level of sophistica.
tion of his problems. The powerful, programmable calculators can be used to solve a wide range of problems that formerly required a computer. With peripherals such as output typewriters and X-Y plotters, input card readers, digitizers and cassette memories, the user can assemble a very powerful computational system. However, where all this power and convenience is not required, the miniature, hand-held units more than suffice.

How do you decide what's best? That's the beauty of dealing with Hewlett-Packard. We build what is clearly the most extensive line of computing alternatives for science and engineering. We build programmable and pocket calculators, general purpose minicomputers, computer systems, terminals and peripherals with the software to match-so it's easy for us to help you find the equipment appropriate for your problems. Call in an Hew. lett-Packard field engineer for an honest appraisal of your needs of today and tomorrow.

## ELECTRONIC CALCULATORS \& PERIPHERALS

## POCKET CALCULATOR <br> For science, engineering, and research HP. 35



The HP-35 is a scientific pocket calculator that combines slide rule portability with the precise acouracy and problem-solving power of many desk-top scientific calculators. As easy to use as an adding machine, it goes far beyond the conventional four-function pocket calculators available today. It handles transcendental functions like trigonometry, logarithms, and exponentials (as well as common mathematical functions), with single key strokes, thus eliminating referral to trig or log tables. It displays up to ten significant digits and automatically positions the decimal point throughout its 200 decade range ( $10^{-39}$ to $10^{000}$ ). Compared to a slide rule, it provides answers in a fraction of the time with unprecedented accuracy.

## Operational stack and memory

The HP-3s provides four registers to serve as an operational stack for intermediate values, plus a fifth register for constants. This feature is found on some compurers, but only rarely in a calculator. For both simple and complex problems eqquiring intermediate values, the stack holds the intermediate results, then brings them back automatically ac the appropriate time for further processing. This eliminates scratch notes or re-entry of intermediate values. For review purposes, stack control keys permit any register to be shifted back into the display.

## Automatic decimal point positioning

On the HP-35, values can be entered in either floating point or scientific notation. Answers in the sange from $10^{-2}$ to $10^{10}$ are displayed in floating point with the decimal
properly positioned automatically. For values outside this range, answers are displayed in scientific notation with the exponent of 10 displayed at the right.

## Battery or ac operation

The HP- 35 operates from its own nickel cadium batteries or from ac power. Batterits are recharged automatically when on ac operation. Battery operating time is four hours.

## General specifications <br> Single keystroke functions

Arithmetic: Add, Subtract, Multiply and Divide.
Trigonometric: $\operatorname{Sin} x, \operatorname{Cos} x, \operatorname{Tan} x, \operatorname{Arc} \operatorname{Sin} x, \operatorname{Arc} \operatorname{Cos} x$, Arc Tan x.
Logarithmic: $\log _{14} x, \log x$, and $e^{x}$.
Other functions: $x^{j}, 1 / x,=\vee / x$ and data storage and positioning keys.

## Power

AC: 115 or $230 \mathrm{~V}, \pm 10 \%$, 50 to $60 \mathrm{~Hz}, 5$ watts.
Battery: 500 mW derived from nickel cadmium recharg. able battery pack. Meets specifications established by the Radio Technical Commission for Aeronaurics, regarding radio frequency interference of devices carried on commerial aircraft.

## Dimensions

Length: 5.8 inches ( 14.7 cm ).
Width: 3.2 inches ( 8.1 cm ).
Height: 0.7 to 1.3 inches ( 1.8 to 3.3 cm ) .

## Welght

Calculator: 9 ounces (255g). Recharger-5 ounces (142g). Shipping weight: approx. 2 lbs ( 4.4 kg ).

## Temperature range

$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$ : operating.
$-40^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$ : storage.

## Accessories included

- AC adapter and battery recharger (115/230 V).
- Soft case with bell loop.
- Safery travel case, which holds both calculator and recharger and is compact enough to fit most standard attache cases.
- Self-adhesive owner name tags for the unit and accessories.
- Operating manual.

Price in U.S.A.
S395, includes accessories shown above, plus taxes.

## Optional accessories

Security cradle: securely locks calculator into a cradle which can be attached to desk or prork surface for protection against pilferage. Price, including six-foot stainless steel retaining rable.

Price, $\$ 24.50$.
Battery holder: holds an extra set of batteries for recharging outside the calculator so you always have a fresh set. Price, including batteries, $\$ 18$.
Fleld case: rugged felt-lined case protects against dust, weather and bumps. Price, $\$ 19.50$.


From keyboard to memory, and on down the line to peripherals and program packages, modular Series 9800 Calcula. tor Systems can be configured to satisfy an impressive range of disciplinary design needs. In addition, memory can be ex. panded. peripherals added and keyboard changed at any time withour costly modifications. Here are some examples:
Keyboard. You can design your Series 9800 keyboard to give you singfe.keystroke solutions to a wide range of complex operations. All you need do is insert a plug.in function block in the opening on the top of the calculator and you're ready to go. Each function block has its okn built-in memory (ROM)
Memory. If you find that your problems exceed the basic menory of your 9800 Calculator, you can add power at any time merely by inserting memory plug.ins.

## Series 9800/Model 10

Perhaps the most versatile member of the programmable iamily. You'll find Model 10 's doing everything from loan analysis in banks and circuit analysis in electronics labora. tories to statistical analysis in pathology labs.

In its basic coofiguration, the Model 10 comes with 500 program steps and 51 data storage registers of memory: a bright, three-registes LED display; and a built-in magnetic card reader/recorder for storing and loading programs. In this form, it will easily solve a complete regression analysis ... or compure a system of 10 simultaneous equations.

For hard copy. you have your choice of two quiet, thermal printer options-numeric or alphanumeric. The alpha option enables you to generate labels. messages, and operating instructions in complete arords and sentences right on the printer tape. It's handy for programming. too, since it prints the list of steps identified by symbols (II, y, etc.) as well as code.
Price: $\$ 2475$.

## Options

Opt. 015, Carrying Handle. $\$ 25$
Memory Options
Opt. 001, 111 Total Data Registers. $\$ 400$.
Opt. 002, 1012 Total Program Steps, $\$ 500$.
Opt. 003, 2036 Toral Program Steps, $\$ 850$.
Keyboard Options and Plug-In Function Blocks
11210A, Marhematics. s-8s
11212A, Typeneriter, \$22s.
11213A, Usec Definable, 3485.
11214A, Statistics. 848s:
11215A, Plotter, 8485.
11261A, Plotter/Printer Alpha Comb., 5800.
11262A, Peripheral/Cassette Comb., 5625.
11264A, Peripheral, \$485.
11265A, Cassette Memory, s225.
11266A, Peripheral/Printer Alpha Comb., 5800
11267A, Typervriter/Cassette Comb., \$450.
Printing Options
Opt. 004, Printer. \$67s.
11211A, Alphanumeric Plug.in. S $\$ 85$
For added pow'er and data handling capability, you can choose from the wide range of custom options and. of course, the Model 10 is compatible with the entirc family of Series 9800 peripherals.

## Series 9800/Model 20

The conversational calculator, Model 20, is especially suited to scientists and engineers who find themselves faced with lots of on-the-spor programming of complex problems.

Thanks to its namaral, algebraic language and conversational alphanumeric display and printer, you can key in the most intricate mathematical problems in the same form you'd write them on paper.

In its basic connguration, the Model 20 comes with display and printer. 173 registers of nemory, and a magnetic card reader/recorder for storing and loading programs and data. In this form. Model 20 will easily handle 17 simultaneous equations. Or with $3 n$ upgrade to 429 registers, 36 simultaneous equations.

For added convenience and power, you can customize the keyboard and expand the memory. And, of course. Model 20
accepts the whole family of Series 9800 peripherals.
Price: \$4.975.

## Madel 20 optlons

Opt. D15, Carrying $\$ 25$.
Memory Option
Opt. 001, 429 Total Data Registers, $\$ 1.250$.
Field Installable Option
11228A, 429 Total Data Registers, $\$ 1,290$, plus field installation charge.
Kayboard Options and Plug-in Function Blocks
11220A, Peripheral Control I, $\$ 485$.
11221A, Mathematics, $\$ 485$.
11222A, User Definable, \$485.
11223A, Cassette, ROM, \$225.
11224A, Peripheral Control II, \$885.

## Series 9800/Model 30

Three features really set the Model 30 apart from all other desk-top systems: firse is Mode! 30's language, BASIC plus, a formal computer language that is similar to English in vocabulary and structure. Then there's its built in Operating System and Firmware Interpreter (implemented by ROM) that handle all executive functions-leaving your main memory completely free for programs and data. And, finally, there's the built-in tape cassette that has features you'd expect only on big computer drives.

In basic configuration, Model 30 comes with 1760 sixteenbit words of main memory, a 32 character alphanumeric display, built-in tape cassette for program and data storage, and an extensive and powerful keyboard.
Price: Series 9800 Model 30, $\$ 5,975$.
Additionaliy, the Model 9866 A companion Printer prints 250 lines/minute, 80 character width. Price: $\$ 2.975$.

## Model 30 optlons

## Memory Options

Expansion to 4 K . Price: $\$ 1,475$.
Read-Only-Memary: Matrix, \$48s.
String Variables, \$485
Extended I/O, \$i8s.
Plotter, \$485.
Terminal I, \$48s.

## Peripherals

Choose the one feature that sets Hewlett-Packard calculators apart from all the rest and that one would be interfacing capability.

Nor only can you build an exciting system that will input, store, and output data in a variety of formats, but you can use it as the heart of an automatic test system as well.

## Ingut Peripherals

Perhaps the most tedious and mistake-prone part of the computing process is the input routine. It need not be. In most laboratories, and in many businesses, data is originally prepared by a machine . . computers, test instruments. ABS, or teletypes. With the 9800 , you can choose the appropriate input peripheral to feed this data to your calculator automaticaily.

The Model 9860A Card Reader optically reads cards (marked with a soft lead pencil) allowing many users to record programs or data off.line, and then lets them enter their documents in batch. That adds up to calculator machine time saved to do the actual execution of problems.

The Model 9863A Tape Reader reads data and programming instructions into your 9800 Calculator from ASCII/ISO coded punched paper tape at 20 characters per second. If you're getting data from test instruments, machine tools, or computer rerminals, the 9863 A will eliminate the need to manually reenter data through your calculator keyboard.

The Model 2748B High Speed Tape Reader optically reads punched paper tape at 300 characrers per second. It's ideally


suited to operations where the work load and volume are ex. treme.

The Model 9864A Digitizer auromatically converts graphic material into digital data and then enters it into your 9800 Calculator for analysis.

It gives you a handy means for analyzing photographs, strip chart recordings, maps, diagrams, cut-and-fill profiles ... just to name a ferr. Your imagination's the only limit to the application of this versarile device.

## Storage Peripherals

The Model 9865A Tape Cassette provides you not only with a convenient, reliable means of storing and retrieving your data, bur for managing your calculator sofrvare.

This compact periphera! has performance characteristics that are unprecedented in the computing-calculator field. Its exclusive, precision dual-motor drive, for example, eliminates the problems of tape snarling and tape surge inherent in the more traditional capstan drive systems. Here's why. First of all, any data recorded on one Hewlett-Packard Cassette Drive can be read on any other Hewlect-Packard Casselte Drive. Second and more importantly, there's no fear that the drive will destroy your irreplaceable data tapes.

In terms of operating characteristics, the 9865A has many features that are not usually available on large computer drives. Again, high speed, bidirectional search lets you find any file on the tape . . . from any starting point . . . without rewinding. Furthermore, you don'r need two drives for file updating because with the 9865 A , you can recall your data, modify it and replace it without disturbing the other informa. tion on your tade.

Putcing its poner in perspective, the 9865 A has a minimum capaciry of six thousand registers: or 24,000 words for the Model 20 and 30 : or $-48,000$ program steps with the Model 10.

## Output Peripherals

Witl the addition of the appropriate Series 9800 Peripheral, your 9800 Calculator will not only give you answers, but will put those answers into the form required by your operation. The Model 986id Typewriter is ideally suited for producing finished reports such as completely documented and formatted problem solutions, business and legal forms, or letters.

With the appropriate peripheral control ROM, your 9800 Calculator automatically controls all ryperater functions including: upper and lower case letters, punctuation, ribbon color, tab setting and clearing, and vertical spacing.

The Model 9862A X-Y Plotrer can both draw and write. Histograms, pie-cbarts, linear, log-log, and polar plots, plus circuit diagrams are just some of the things it can do. The

9862A operates in all four quadrants. Linder the control of a Peripheral Control Function Block, the X-Y Plotter can automatically scale your dara, generate words as well as numbers and set up both axes complete with labels and tic marks-all in your designated units.

The Model 9866A Thermal Printer gives you big computer printing performance at a small calculator price. This alphanumeric, page-width printer has three features you'll really appreciate. Firsr of all, it's quiet. Perfect for the thinking en. vironment. Second, it can produce full formatted ourpur . . . so it'll set up data tables, draw simple plots, and place text in the format you desire.

Finally, theres its speed. At 250 lines per minute, the 9866 A Printer matches the performance of computer line printers costing many doliars more.

The Model 2895B Tape Punch lets you casily add the convenience of a high speed tape ourput to your Hewlett-Packard system. Combining reliability and compactness in one package, it punches tapes at 75 characters per second, permitting greatly improved system throughput rates.

## Additional Options

The Model 9868A I/O Expander allows you to plug up to 13 peripherals and/or test instruments into your Series 9800 Calculator. Although the Expander was specifically designed for ust with Series 9800 peripherals and instrumentation interface devices, it has sufficient power reserve to handle many specialty interfaces as well. Data transfer rates and calculator power requirements are unaffecred by the I/O Expander.

The Model 11202 A TTL I/O Interface Card offers you industry standard TTL levels for input, output, or control lines permitting your 9800 Calculator to handle data in a variety of formats: $A S C I I$, ISO, $B C D$ or ECMA.

The 11202A is analogous to an eight-bit computer duplex card with the distinction that buffer storage is provided for only one dicecrion at a time.

Finally, the Model 11203 A BCD Inpur Interface Card provides the 9800 instruments with an interface to a variety of instruments having parallel binary coded decimal outpucs. Direct interfaces are possible to a large number of Hewlett-Packard digital volemeters, frequency counters, and other instruments.

When used with the 11264 A Peripheral Control ROM, the $11203 A$ BCD mput Card has capacity for up to nine digits of dara, with function, range, sign, and overload condition.

## Prices

(Option number corresponding to calculator with which peripheral is to be used must be specified when ordering.)

Opt. 010 specifies Model 10; Opt. 020 specifies Model 20; and Opt. 030 specifies Model 30, e.g. 9860A Opt. 20 for a Mark-Sense Card Reader for Model 20.

9860A Mark-Sense Card Reader, $\$ 850$.
9861A Typewriter Ourput. $\$ 2250$.
9862A Plotter, $\$ 2675$.
9863A Paper Tape Reader, \$i470.
9864A Digitizer. $\$ 5900$.
9865A Tape Cassette, s1750.
9866A Thermal Printer, \$29:s.
9868A I/O Expander, 8975.
11202A General 1/O Interface. \$200.
11203A BCD Interface, $\$ 300$.
2748b High Speed Tape Reader, $\$ 1500$.
2895日 Tape Punch, $\$ 2400$.

Low cost components, now available from Herlett-Packard, offer exceptional performance in consumer, industrial, and other OEM equipment. With sophisticated semiconductor processing equipment, and the industry's most extensive hybrid thin-film microcircuit manufacturing facilities, Hewletr-Packard applies newly developed technologies to component manufacturing. offering high performance diodes, transistors, and complete circuits-and also solid state numeric and alphanumeric readouts plus LEDs and other optoelectronic devices-in quantity ar economically attractive prices.

Transistors


For RF and microwave amplifers and oscillators, HewlettPackard sets the price and performance standards of the transistor industry. For example, consider this: an NPN silicon transistor with typical $f_{\text {max }}$ of 12 GHz at $\$ 19$ (in stripline package). This transistor ( 35820 series) puts out 100 mW at 4 GHz with gain rypically 7.5 dB , achieved by improved processes that didn's call for reduction in geometeries, hence no compromise in power. Then there is the 35870 series: noise figure guaranteed $<2.3 \mathrm{~dB}$ at 2 GHz and $<3.3 \mathrm{~dB}$ at 4 GHz . Or consider the $\$ 19$ HP 11; it generates over 600 mW at 2 GHz with 8 dB gain using a new design geometry that equalizes power distribution.

Hewlelt-Packard transistors fill all requirements for multistage VHF-UHF amplifers: iorv-noise input stage, high-gain intermediate stages, and power output stage. Complete data sheet characterization and excellent processing uniformity make ir possible to design your circuit by calculation instead of by trial-and-error.

Hewlert-Packard transistors are supplied in chip form, or in severa! stripline packages in either common-base or commonemitter configurations. The chips have unique moly.gold contact pads that don't deteriorate under high bonding temperatures, improving yields of thin film hybrid microcircuits.

Look to Hewletr-Packard for further advancements in microwave transistor performance and pricing.

## Diodes

Four types of high technology silicon diodes are offered:
Schottky barrler (hot carrier) diodes are unexcelled for fast digital switches, clippers, clamps, samplers, RF and Microwave mixers and detectors both high and low level. Fast recovery. less than 100 ps ; turn on voltage as low as 340 mV at 1 mA ; and breakdown levels as high as 70 V give sub-nanosecond switching, high rectification efficiency and low noise. High volume production and extremely low pricing make the diodes ideal for consumer and industrial applications. Excellent diode-to-diode uniformity simplifes applications requiring closely matched diodes.

PIN dlodes are advantageous as current-controlled resistors for RF and microwave switching. leveling, electrically-controlled attenuation, and AGC circuits. Long carrier liferime in some types gives low distortion at signal frequencies as low: as 1 MHz ; short carrier lifetime in others permits fast $R F$ switching ( $<\mathrm{sns}$ ).

Step recovery diodes are ideal for harmonic multipliess and last-rise pulse generators, Abrupt rermination of reverse re. covery current can, depending on type, generate voltage steps up to tens of volts with transistion times appreciably shorter than 1 ns. Frequency multiplication from X 2 to as high as X100 can produce useful harmonics to 18 GHz .

IMPATT diodes are state-of the-art devices for generating microwave power-as much as 1 W ar 14 GHz with $7 \%$ efficiency from a single diode. One [MPATT plus a resonator plus a de power supply equals one simple, inexpensive, solidstate microsiave source.

These diodes are available in traditional glass packages, and in special packages for waveguide, coaxial, and stripline mounring. Also available: chips and beam lead packages for hybrid iC mounting.

## Hybrid Thin-Film Circuits

Combining Hewlett-Pachard transistors and diodes with rhin-film circuits has resulted in components ideally suited to the telecommunications field, with performance/price capabilities far beyond that thought possible just a few years ago. The hybrid thin-film technology couples Hewletr-Packard's experience with passive microwave components design and exotic semiconductor devices to form products such as the recently developed 12 GHz receiver front end, all on a single $5^{\prime \prime} \times 5^{\prime \prime}$ ground plane. A Gunn oscillator, 2 GHz IF amplifiers and a unique packaging configuration give the receiver top performance with high reliability and low cost. S-band repeaters and X-band transmitter power amplifiers for use in common carrier and data communications systems have also been developed offering the same advantages.

Producing a greater quantity of RF and microarave hybrid thin film circuits than any other manufactures, Hewletr-Packard is well equipped 10 supply modules in large quantities for reliable and economic OEM systems.



#### Abstract

\section*{Solid State Displays and Optoelectronics}

Hewlett-Packard offers a complete line of GaAsP discrete light emitting diodes (LEDs) and numeric and alphanumeric displays. These components provide solid state reliability to visible data transmission. As status indicators and solid state displays, these compact light emitting diodes are electrically compatible with monolithic integrated circuits (typically 10 mA at 1.5 V ), with a useful life greater than 100,000 hours. The visible emitters generate a brilliant red color ( 658 nm ) at levels in the range of 100.200 fL .

Low cost numeric displays, packaged single or clustered. with or withour on-board electronics, are available in character heights from $1 / 9^{\prime \prime}$ to $11 / 2^{\prime \prime}$. In addition, alphanumeric and hexadecimal displays are available in single or multi-digit packaging for a variety of applications. Small character displays have been designed for portable instrumentation and calculator applications.

These gallium arsenide phosphide displays are offered in plastic encapsulation or hermetic packages. Designed for lon cost and ease of application, these displays are ideal for con-


ventional indicator requirements as well as allowing many new applications in the display of information.

Discrete LED indicator lamps are designed for easy panel mounting with clips or direct PC board application. Both plastic and hermeric packages offer high brightness over a wide viering angle with low power requirements. Hewletr-Packard offers a wide selection of lead, lens, brightness, and package combinations.

Hewlett.Packard offers two new high speed Optically Coupled isolators designed for analog and digital applications. These devices operate up to 20 M birs with an isolation greater than 2500 volts. Ultra-high speed is achieved using an ad. vanced phoro integrated-circuit construction. Both devices are available in standard 8 . Pin DIP plastic packages.

Hewletc-Packard PIN photodiodes are extellent light detectors with an exceptionally fast response of 1 ns , wide spectral response from near infrared to ultra-violet, and wide ange linearity (constant efficiency over 6 decades of amplitude). With dark current as low as 130 pA at 10 V , these detectors are especially well-suited for operation at low light levels.

## WRITE FOR MORE INFORMATION

Hewlett-Packard component capabilities are described in catalogs and data shects available for the asking.

* Diode and Transistor Catalos

Contains key parameters for our line of microwave transistors. Schottky, PIN, Step Recovery and IMPATT diodes, including chips and devices for hybrid integrated circuits.

* Oproelectronirs Catalog

Contains key paramerers for our broad line of LED readours, LED lamps, new Opticaliy Coupled Isolators and Detectors.

* Microurave Conversion/Control Components Dita Sheets

Data shects contain complete specifications on modulation, SRD modules, limiters, detectors, swithes and attenua. tors.

These catalogs, application notes and other literature, including prices, are as near as your phone. Call any HewletrPackard Sales Office.

## CABINETS, ENCLOSURES \& ACCESSORIES



The Hewlett-Packard 29400 series of rack cabinets offer a wide choice of exceptionally rugged, yet light-weight enclosures. Choices including one, two-, and three-bay cabinets with 35,56 , and 70 inch vertical panel openings ( 35 inch panel opening available on one-bay cabinet only). The enclosures accept instruments with a standard front panel width of 19 inches and a depth of up to 27 inches. Except for the 35 inch model, cabinets are equipped with eyebolts and casters for ease of handling. An optional extended base can be included with the cabinet and is recommended for enclosures to be equipped with computers, tape units, or any other heavy instrument that swings or slides outward for servicing. Fixed instrument support cails are supplied as follows: 4 pairs per 35 inch bay; 5 pairs per 56 inch bay; 6 pairs per 70 inch bay.

Cabinets are also available fully wired in accordance with IEC specifications. Included with all electrical options is one fan per bay to maintain the temperature rise to less than $15^{\circ} \mathrm{C}$ over ambient temperature where internal power consumption per bay does not exceed 2000 watts ( 500 watts for 35 inch cabinets). One outlet strip per bay is provided with all electrical options.

A number of accessories are also available and can be included with the cabinet or installed at a later date. These
accessories include transpacent of solid front doors, stocage deawers, writing surfaces, and blank front panels.

Cabinets and cabinet accessories which have an $A / B$ suffix after the model number are available in a choice of two color schemes. Suffix "A" models (29403A, 12694A, etc.) are finished in textured blue-grey with light grey panels and suffix "B" models (29403B, 12694B, etc.) are finished in moss-grey with mint grey panels. Those accessories listed with the suffix " B " only, are compatible with either the 29400 A or 29400 B series cabinets.

Customers unable to find a standard cabinet to meet their particular physical or electrical needs may have cabinets buitt on a special order basis.

Cabinet specifications

Model	No. af Bays	Dyarall Wdith (1)	Panel Helght (1)	Ovarall(1)   Halight (3)	$\begin{gathered} \mathrm{Net} \\ \text { Welgh! (2) } \end{gathered}$
29401 A/8	1	$\begin{gathered} 21 \\ (533) \end{gathered}$	$\begin{gathered} 35 \\ (889) \end{gathered}$	$\begin{aligned} & 43.25 \\ & (1099) \end{aligned}$	$\begin{gathered} 115 \\ (52.2) \end{gathered}$
$29402 \mathrm{~A} / \mathrm{B}$	1	$\begin{gathered} 21 \\ (533) \end{gathered}$	$\begin{gathered} 56 \\ (1422) \end{gathered}$	$\begin{aligned} & 64.25 \\ & (1632) \end{aligned}$	$\begin{gathered} 148 \\ (67.1) \end{gathered}$
29403 A/B	1	$\begin{gathered} 21 \\ (533) \end{gathered}$	$\begin{gathered} 70 \\ (\mathrm{I} 778) \end{gathered}$	$\begin{aligned} & 78.25 \\ & (1988) \end{aligned}$	$\begin{gathered} 168 \\ (76.2) \end{gathered}$
29404 A/B	2	$\begin{gathered} 42 \\ (1067) \end{gathered}$	$\begin{gathered} 56 \\ (1422) \end{gathered}$	$\begin{array}{r} 64.25 \\ (1632) \end{array}$	$\begin{gathered} 271 \\ (122.9) \end{gathered}$
$29405 \mathrm{~A} / \mathrm{B}$	2	$\begin{gathered} 42 \\ (1057) \end{gathered}$	$\begin{gathered} 70 \\ (1778) \end{gathered}$	$\begin{aligned} & 78.25 \\ & (1988) \end{aligned}$	$\begin{gathered} 310 \\ (140.6) \end{gathered}$
$29806 \mathrm{~A} / \mathrm{B}$	3	$\begin{gathered} 63 \\ (1600) \end{gathered}$	$\begin{gathered} 56 \\ (1422) \end{gathered}$	$\begin{aligned} & 64,25 \\ & (1632) \end{aligned}$	$\begin{gathered} 401 \\ (181.9) \end{gathered}$
29407 A/8	3	$\begin{gathered} 63 \\ (1600) \end{gathered}$	$\begin{gathered} 70 \\ (1778) \end{gathered}$	$\begin{array}{r} 78.25 \\ (1988) \end{array}$	$\begin{gathered} 461 \\ (209.1) \end{gathered}$

Notes: (1) Dimensions in inches and (millimeters) (2) Olmensions in pounds and (kilograms) (a) Overall height does not include eyebolts

## Options

Optlon ell Exloadad Beate: This option provides a 7\%/ Inch extension of cabinal base to proviós extre sisblity.
Electrical options

Oplion Number	Pramary Powar Ingut 50-80 Hz	Internal Power	Remarks
010	115 Vac	115 Vac	
011	230 Vac (USA) Split Phase	115 Vac	Available only with 29404 A/B \& 29405 A/B
012	230 Vac (Europe)	230 Vac	
013	$\begin{aligned} & 115 / 208 \text { Vac } \\ & 3 \text { phase } \end{aligned}$	115 VBC	Available only with $29406 \text { A/B } 29407 \mathrm{~A} / \mathrm{B}$

Electrical options are supplied with one power strip par bay as lollows
6 dutleats per strip with $35^{\circ}$ cabinets rated at 10 Amps par bay at 115 Vac (5 Ampe at 230 Vac .
Souttels per strlp with $56^{\circ}$ cabinels ratad at 20 Amps per bay at 115 Vac ( 10 Amps
11 aulers
11 oullets per strlg with $70^{*}$ cabinels rated at 20 Amps per bay at 115 Vac ( 10 Amps Op 090
Dplian ose pawar sirip: This option provides electrical obtlets for instruments mo unted of outlets. (Load caosclity of cabinet lis not increased by addifional outiats.)

## Rack cabinet prices

Modot	28401 A/B	80102 4/8	29403 4/B	28404 A/B	25496 A/B	20488 $4 / 0$	294018
BasjC PRICE:	\$575	\$650	\$700	\$1200	\$1375	\$1600	\$1800
$\text { Ggtion: }=$ $001$	\$50	\$50	\$50	$\$ 80$	\$80	\$120	$\$ 120$
010	250	350	35\%	450	475	700	700
011	$N / A$	$N / A$	N/A	450	475	N/2	N/R
012	250	350	350	450	475	700	700
013	N/A	$N / A$	N/A	$N / A$	N/A	700	700
030	40	45	50	45	50	45	50

## Cabinet accessories

Front doors: cabinet front doors, listed in the table below, provide 2.56 inches ( 65 mm ) from front of rack mounted instrument to inside of door to allow for knobs and other protrusions; this adds 2 inches ( $50,8 \mathrm{~mm}$ ) to cabinet depth. All doors include a key-lock. Order by Accessory No. Specify right or left opening.

## Cabinet front doors

Transparent (Oray Tint) Panel			
Height   In (mim)	Accessory   No.	Net Wefght   L6 (kg)	Prices   $s$
$12.25(311)$	126968	$6(2,7)$	180
$31.5(800)$	12693 B	$12(5,4)$	190
$56(1422)$	12677 B	$18.5(8,2)$	200
$70(1778)$	126878	$22.5(10)$	210

Blue Gray or Mint Gray Panel

$12.25(311)$	$12697 \mathrm{~A} / \mathrm{B}$	$5.5(2,4)$	160
$31.5(800)$	$12694 \mathrm{~A} / \mathrm{B}$	$10(4,5)$	170
$56(1422)$	$12678 \mathrm{~A} / \mathrm{B}$	$16(7,2)$	180
$70(1778)$	$12888 \mathrm{~A} / \mathrm{B}$	$19.5(8,8)$	190

Wood Gralned Panel

$12.25(311)$	12698 B	$6(2.7)$	160
$31.5(800)$	126958	$12(5.4)$	170
$56(1422)$	12586 B	$18.5(8.2)$	180
$70(1778)$	126898	$22.5(10)$	190

Front door option: (specify front door Accessory No. plus Option No).

Optlon 003: extra-deep door for 56 or 70 -inch cabinet. Allows 5.56 inches ( 141 mm ) from instrument front panel to inside of door. Adds 5 inches ( 127 mm ) to cabinet depth.

Price: add $\$ 20$.

Equipment slides: $150 \mathrm{lbs}(68 \mathrm{~kg}$ ) load capacity. Order by Accessory No.

Accessory Na. 126928: slide for mounting non-HewlettPackard instruments. Price: $\$ 60$.

Accessory No. 12692B-002: brackets for mounting 3.5 inch ( $88,9 \mathrm{~mm}$ ) high Hewlett-Packarà instruments. Price: $\$ 85$.

Accessory No. 12692b-003: brackets for mounting Hew-lett-Packard instruments over 3.5 inches ( $88,9 \mathrm{~mm}$ ) high with handle recess. Price: $\$ 85$.

Storage drawers: 75 lbs ( 34 kg ) load capacity; installed at botrom of cabinet if no other location is specified. Order by Accessory No.

Melght		Degth		Accessory No.	Price
In.	mm	In.	mm		
3.5	89	16	406	12672A/B	\$90
5.25	133	16	406	12673A/B	

Instrument support rails: one pair with attaching hardiware. Order Accessory No. 12679B. Price: $\$ 10$.

Writing surfaces: topped with white Formica. Fixed shelves are removed for shipping. Slideout shelf is installed if ordered with cabinet. Order by Accessory No.

Type o! shel!	Usable arga in. (mm)	Panal   height	A0ces50ry No.	Prlog
1.Bay Slide-out	$\begin{aligned} & 16 \times 16.5 \\ & (406 \times 419) \end{aligned}$	$\begin{aligned} & 3.5 \\ & (89) \end{aligned}$	12674A/B	\$140
$\begin{aligned} & \text { 1.Bay } \\ & \text { fixed } \end{aligned}$	$\begin{gathered} 15 \times 20 \\ (381 \times 508) \end{gathered}$	$\begin{aligned} & 1.75 \\ & (44) \end{aligned}$	126758	\$100
2.Bay   Fixed	$\begin{gathered} 15 \times 41 \\ (381 \times 1041) \end{gathered}$	$\begin{aligned} & 1,75 \\ & (64) \end{aligned}$	126768	\$150

Blank ganels: Hewlett-Packard grey or mint grey with at. taching screws. Order by Accessory No.

Helght   \|n. (mm)	A 000 ssory No.	Pried	Heloht   in. (mm)	Acoessory No.	Prloe
1.75 (115)	12680A/B	\$10	7 (178)	12683A/B	\$10
3.5 (89)	12681A/8		8.75 (222)	12684A/B	
5.25 (133)	12682A/B		10.5 (267)	12685A/8	

## CABINETS, ENCLOSURES \& ACCESSORIES

## Modular enclosure systems

The Hewlett-Packard modular enclosure system provides a complete solution to instrument packaging and mounting problems. The system is in accord with ElA standard rack and panel dimensions, yet each enclosure is equally well suited to bench or field use.

## Two types of instruments

Basically, instruments enclosed in the modular system fall into two classes: (I) instruments which require full EIA rack width. These instruments mount directly in racks by means of brackets and filler strips included with the instruments. Feet and tilt stand are provided for bench use. In. struments can be stacked for maximum utilization of avail. able space. (2) instruments which require only one-third or one-half the full module width. Adapter frames are available for mounting in standard EIA racks. Combining cases and rack adapter frames use blank panels to fill areas not used by instruments and provide convenient storage of leads, cords, etc. Model 1052A Combining Case accepts cooling kits to maintain proper ambient temperature.

## Specifications <br> Combining cases

11046A accepts third-module instruments.
Dimensions: $191 / 4^{\prime \prime}$ wide, $81 / /^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep ( $489 \times 213$ $\times 367 \mathrm{~mm})$. 8150 .
1051A accepts third- or half-module instruments up to $111 / 4^{\prime \prime}$ ( 286 mm ) deep.
Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep ( $425 \times 185$ x 337 mm ): hardnare furnished for conversion to rack mount $19^{\prime \prime}$ wide, $6.31 / 32^{\prime \prime}$ high, $111 / 4^{\prime \prime}$ deep behind pane! ( $483 \times 177 \times 286 \mathrm{~mm}$ ).
Welght: net $11 \mathrm{lbs}(5 \mathrm{~kg}$ ); shipping is $\mathrm{lbs}(6,8 \mathrm{~kg}$ ).
Price: HP 1051 A. $\$ 135$.
1052A accepts third or half-module instruments up to $163 / 8^{\prime \prime}$ ( 116 mm ) deep.
Dimensions: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $183 / 3^{\prime \prime}$ deep. ( $425 \times 185$ $x 467 \mathrm{~mm})$; harduare furnished for conversion to rack mount $19^{\prime \prime}$ wide, $6.31 / 32^{\prime \prime}$ high, $163 / g^{\prime \prime}$ deep behind panel ( $483 \times 177 \times 416 \mathrm{~mm}$ ).
Welght: net $13 \mathrm{lbs}(5,9 \mathrm{~kg}$ ); shipping $18 \mathrm{lbs}(8 \mathrm{~kg})$.
Price: HP 1052A, $\$ 150$.

## Rack adapter frame <br> Blue/grey

5060-0797 Adapter rack mounts third- and/or half-module instruments up to $6.3 / 32^{\prime \prime}$ high ( 155 mm ), $\$ 25$.
5050-0808 Adapter rack mounts third. and/or half-module instruments up to $3^{\prime \prime}$ high ( 75 mm ), $\$ 25$.
Note: Mint Grey is new Hewletr-Packard light grey color. Blue Grey matches color of earlier instruments (Color change began in late 1971.)


5060-8762 Adapter rack mounts third- and/or half-module instruments up to $6.3 / 32^{\prime \prime}$ high ( 155 mm ), $\$ 25$.
5060-8764 Adapter rack mounts third- and/or half-module instruments up to $3^{\prime \prime}$ high ( 75 mm ), $\$ 25$.

## Joining brackets

5060-0215 Joining Bracket KIt for semi-permanently joining any two full-module instruments $11 \% 4^{\prime \prime}$ ( 286 mm ) deep behind the front panel, $\mathbf{\$ 2 0}$.
5060-0216 Joining Bracket Kit for semi-permanently joining any two full-module instruments $163 / \mathrm{g}^{\prime \prime}(416 \mathrm{~mm})$ deep behind the front panel, 525 .

## Control panel covers

These covers quickly convert full-width cabiners to easily carried portable units.

## Control panel covers

PART NO.		ElA Panel Helght		
Blue Gray	Mlat Gray	(In.)	(mm)	
$5060-0826$	$5060-8766$	$3-15 / 32$	88	$\$ 22.50$
$5060-0827$	$5060-8767$	$5 \cdot 7 / 32$	133	25.00
$5060-0828^{*}$	$5060-8768^{*}$	$6 \cdot 31 / 32$	177	27.50
$5060-0829$	$5050-8769$	$8-23 / 32$	222	28.50
$5060-0830$	$5060-8770$	$10 \cdot 15 / 32$	286	30.00
$5060-0831$	$5060-8771$	$12.7 / 32$	310	32.50

[^54]
## Instrument cases

11075A accepts third-module instrument $61 / 2^{\prime \prime}$ high $8^{\prime \prime}$ deep. Weight: net $3 \mathrm{lbs}(1,4 \mathrm{~kg})$ : shipping $s \mathrm{lbs}(2,3 \mathrm{~kg})$. Price: HP 1107SA, $\$ 60$.
11076A accepts third-module instrument $61 / 2^{\prime \prime}$ high, $11^{\prime \prime}$ deep. Welght: net $3 \mathrm{lbs}(1,4 \mathrm{~kg}$ ); shipping $6 \mathrm{lbs}(2,7 \mathrm{~kg})$. Price: HP $11076 \mathrm{~A}, \$ 60$.

## Field cases

The Hewletr-Packard field cases are rugged protective outer shells for use when instrments must be frequently transported and used away from laboratory conditions. They are molded of strong fiberglass-reinforced plastic and sealed tightly, making them rainproof under the test conditions of MIL-STD-108. Cases meeting MIL-C-4510 are available. Carrying handles fold fat when not in use. Two basic case styles are avaidable: transit and operating. Cases are available to accommodate nearly any instrument and combination of accessories. Special size cases can also be ordered. A technical data sheet is available.

## CABINETS, ENCLOSUAES \&

 ACCESSORIES
## Transit cases

Transit cases are typically provided with foom cushions custom-formed to fit the standard Hewlett-Packard modular cabinets. This arrangement provides maximum protection against damage from handling, dropping, or crushing Prices: \$70.\$220.*

## Operating cases

Operating cases are equipped internally with shockmounted frames that accept combinations of any standard 19 -inch rack-mounting instruments up to the maximum height of the frames. This arrangement offers the convenience of operation without removing the instrument from its carrying case. At the same time, environmental protection is afforded. Drawers and casters are available. Prices: S460\$685.*

[^55]

## CABINETS, ENCLOSURES \& ACGESSORIES

ACCESSORIES<br>Cable assemblies<br>For general purpose use

## Instrument accessories

## Cables

10501A Cable Assambly
44" of 50 n coaxial cable rerminated on one end only with LUG-88C/U BNC male connector.

## 10502A Cable Assembly

$\$ 12$
$9^{\prime \prime}$ of $50 \Omega$ coaxial cable terminated on both ends with UG-88C/L BNC male connectors.

11086A Cable Assembly
$\$ 12$
24" of sorn coaxial cable terminated on both ends with UG•88C/U BNC male connectors.

10503A Cable Assembly
$48^{\prime \prime}$ of $50 \Omega$ coaxial cable terminated on bothends with UG-88C/U BNC male connectors.

## 10519A Cable Assembly

$72^{\prime \prime}$ of 50 coaxial cable terminated on both ends with UG.88C/U BNC male connectors.

## 11000A Cable Assembly

Dual banana plugs terminate a section of $50 \Omega$ cable, $44^{\prime \prime}$ over-all; plugs for binding posts spaced $3 / 4$ ".

## 11001A Cable Assembly

Identical with 11000 A except dual banana plug on one end and UG•88C/U BNC male on the other.

## 11035A Cable Assembly

$12^{\prime \prime}$ of son coaxial cable terminated on one end with a dual banana plug and on the other end with a UG-88C/U BNC male connector.

## 11002A Test Leads

Dual banana plug to alligator clips, $60^{\prime \prime}$ long

## 11003A Test Leads

Dual banana plug to probe and alligator clip, $60^{\prime \prime}$ long.

## 11143 A Cable Assembly

$4 x^{\prime \prime}$ of balanced shielded cable, BNC to clip lead.

## 11500A Cable Assembly

$72^{\prime \prime}$ of $50 \Omega$ coaxial cable cerminated on both ends with UG. 21D/U Type N male connectors.

## 11501A Cable Assembly

$72^{\prime \prime}$ of $90 \Omega$ coaxial cable terminated with UG-21D/U Type $N$ male and UG-23D/U Type $N$ female connectors.



[^0]:    *For the protection of the input eircultry.

[^1]:    - rtl: referred to input; reor raferred to output

[^2]:    *Thls option avallabio on Model shown. Order by Model number, then Option,

[^3]:    * Rofer to data sheet for complere specifications.

[^4]:    - Refer to data sheet for complete specifications.

[^5]:    *TC: $\pm 0.1 \%$ from $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.

[^6]:    $90 \mathrm{Day}\left(25^{\circ} \mathrm{C} \pm 5^{\circ}\right)$

[^7]:    - With 10,000 ASA fllm, P31 phosphor, $1 / 1.3$ lens, $1,0.5$ object-to-lmage ratio, and pulsed flood gun fogglng.

[^8]:    - AC coupled (sil others de.coupled).

[^9]:    

[^10]:    "Polarold" (2) by Folaroid, Corp.
    "Graflok" (B) by Gratlex, inc.

[^11]:    -- Indicates that information was not available ar time of prining: NA indicates Not Applicable; NC indicures No Charge

[^12]:    -- indicates that information was not available at time of printing: NA indicates Not Applicabla; NC indicates No Charge

[^13]:    -     - Indicares that informstion was nol avoilable ar time of printing; NA indicates Nat Applicable; puat indicares supply has two, independent, dc outpul val tages.

[^14]:    - indicares that in formation was not avallable at tume of printing; Na indicates Not Applicable: NC indicates No Charge

[^15]:    _- indicates that information was not available at time of prinyng: NA indicases Not Applicable: NC indicates No Charge

[^16]:    -- indicates that information was not available at time of printing; NA indicates Nol Applicable; NC indicates No Charge

[^17]:    -- indicates that information was not available at tume of printing: NA indicates Not Applicable

[^18]:    -     - indicates that Information was not avai bola at lime of printing; NA indicates Not Applicable:

[^19]:    -- indicates that information was not available at time of printing: NA indicares Not Applicable: NC indicates No Chage

[^20]:    1 Requires resr connector option.

[^21]:    - Actuated dy contact closure to ground. Closed circult current 1.5 mA (max),
    open clreult voltage +1.5 V (max).

[^22]:    'This speciflcation is based on a full scale of 50 mm . For 100 mm full scale operation, the " $\%$ of full scale" figure is one.hali the stated value.
    1For 100 mm full scale operation the ZERO Control position remains tixed, the ZERO SUPPRESSION Control is used as a "ZERO Control".

[^23]:    1. Sea under thme dase specifleations for short lerm, long lerm, tentperature and line voltage stabílity.
    2. Refers to the fequency of the counted clock (i.e. the displayed count).
[^24]:    - Contents before operallons: $X=a, Y=b, Z=c$
    -A is a storage register in the maintrame, contents: 5 . tents: $S_{A}$
    8 is a storage reglster that can be provided in an external device. Contents: $S_{a}$

[^25]:    * For any waveshape, trigeer error is lass than z $\quad\left(\frac{0.005 \mu s}{\operatorname{signal} \operatorname{sloge}(V / \mu s)}\right)$
    -- Trigger arror is less than $20.3 \%$ of one perios + Deriods averaged for slgnals wilth 40 dB or better signal-to-nolse ratlo.

[^26]:    - $=10$ counts of input frequency. ( $=1$ count displayed.)
    - For any wave shape, trigger error ls less than $=\frac{0.0025}{\text { Signal Slape }(V / \mu s)} \mu s$

[^27]:    - 10 counts of linput frequency. (=1 count disolayed.)
    - For any wave shaoe, trigger error l less than: $\frac{0.0025}{\text { Slgnal Slope (V/ } \mu \mathrm{s})} \mathrm{s} \mathrm{s}$

[^28]:    *Includes individual calibratlon report with statemont of uncertalnty, trace. able to NBS. Optlons include individual correctional data sheet attached to calibration report.

[^29]:    - Ywo Jower ranges of 0.0005 Hz (Option 001) and 0.00005 Hz (Optlon 002) are avallable on special order.

[^30]:    * Refer to data sheet for complete specifications
    - The response above 1 MHz at 600 N output is affected by capacitive loads,

[^31]:    4 Feld installable
    raxcept last vernler diglt and line swith.

[^32]:    -Mulliple Response Enable.

[^33]:    - For level accuracy within 18 E of $\mathrm{CW}(>0.1 \%$ duty cycla)

[^34]:    "For higher RF power output, to 4.5 watts, use of the 230 B Power Amplitier ls recommended. See page 35.

[^35]:    "Callbration Facior" and "Elfectlve Efficlency" are figures of merli expressing the ratlo of the substituted signal measured by the power meler fo the microwave power Incldent on and absorbed by the mount, respectlvely.

[^36]:    ' ENR ( dB B $=10 \log \frac{\mathrm{k}\left(\mathrm{T} \cdot \mathrm{T}_{\mathrm{o}}\right) \mathrm{B}}{\mathrm{KT} \mathrm{B}}$
    where KT8 = avallable noise power,
    and $k T_{0} 8=$ available nolse power with nolsa source at $290^{\circ} \mathrm{K}$.
    $x$ includes factor for insertion loss.

[^37]:    Instrument model number consisls of family model number prefixed by leller ol wavegulde band, E,G., X281B specilies X-band waveguide to coax adapler.

[^38]:    1. Option numbers same as altenuator values; e.g., option o03 for 3 d8, optron 006 for 6 dB, optlon 010 for 10 dB etc.
[^39]:    ${ }^{1}$ Aux arm tracking: $<0.3 \mathrm{~dB}$ for $7760 .<0.5 \mathrm{~dB}$ ior 777D
    ${ }^{1}$ Auxilizry oulputs typlesally track within 0.7 dB and $4^{\circ}$.
    I Oplion OIL: APC. 7 outout, N-female Ingut
    Option 012: N -male output, N -female input.

[^40]:    When orderlng, spacify sufilx letter to indicate nominal coupling: A for $3 \mathrm{~dB}, \mathrm{C}$ for $10 \mathrm{~dB}, \mathrm{D}$ for 20 dB (example: X -band, 3 dB coupling, Model X 752 A ). Directivity is at least 40 dB ; swept - Prequency tested.
    Mean coupling is the average of the maximum and mintmum coupling valuas in the rated frequency range.
    Coupling varistion over rated frequency range is fot more than $\pm 0.508$ about mean coupling ( $\pm 0.6$ dB for R7520).
    sauxiliary arm swr is 1.15 ( 1.2 for P ., K . and R -band units).
    oswapt-Irequency tested.

    - 3752 Coupiers operate to 5.3 GHz with raduced pertormance.
    tcircular tlange adiapters: K-band (UG-425/U), HP 11515A, $\$ 50$ each; R-band (UG-381/U), HP 11516A, $\$ 50$ each.

[^41]:    For all models-Maximum Input: 100 mW peak or average, $8471 \mathrm{~A}: 3 \mathrm{Vrms}, 4,2 \mathrm{~V}$ ph). Datector element: supplied.
    

[^42]:    Frequency response characterlstics (excluding basic sensitivity) track within $=0.2 \mathrm{~dB}$ per oclave from 10 MHz to 8 GHz , $=0.3 \mathrm{~dB}$ from 8 to 12.4 GHz , and ( 8470 A and 8472 A ) $=0.6 \mathrm{~dB}$ from 12.4 to 2 GHz speclfy Opllon 001 , add $\$ 20$ Der Unit ( $\$ 40$ per palr). ( 8472 A , avaliable on special order.)
    
    Frequency response characteristics (excluding basic sensifivity) trach within $=0.2 \mathrm{~dB}$ for S ., G -, J. and H -band units, $=0.3$ de for X -band units, and $=0.5 \mathrm{de}$ fos M -
    and e.band units spocily option 002; add $\$ 20$ per unit ( $\$ 40$ per Dalr).
    Matched palr of unlts fitteo with square.lay loads. Frequency response characterlstics (exciuding basic sensitivity) teack within =1 dB for power (evels less than sclicular flange adagters: 11515A (UG-425/U) for K.band, $\$ 60$ each; 11516A (UG-381/U) lor R-band, $\$ 50$ each.

[^43]:    I Includes allowance for 0 to $100 \%$ relallve humidly, temperature vapiation from 13 to $33^{\circ} \mathrm{C}$, and becklash.
    $20.15,0.96$ to 1 GHz
    ${ }^{3} 0.22,0.96$ to L GHz .

[^44]:    Correctable SWR on all models: 20.
    Insertion loss $d B$ at corrected SWR of 20: 2 dB max

[^45]:    * Refer to dala sheet for complete specifications.

[^46]:    -Options 100,200 , and 300 are identical to 110,210 . and 310 respectively except for the BA12A which is replaced by the $8413 A$.
    The 8410A netwark analyzer, 841:A harmonle frequancy converter, $8412 A$ phase magnitude display, 8414 A polar display, and 11609 A cable kit are included in each of the above oolions.

[^47]:    *Accuracy can be improved by using a silding load to cancel coupler direcfrom . $11.1 \mathrm{GHz}, .025$ from $\mathbf{1 - 2 ~ G H z}$, and .032 from 2.12 .4 GHz ; Phase uncertainty ls reduced to a meximum of $\pm 5^{\circ}$.

[^48]:    The 8543 A provides frequency coverage from 100 KHz to 110 MHz with extremely high accuracy $(.002$ reflectlon, .02 dB transmission) and the same advantages of speed, flexibllity and ease of operation characterlstlc of the 8540 series

[^49]:    * Reler to data sheet for specificatlons.
    * For levels >1 dBm accuracy spec applies only for frag. above 100 Mz .
    +150n for 3556A.

[^50]:    * Refer to data sheet for complete speciftcations.

[^51]:    - Other terminations avallable on special order.
    \$For complete specifications refer to data sheet.

[^52]:    - For complete specifications and a list of accessorles, request technical Data Sheet (7970B/C or 7970E).
    *OEM prices and discount schedules are avallable.

[^53]:    - These basic specifications apply essentially to both drives, for complete speciflcations and optlons, request technical data sheat (7900A or 7901A).
    - 0 OEM prices and alscount schedules art avallable.

[^54]:    - Also fits he 105la and 1052A.

[^55]:    - Quantity discounts avaliable.

